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ABSTRACT

A MODULAR FRAMEWORK FOR SURFACE-EMBEDDED ACTUATION AND

OPTICAL SENSING IN SOFT ROBOTS

Paul Bupe Jr

October 30, 2023

This dissertation explores the development and integration of modular technologies

in soft robotics, with a focus on the OptiGap sensor system. OptiGap serves as a sim-

ple, flexible, cost-effective solution for real-time sensing of bending and deformation,

validated through simulation and experimentation. Working as part of an emerging

category of soft robotics called Soft, Curved, Reconfigurable, Anisotropic Mecha-

nisms, or SCRAMs, this research also introduces the Thermally-Activated SCRAM

Limb (TASL) technology, which employs shape-memory alloy (SMA) wire embed-

ded in curved sheets for surface actuation and served as the initial inspiration for

OptiGap. In addition, the EneGate system is presented as a complementary tech-

nology that aims to provide modular actuation control and sensing in soft robotic

applications. Designed to integrate seamlessly with thermal actuators and OptiGap

sensors, EneGate utilizes a custom communication protocol to achieve a high degree

of modularity. This dissertation demonstrates how these technologies collectively con-

tribute to a more flexible, scalable, and adaptable future for soft robotics. It goes into

the design specifics, communication protocols, and potential applications, offering a

comprehensive modular solution for both sensing and control in soft robotics.
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CHAPTER I

INTRODUCTION

1 Problem Statement

The field of robotics has seen significant advancements in recent years, particularly

in the development of soft robots. These robots offer a range of advantages over their

rigid counterparts, including adaptability, safety, and the ability to navigate complex

environments. However, they also present unique challenges in terms of sensing and

actuation. Traditional sensors and actuators are often ill-suited for soft robotic appli-

cations, leading to a gap in the technology needed to fully realize the potential of soft

robots. One of the key challenges lies in the real-time sensing of bending and defor-

mation, which is crucial for control and navigation. Existing solutions often lack the

lack modularity, flexibility, and cost-effectiveness required for practical applications

in soft robotics. This problem is further exacerbated when the robots are required

to operate in specialized conditions such as underwater. This work aims to address

some of these challenges through the development of modular technologies, with a

focus on the OptiGap Sensor System, a fully realized modular optical sensing system.

2 Research Scope and Objectives

This research contributes to an emerging category of soft robotics, specifically Soft,

Curved, Reconfigurable, Anisotropic Mechanisms, or SCRAMs, which was Initiated

in 2019 by a consortium of four universities and financially supported by the Na-

tional Science Foundation. At the core of this technology lies the ability to alter

1



Figure 1. Overview of SCRAM Concept

the mechanical properties of thin-walled structures by modulating their local curva-

ture, demonstrated in Figure 1. This feature enables SCRAM robots to function as

continuum, compliant, and configurable soft robotic systems. One of the primary

objectives of the SCRAM initiative is to broaden the conventional understanding of

soft robots by incorporating flexible, non-stretching materials into their design. This

expansion of the material selection allows for a more versatile range of applications

and functionalities, thus pushing the boundaries of what is traditionally considered

a soft robot.

The SCRAM project also focuses on introducing soft robotics technology that

can adapt its shape and actuation in a reconfigurable manner. This is achieved by

leveraging the intrinsic coupling between curvature and mechanical behavior in pla-

nar materials. By understanding and exploiting this relationship, the project aims to

design, model, and control reconfigurable soft robots with novel capabilities. Another

significant aspect of SCRAM technology is the development of localized sensing and

actuation strategies, facilitated by techniques such as fabrics, sewing, and embroi-

dery. These localized strategies enable more precise control and adaptability, making

SCRAM robots highly suitable for complex tasks and environments. In addition,

the SCRAM project is committed to advancing planar fabrication methods along

2



Table 1. SCRAM Research Publications

Title Authors Year

Embedded Optical Waveguide Sensors for Dynamic
Behavior Monitoring in Twisted-Beam Structures

Bupe et al. In review

Multimodal Locomotion in a Soft Robot Through Hierar-
chical Actuation

Yu, Qifan et al. 2023

OptiGap: A Modular Optical Sensor System for
Bend Localization

Bupe et al. 2023

Strained Elastic Surfaces with Adjustable-Modulus Edges
(SESAMEs) for Soft Robotic Actuation

Kimmer et al. 2023

Tunable Dynamic Walking via Soft Twisted Beam Vibration Jiang, Yuhao et al. 2023

Development, Modeling, and Testing of a Passive Compliant
Bistable Undulatory Robot

Kwan et al. 2023

Electronically Reconfigurable Virtual Joints by
Shape Memory Alloy-Induced Buckling of Curved
Sheets

Bupe et al. 2022

Characterizing the pressure response of microstructured ma-
terials for soft optical skins

Portaro et al. 2022

Multitouch Pressure Sensing With Soft Optical Time-of-
Flight Sensors

Lin et al. 2022

Reconfigurable Curved Beams for Selectable Swimming
Gaits in an Underwater Robot

Sharifzadeh et al. 2021

Curvature-Induced Buckling for Flapping-Wing Vehicles Sharifzadeh et al. 2021

Collective Synchronization of Undulatory Movement
through Contact

Zhou et al. 2021

Flexoskeleton Fingers: 3D Printed Reconfigurable Ridges
Enabling Multi-functional and Low-cost Underactuated
Grasping

Yu et al. 2021

Reconfigurable laminates enable multifunctional robotic
building blocks

Jiang, Mingsong et al. 2021

Vacuum induced tube pinching enables reconfigurable flex-
ure joints with controllable bend axis and stiffness

Jiang, Mingsong et al. 2021

Shape Change Propagation Through Soft Curved Materials
for Dynamically-Tuned Paddling Robots

Jiang, Yuhao et al. 2021

Low attenuation soft and stretchable elastomeric optical
waveguides

Uppal et al. 2021

Reconfigurable Soft Flexure Hinges via Pinched Tubes Jiang, Yuhao et al. 2020

Flexoskeleton Printing Enables Versatile Fabrication of Hy-
brid Soft and Rigid Robots

Jiang, Mingsong et al. 2020

Absolute Length Sensor Based on Time of Flight in Stretch-
able Optical Fibers

Lin et al. 2020

3



with the integration of local, embedded actuators and sensors. These advancements

are crucial for achieving the high degree of reconfigurability and adaptability that

SCRAM robots are designed for.

3 Modularity in Robotics

Central to the research presented in this work is the focus on modularity and sensing

in SCRAM robotics, with the OptiGap Sensor System serving as a key example

of modular sensing technology. OptiGap was initially inspired by the development

of the Thermally-Activated SCRAM Limb, or TASL. It has since evolved into a

fully developed and tested system that addresses the need for real-time, flexible,

and cost-effective sensing in SCRAMs and other robotic systems. EneGate, another

technology under development, aims to further extend the modular capabilities of

both the OptiGap and TASL technologies.

Modularity in soft robotics, as discussed by Paik [2], is a critical aspect of the

OptiGap and EneGate projects. This approach involves the use of modular design

principles for actuators, sensors, materials, and control systems, allowing for easy

customization and adaptation to different tasks. The development of modular soft

robotics enhances the adaptability and functionality of soft robots, making them suit-

able for a variety of applications [2]. For example, the concept of the ‘soft LEGO’, as

proposed by Liao & Chen [3] decomposes complex systems into concise, controllable

modular units, which is a principle central to OptiGap and EneGate. The mod-

ularization allows for reconfiguration and customization, which is essential for the

dynamic environments these robots operate in [4].

Pigozzi & Medvet [4] explored the use of voxel-based soft robots (VSRs) for rugged

terrain locomotion, demonstrating the versatility of modular design in adapting to

challenging environments. This aligns with the aims of OptiGap and EneGate, where

flexibility in design and function is crucial. Zhang et al. emphasized the motion

4



capability of soft robots and how their modular methodology aids in creating re-

configurable and flexible prototypes [5], a concept that is foundational to OptiGap’s

sensor system and EneGate’s control mechanism. Zhang et al. [6] also presented a

comprehensive review of modular soft robots, providing insights into the challenges

and future directions of intelligent modular soft robots (MSRs). This review is par-

ticularly relevant to the development of OptiGap and EneGate, as it covers various

modular units’ materials, fabrication, actuation, sensors, and control aspects.

In the realm of actuation, Jin et al. presented vacuum-driven soft actuators with

different origami skins, highlighting the diversity in modular actuation methods [7].

This diversity is crucial for the development of adaptable robotic systems like OptiGap

and EneGate. Zhang et al. further demonstrated the practical application of modular

design in rapidly assembling flexible robotic manipulators [8], aligning with the aims

of the OptiGap and EneGate projects in creating adaptable and modular robotic

systems.

4 Objectives

This research focuses on the following primary objectives aligned with the SCRAM

project:

1. Development of Planar Fabrication Methods for Embedded Actuators

The first objective aims to introduce the use of untrained and electronically con-

trolled shape-memory alloy (SMA) wire as a surface actuator via tailored wire

placement techniques to create compliant joints or induce buckling, leading to

the Thermally-Activated SCRAM Limb, or TASL. Traditional actuators are of-

ten bulky, rigid, and not well-suited for the dynamic, flexible structures found

in soft robotics. The use of untrained SMA wire as a surface actuator offers a

lightweight, flexible and, when used as a momentary actuator, energy-efficient

alternative. Tailored wire placement techniques are employed to create compli-
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ant joints or induce buckling in the robot’s structure, which involves the use of

a ZSK tailored wire placement machine to sew SMA wire into a fabric material.

The development of these new actuation techniques will be validated through

experimentation, providing a comprehensive understanding of their capabilities

and limitations.

2. Localized Sensing and Actuation Strategies The second objective focuses

on addressing an important issue in soft robotics: real-time sensing. Central to

this objective is the development of the OptiGap Sensor System. The OptiGap

sensor system uses air gaps in flexible optical light pipes to create a low-cost

and flexible sensor that can detect bending while being effectively mechani-

cally transparent to the device being sensed. The system has been validated

through simulation and experimentation, supporting the approach of using an

air gap with a flexible sleeve to create bend-sensitive air gap patterns in a light

pipe. The development of this sensor system also involves testing under various

conditions, including underwater, to ensure its robustness and reliability.

3. Integration and System Development The third objective seeks to inte-

grate the developed actuation and sensing technologies into a cohesive, modular

system aligned with SCRAM applications. This includes circuit designs, algo-

rithm development, and control firmware and software. Enegate, a technology

still under development, aims to extend the modular capabilities in control and

actuation, inspired by the level of modularity demonstrated by OptiGap.

5 Significance

The research presented in this work is significant for several reasons, primarily be-

cause it addresses key challenges in the field of soft robotics through the advancement

of the new SCRAM class of soft robots. Central to this advancement is the OptiGap
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sensor system, which offers a simple and modular approach to real-time sensing of

bending and deformation. OptiGap’s modular design allows for easy integration with

existing systems while being materially transparent and scalable for various appli-

cations, making it a versatile solution. Another important aspect of this research is

the development of new surface actuation techniques using SMA wire. The use of

thermal actuators integrated into planar bistable structures offers an energy-efficient

alternative to traditional SMA actuators, which are often energy-intensive. This en-

ergy efficiency is particularly important as it allows the robot to maintain its shape

without the need for continuous power, thereby reducing both operational time and

environmental impact. Finally, EneGate aims to provide a cohesive, modular sys-

tem for both sensing and actuation, further enhancing the capabilities of soft robotic

systems. The modular design of these technologies also enhances their scalability, en-

abling the creation of lightweight structures well-suited for distributed actuation and

sensing, with the compatibility of OptiGap with modern microcontrollers expanding

its range of applications and making it more accessible for individual researchers and

even enterprises. Overall, the research contributes significantly to the field of soft

robotics by offering a modular, scalable, and energy-efficient approach to sensing and

actuation. Along with the SCRAM consortium, it sets a new direction for how soft

robotic systems can be designed, integrated, and deployed, offering solutions that are

both practical and innovative.
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CHAPTER II

DEVELOPMENT OF SURFACE ACTUATION USING

UNTRAINED SMA WIRE

1 Introduction

This chapter delves into the foundational technology that inspired the development

of the OptiGap sensor system: the use of shape-memory alloy (SMA)-based surface

actuation to modify the local curvature of curved, thin-walled, inextensible continuum

sheets in order to create reconfigurable virtual joints. A thin flat material like paper

can be stiffened by uniformly curving it along a single axis into a U-shape, as shown in

Figure 2. This curved shape exhibits anisotropic properties in that it resists bending

along the curve due to increased stiffness in the remaining axes. The stiffness of this

structure can be altered by creating a small change in shape along the curve such as

creating a flat spot which results in buckling, and thus reduced stiffness, under an

external force [9, 10].

(a) (b) (c)

Figure 2. Overview and behavior of the Thermally-Actuated SCRAM Limb (TASL).
(a) A thin planar material is curved into a U-shape to create stiffness. (b) Curvature
is induced by SMA wire embedded in the surface of the material via tailored wire
placement. (c) The structure buckles at the location of the surface curvature under
external pressure, creating a joint.
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The Thermally-Actuated SCRAM Limb (TASL) is a mechanism that aligns closely

with the SCRAM category of soft robots, extending the concepts established in pre-

vious research [11, 12]. Utilizing aforementioned principles, joints can be formed at

arbitrary locations along a continuum curved sheet. This is achieved by inducing

surface weakness using SMA wire, followed by the application of external actuation

to induce buckling at the desired position. The TASL design incorporates surface

actuators directly into the material, deploying continuous SMA wire in a serpentine

pattern, contrasting the approach of fixed-location, externally actuated wire tendons

as found in [11]. SCRAMs are further distinct in their employment of planar ma-

terials and planar fabrication methods. The choice of a curved sheet over a tube

enables truly planar and simplified fabrication, facilitated by established wire place-

ment techniques such as couching [13]. The integration of a continuous SMA wire

along the curved sheet enables joint location modification through the actuation of

different wire segments, yielding a reconfigurable system.

1.1 Primary Contributions

First, the chapter demonstrates that untrained SMA wire can serve as a surface actu-

ator to induce buckling in curved thin-walled structures, thereby forming a compliant

joint. Notably, this joint can be generated at any point along the continuum struc-

ture by actuating distinct segments of a continuous SMA wire. Second, the chapter

introduces a specific layout pattern for the untrained SMA wire when used as a sur-

face actuator and characterizes its behavior. Third, a circuit is engineered and an

associated control algorithm is developed for the purpose of selecting an arbitrary

number of segments to activate. Experimental evidence substantiates that the pro-

posed mechanism is capable of establishing virtual joints at various locations along

the structure.
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2 Background and Literature Review

Curvature as a means for altering stiffness has gained considerable attention in litera-

ture [11,14–16] and exhibits natural analogs in fish fins, batoids, and insect wings [12].

Jiang et al. propose a methodology for generating directional, compliant virtual joints

in thin-walled tubes by manipulating local surface curvature [11]. Actuation of oppos-

ing internal wire tendons exerts pinching forces on the tube’s surface, consequently

modifying local stiffness. This allows for the formation of virtual joints in any radial

direction, with the original shape and stiffness recoverable upon release. The authors

classify this mechanism as a SCRAM [11]. An extension of this work by Jiang et

al. leverages internal negative pressure to achieve buckling/pinching in thin-walled

tubes, controlled via a movable rigid confining sleeve [17].

Fixed joint workspace
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Figure 3. Workspace comparison between a fixed joint and reconfigurable virtual
joint two-link planar arm where 0◦ < θ1 < 180◦ and 0◦ < θ2 < 70◦. The reconfigurable
arm given five equally spaced joint locations has a wider reach than the fixed joint
arm.

Sharifzadeh et al. introduce the use of buckling tape springs for locomotion via

flapping fins and wings [12]. Employing a compliant, curved beam connected to an
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electronic servo and a fin (or wing), oscillation of the servo applies a force at the

beam’s end, resulting in buckling. This action effectively forms a joint for part of the

flapping cycle, leading to large deflections around the buckling point. Drag serves as

the restorative force for the curved beam. System buckling behavior is tunable by

adjusting design parameters such as beam length, curvature, and thickness [12].

2.1 Reconfiguration

The hysteresis and mechanical nonlinearities inherent in the reconfigurable system

offer numerous advantages for applications in locomotion and object manipulation.

The TASL with a singular virtual joint can be abstracted as a 2R planar robotic

manipulator possessing two degrees-of-freedom (DoF), as depicted in Figure 3. If

the limits on the joint angles of this example manipulator are 0◦ < θ1 < 180◦ and

0◦ < θ2 < 70◦ with the position of the tip given by

x
y

 =

l1 cos (θ1) + l2 cos (θ1 + θ2)

l1 sin (θ1) + l2 sin (θ1 + θ2)

 (1)

the workspace of this manipulator is contained in the envelope of the plot of the tip

positions for all θ1 and θ2 angles. The virtual joint position alters parameters l1 and

l2, thereby modifying the workspace. Consequently, the TASL workspace represents

the aggregation of workspaces for each feasible virtual joint location, resulting in a

more extensive operational range compared to fixed-joint manipulators. In relation

to the flapping mechanisms introduced by Sharifzadeh et al. [12], the capability to

modulate the flexing point of the wing provides flexibility in altering the wing’s motion

patterns, thereby affecting the vehicle’s overall dynamics for optimization in terms of

either speed or energy efficiency.

11



Mf MsAs Af
Temperature

Heating

Cooling

M
ar

te
ns

ite
 p

ha
se

 (
%

)

0

100

Figure 4. The heating and cooling cycle of SMAs. As the temperature increases,
the atomic lattice structure of SMA wire transitions from the martensite (flexible)
state to the austenite (stiff) state. As it cools, it transitions from the austenite state
back to the martensite state.

2.2 Shape Memory Alloys

SMAs are useful in soft robotics for their ability to change shape to a known memo-

rized shape when exposed to thermal energy. The training (memorizing) process for

SMA wire involves bending it into the desired shape, heating it to a high temperature

typically around 400− 500 ◦C, and then letting it cool down. Any subsequent heat-

ing near or past its rated activation temperature (which is significantly lower than

the training temperature) will cause the SMA wire to attempt to resume its trained

shape. This heating can be either external heating or Joule heating by running an

electrical current through the wire. There are two general states or phases in which

SMAs exist based on their internal crystal lattice structures. In the cold martensite

phase, the SMA wire is flexible much like a regular solid wire. When heated, the
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SMA wire’s internal structure transitions to the hot austenite phase during which

the wire stiffens into its trained shape and becomes effectively unbendable, with a

spring constant that is 2-3 times higher than in the martensite phase [18]. As illus-

trated in Figure 4, heating a SMA causes it to transition from the martensite phase

starting at the austenite start temperature (As) to the austenite phase ending at the

austenite finish temperature (Af ). When cooling, the SMA wire starts transitioning

to the martensite phase at the martensite start temperature (Ms) and finishes at

the martensite finish temperature (Mf ). SMA wire is useful as an actuator because

as it heats up and changes its internal structure it contracts 4−8%, based on the

alloy, which can generate significant forces albeit at a short actuation distance. This

actuation distance can be increased up to 200−1000% by training the wire into a coil

spring shape, at the cost of a reduction in force [19]. Nickel-titanium (Nitinol) SMA

is the most popular alloy and transitions in the internal crystalline structure under

heating changes allow for a 4% reduction in length [18].

SMA has been widely used in literature [13,20–39] for actuation [19,24,31,39–43],

hinges for foldable systems [20, 21, 26, 44], and stiffness tuning layers for soft fluidic

actuators [43]. Seok at al. [41] use SMA wire in the design of a soft mobile robotic

platform that exhibits peristaltic locomotion – the wire is fabricated into a coil spring

actuator whose spring constant is 2-3 times greater in the austenite phase than in

the martensite phase. Koh et al. present a singe-body crawling robot that uses

SMA spring actuators to drive two flat four-bar linkages and a folding six-bar linkage

[42]. SMA wire is also commonly used to create finger-like actuators that exhibit

planar motion. Kim et al. [24] present a finger-like actuator with SMA wire tendons

embedded in PDMS that uses soft hinges to increase the bending deformation while

Jin et el. [39] also use multiple SMA wires embedded in a rectangular PDMS structure

that exhibits bidirectional planar motion. SMAs see wide use in textiles and are one

of the most mature fields in active textiles [18, 34, 38, 45]. Buckner et al. [13] use
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SMA wire as an actuating fiber trained to create in-plane bending motion in a fabric

substrate that is able to present antagonistic motion if paired with a similar actuator

on the other side of the fabric. The authors note a major challenge with integrating

wire bending actuators into flexible fabric is the tendency for the wire to twist the

fabric instead of bending in-plane, caused by any off-center forces, which they alleviate

by flattening the round SMA wire into a rectangular profile via annealing and rolling.

There are a number of drawbacks to using SMA wire that need to be overcome

in order for it to be a feasible option including the relatively low usable strain, con-

trollability, accuracy, actuation frequency, and energy efficiency [40]. Similar to [13],

the SMA wire in the TASL is used to create in-plane bending motion for surface

actuation but without the need for rolling the SMA wire to flatten it and with no

additional training needed other than the default factory straight-training the wire

receives during the manufacturing process. Using it in this way allows for large de-

flections even without training as a spring. Unlike most SMA actuator application,

the TASL uses SMA wire not as the primary actuator but only momentarily for the

purpose of altering surface curvature so there is no need for great accuracy; this also

results in greatly diminished power requirements. Finally, the use case of SMA wire in

the TASL does not require precise closed-loop temperature control or fast actuation

cycles so those two considerations are not of great concern in this application.

3 Design and Fabrication of the TASL

This section explores the physical specifications, material selection, and fabrication

of the TASL. As earlier mentioned, one of the advantages of the TASL is that it

uses planar fabrication techniques so fabrication is fairly simple, fast, and accessible.

The TASL consists of a layer of fabric, a layer of thin plastic acting as a stiffener

and finally SMA wire in a serpentine pattern (Figure 5), with planar dimensions of

250mm x 100mm. The SMA wire was laid out in a serpentine pattern with each
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segment 80mm long, 8mm apart, and with 4mm radius corners. The core of the

design relies on the use of SMA wire as a surface actuator so the selection and layout

of the SMA wire was an important design parameter.

Cloth (denim)

SMA wire

Thin plastic (PET)

Figure 5. The TASL is constructed from two material layers, denim cloth and a
stiffening PET plastic with SMA wire embedded into the materials using tailored
wire placement.

3.1 Material Selection

3.1.1 SMA Wire

There are a number of important parameters to consider when selecting SMA wire

such as the alloy, activation temperature, and wire diameter. Nitinol is the best choice

of SMA alloy for most applications due to its great stability and thermomechanical

properties as opposed to copper and iron-based alloys [40]. The selection of activation

temperature depends on the environment and power requirements of the application.

For instance, SMA wire that comes in contact with human skin needs to have an

activation temperature low enough to not cause burns but high enough that body

heat will not activate it. Another important consideration is hysteresis, which is the

difference between the heating and cooling transition temperatures given by ∆T =

Af −Ms. The selected SMA wire features an activation temperature of 40 ◦C and
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a nominal 0.50mm diameter. The selected activation temperature allowed for fast

heating with an electrical current while the small diameter enabled for faster cooling.

3.1.2 Planar Material

In material selection the aim was to find a thin, inextensible, planar material that had

the ability to bend without creasing while also providing enough rigidity to maintain a

curved shape. This material also needed to be compliant enough to be actuated by the

SMA wire. Initially, SMA wire was embroidered directly onto the denim fabric which

yielded poor results when attempting to configure it into a curved shape. The SMA-

embedded denim would simply fold over itself and wrinkle up without maintaining

shape which meant that a stiffening layer was needed. TPU with a nominal thickness

of 0.67mm was then evaluated. When placing the SMA wire and attempting to curve

the material, it was observed that the TPU lacked sufficient rigidity, even with the

serpentine SMA wire pattern, causing the structure to crumple randomly. Attempting

to bend it resulted in the structure crumpling in random locations. Next, a more rigid

frosted Mylar (PET) film with a nominal 0.52mm thickness was evaluated. With the

SMA wire in place, this material was found to have the necessary rigidity to form a

curved structure and also fold without crumpling. The PET film had a tendency to

sometimes create sharp creases so we first stretched a layer of denim under the PET

before placing the wire. This layer of denim stretched under the PET had the effect

of keeping the bends smooth and constraining the crease to a small radius instead of

a sharp end.

3.2 Characterization

3.2.1 SMA Wire Temperature vs. Current

Utilizing Joule heating for SMA wire activation necessitated initial characterization

of current’s effect on wire temperature. The subject of the test was an 8 cm SMA
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Figure 6. This plot correlates current to temperature since SMA is activated by
heat and the TASL runs current through the wire to create heat.

wire piece with a cross-sectional diameter of 0.5mm and a resistance of 300mΩ.

Current increments were fed into the SMA wire, and the steady-state temperature

was measured using a FLIR E6 thermal camera with an emissivity of ϵ = 0.60. Results

appear in Figure 6 with n = 3. The SMA wire requires approximately 1A to reach

the rated 40 ◦C activation temperature, despite the As temperature being less than

40 ◦C. On average, less than 3 seconds were needed to reach the target temperature.

3.2.2 Blocked Bending Force

Two SMA patches were fabricated that contained one and two loops, respectively,

of the serpentine pattern (with the two-loop patch shown in Figure 7a) in order to

better characterize the forces generated by each segment of the TASL. The behavior

of the patches is such that when the SMA wire is not activated, the patch can be

moved freely and bent or curved into any position as shown in Figure 7b. When

current is applied, the patch straightens out into a flat sheet whose stiffness depends
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(a) (b) (c)

Unactivated Activated

Figure 7. Characterization of the SMA wire patch which represents a single segment
out of the continuous SMA wire serpentine pattern utilized in the TASL. (a) Example
of the SMA wire patch with two loops. (b) The behavior of the SMA wire patch before
and after activation. (c) The twisting behavior of the patch when fully activated.

on the rigidity of the SMA wire (EI) [13]. The speed at which the patch straightens

out positively correlates with the applied current, which allows for the actuation force

of the patch to be measured. This force was measured using the blocked bending tip

force test. Each patch was firmly affixed on one end, leaving 10 cm of the patch for

actuation. The free end was bent until the patch was curved into a U-shape with

a 2.4 cm opening (diameter). An end cap that spanned the width of the patch was

3D-printed and attached to the tip of the patch (making contact with the SMA)

and a piece of rigid wire was attached to the end cap, passed through an opening

in the fixed end of the patch, and connected to a Nextech DFS20 force gauge. The

steady-state force was recorded for increasing levels of current, shown in Figure 8.

The single-loop patch converged to a maximum steady-state 0.8N of force while the

double-loop reached a steady-state 1.6N by 3A. These results indicate that the max
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force increases linearly with the loop count.

0.5 1.0 1.5 2.0 2.5 3.0
Current (A)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

 F
or

ce
 (N

)

Two loops
One loop

Figure 8. The maximum tip blocking force scales linearly with the number of loops.

3.2.3 Surface Actuation

As the forces increased, the patch would exhibit twisting at the free end as shown in

Figure 7c. This behavior can be caused by any off-center forces causing the wire to

twist rather than bend and is typically undesired behavior. In fact, Buckner et al. [13]

went to significant effort to prevent twisting by physically flattening the SMA wire

and training it to bend in-plane. For our application this bending is highly desired

because it forces the material to temporarily crease which encourages buckling and

thus the formation of a joint. To evaluate the patch’s behavior as a segment within

the full continuum structure, six evenly-spaced wires were attached to the SMA wire,

creating two loops between each pair of wires, similar to the configuration in the

patch. As shown in Figure 9, circular clamps were also attached at each end to

induce camber and thus curving in the TASL. Images were captured using a thermal

19



Segment 3 Actuated(b)Segment 1 Actuated(a)

Figure 9. Fundamental behavior of the TASL. When an SMA wire segment is
actuated, it stretches and creates a flat spot in the curved surface which allows for
controlled buckling to create joints.

camera as well as a regular camera in order to better see the thermal behavior when

activated. Figures 9a and 9b show that the SMA is able to significantly actuate the

material in different areas based on which segment is active. There is also very little

heating of the adjacent areas. This test was able to validate the behavior of the patch

in its tendency to want to flatten when activated.

4 Control of the TASL

4.1 Hardware Control

The SMA wire segments are energized by the controlled routing of current through a

segment using a MOSFET switch circuit. The fundamental operation of this circuit

is to be able to switch a node (an SMA wire in this case) from ground potential

to positive and vice versa, effectively creating a SPDT switch. As shown in Figure

10, this is achieved by using two matched MOSFETs in series, with the controllable

node taken in between the MOSFETs. The gates of the two MOSFETs are wired

to follow the exclusive-OR behavior such that the only two valid states are when

one and only one of the two MOSFETs is on. When the top MOSFET is on and the

bottom is off, the controllable node is at positive potential and inversely when the top

MOSFET is off and the bottom is on, the controllable node is at ground potential.

In this way the controllable node can act as a current source or sink for the SMA

wire segment. This base switch circuit is repeated six times in order to control the
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five SMA segments since n segments require n + 1 switch circuits. The full circuit

was made into a PCB which was designed to be mounted to and controlled by an

Arduino Mega microcontroller.

+V+V

1NI0NI
SMA0 SMA1

VSMA

SMA2 SMA5...

Figure 10. Simplified SMA wire segment driver circuit showing two of the six
channels. For each channel, two MOSFETs are used to reference the channel to
either ground or the positive VSMA.

4.2 Control Algorithm

Since TASL is a continuum mechanism capable of having an arbitrary number of

segments, an algorithm was developed for determining which mode (source or sink)

to set each node to in order to activate any desired segment(s). Each of the six

nodes in the circuit can be represented as a single bit in a 6-bit binary number,

with the rightmost node representing bit 0. A segment is therefore represented as a

pair of adjacent bits, with Segment 1 corresponding to bits 0 and 1. This definition

also means a TASL with n nodes will have n − 1 controllable segments, as earlier

mentioned. Using this scheme, a segment is energized when there is a transition

from 0 to 1 or 1 to 0 between adjacent bits. Electrically, this represents a difference
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Figure 11. Visualization of the technique used by the control algorithm to activate a
segment of SMA wire along the continuum by creating a potential difference between
adjacent nodes.

in electrical potential and thus a flow of current through that segment, which is

visualized in Figure 11.

The binary number K that represents the bit configuration needed to energize

segment m is defined as

K = 2m − 1 m ≥ 1 (2)

As an example using this definition, K for energizing Segment 3 is found to be

K3 = 23 − 1 = 7 = b000111 (3)

The only transition between a 0 and 1 in this binary number occurs on the two

bits representing segment 3, thus segment 3 is energized as visualized in Figure 11.

Energizing multiple segments is then achieved by taking the Exclusive-OR of the

K-values of all the segments that need to be energized, given by
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K1 ⊕K2 ⊕ · · · Kn n ∈ S (4)

where S contains the segment numbers that need to be energized.

5 Experimental Evaluation

In this section the TASL is evaluated for its ability to create reconfigurable virtual

joints. The goal of the prototype was to demonstrate the successful creation of a

virtual joint whose position could be reconfigured. Two 5 cm diameter end caps

were laser cut out of 0.635 cm acrylic which where then used as end caps for the

limb, fastened together using a stainless steel hose clamp. The assembled TASL was

mounted horizontally on one end with a string attached to the opposite end to be

used for external actuation of the limb. Control of the arm was achieved using the

aforementioned hardware and a custom software solution. The SMA driver PCB

communicated via USB serial to a local Linux control server. This control server also

hosted the HTML-based graphical user interface (GUI) used to control the hardware

and facilitated duplex communication between the UI and the hardware. Finally, a

Dynamixel MX-28 actuator was used as the external actuating force, using a string

and pulley system to force buckling in the TASL and create joints.

Results show that the TASL was able to achieve the stated goal of creating virtual

joints at different locations. First to validate the reduction in stiffness after surface

actuation, a constant pulling force was applied normal to the top plane of the TASL

until it buckled. This was the equivalent of putting a weight on top of a half-cylinder.

This experiment was performed first without any segments actuated and then with

Segment 3 actuated. Results in Figure 12 show that SMA surface actuation resulted

in a 3.1N reduction in the force required to cause buckling. The buckling for the

actuated test was also much more smooth and controlled as opposed to the unactuated

test.
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Figure 12. The force (normal to the tip) at which the TASL buckles is reduced
from 5.35N to 2.22N after surface actuation. All tests were performed at 22.8 ◦C and
standard environmental condition (static air, atmospheric pressure).

Next, the test setup was reconfigured such that the initial pulling force was at

an approximately 45◦ angle as shown in Figure 13. When Segment 1 was activated

(Figure 13a), as hypothesized the TASL buckled at that point which allowed for

a joint to form. Upon releasing the pulling force, the TASL reverted to it’s flat

position under its own power due to the elasticity of the combined materials creating

a natural restoring force. Next, Segment 3 was activated and repeated the same

procedure. Once again the TASL buckled at the location of the activated segment

and created a joint under an external force (Figure 13b).

6 Conclusions

This chapter introduces and validates the application of SMA wire for altering the

local surface curvature of curved, thin-walled sheets, thereby enabling the creation

of reconfigurable virtual joints. The mechanism falls under the category of Soft,
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(b) Segment 3 Actuated(a) Segment 1 Actuated

Figure 13. A demonstration of the TASL with different joint locations. (a) A joint
formed with Segment 1 actuated. (b) A joint formed with Segment 3 actuated.

Curved, Reconfigurable, Anisotropic Mechanisms, or SCRAMs. In the development

of the Thermally-Activated SCRAM Limb (TASL), initial demonstrations reveal the

effective use of untrained SMA wire as a surface actuator, despite known drawbacks

and limitations. Subsequent characterization of SMA wire tailored into a U-shaped

patch indicates a tendency to straighten, irrespective of the initial shape. Extension

of this U-shape into a continuous serpentine pattern spanning the material length

occurs. Tests indicate that two loops of this serpentine pattern can exert up to 1.6N

of force, sufficient for bending most planar compliant materials. Validation of the

concept through a reconfiguration demonstration confirms the successful creation of

joints at various locations. TASL offers considerable promise due to its conceptual

and fabrication simplicity. The system’s nonlinearities and reconfiguration capabili-

ties pave the way for the development of simple yet advanced variable-DoF robots.

Utilization of planar material and fabrication techniques represents a novel direction

in soft robotics, opening numerous avenues for advancements in both mechanisms

and sensor technologies.
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CHAPTER III

ADVANCED APPLICATIONS OF SOFT OPTICAL SENSING IN

SOFT ROBOTICS

1 Introduction

This chapter presents the novel use of air gaps in flexible optical light pipes to create

coded patterns for use in bend localization and other realtime soft sensing appli-

cations. Soft optical deformation sensors make a good partner with soft robotics

because their mechanical properties match, their materials are compatible with rapid

prototyping, and they are less susceptible than electronic sensors to electromagnetic

noise and temperature drift. In the previous chapter discussion covered a new class

of soft robots consisting of Soft, Curved, Reconfigurable, Anisotropic Mechanisms,

or SCRAMs [9, 11, 12, 17, 46]. The Thermally-Activated SCRAM Limb (TASL), a

SCRAM device that can create virtual joints along a continuum curved sheet made

of denim and PET plastic by creating a surface weakness along the curve using SMA

wire that is embroidered into the sheet, was introduced and demonstrated [9]. One

shortcoming of the TASL was the lack of a bending sensor to verify that a joint formed

at the desired location. This specifically required a bend sensor that was soft, small,
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and flexible enough to embed into a surface. This chapter presents the optical gap

(OptiGap) sensor system, a novel soft optical sensor system that is low cost, flexible,

simple to fabricate, and can able to perform real-time bend sensing or localization

on almost any modern microcontroller. The OptiGap sensor system enables creation

of extrinsic intensity-modulated bend sensors functioning as flexible absolute linear

encoders.

1.1 Primary Contributions

First, a novel approach is introduced that employs an air gap with a sleeve, as depicted

in Figure 15, for generating coded, bend-sensitive patterns in optical light pipes. This

is achieved through straightforward cutting techniques, obviating the need for com-

plex equipment. Second, traditional robotics concepts of linear encoders and Gray

codes are adapted to suit a flexible soft optics sensor. Lastly, a cost-effective, reconfig-

urable sensor system is presented. This system is not only rapid in its operation but

also versatile in its material composition, allowing for swift customization tailored to

specific applications.

2 Background and Literature Review

2.1 Fiber Optic Sensors

Fiber optic sensors (FOS) typically consist of three components: a light source, a

fiber light pipe that carries light and can be modulated, and a photodetector. FOS

can be classified as either intrinsic or extrinsic. Intrinsic sensors have the sensing

components integrated into the fiber such that the light is always contained and

modulated within the fiber while extrinsic sensors have external sensing components

that modulate that light, with the fiber acting primarily as a light pipe [47, 48].

FOS can also be categorized by whether they modulate the wavelength, polarization,
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phase, intensity, or a combination of those. Phase and intensity modulation sensors

are by far the most common [48].

Recent advancements in soft robotics emphasize the integration of such soft sen-

sors to enhance real-time feedback and adaptability [49–56]. Al Jaber et al. [54] intro-

duce a method for registering the shape and orientation of soft robots using segmented

optical fibers, a camera, and a calibration algorithm, demonstrating its potential for

accurate shape reconstruction of continuum soft robots. Another work [49] presents

stretchable optical waveguides as strain sensors for prosthetics, underscoring their

potential in enhancing sensory capabilities in soft robotic systems. Next, Galloway et

al. [56] integrates a fiber optic shape sensor into soft robotic systems, offering high-

resolution shape information, while Every et al. [53] introduces a proprioceptive soft

actuator using electrical impedance tomography for shape sensing. A roughness tun-

ing strategy for fabricating multi-modal soft optical sensors is also presented [51], em-

phasizing their utility in enhancing soft robot controllability. Finally, [50,52] further

explore optical and electro-conductive yarn-based sensing mechanisms, respectively,

highlighting their potential in applications ranging from wearable sensing technolo-

gies to minimally invasive surgery. These works underscore the the importance of

real-time soft sensing for feedback and adaptability.

OptiGap sensors can be considered extrinsic intensity modulated FOS. As shown

in Figure 14b the sensor system has three main components: IR LED emitters, flexible

parallel light pipes, and a photodarlington detector. The light pipes all terminate into

a single detector and the number of light pipes is variable, depending on the desired

configuration of the sensor. Bend sensitivity is created at desired locations by cutting

the light pipe and then re-attaching the pieces together using a sleeve to create a small

air gap, shown in Figure 14a. This is done on each of the multiple light pipes in order

to create the air gap patterns (or codes) used for bend localization.
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Figure 14. Overview of the OptiGap sensor system. (a) Construction of the air
gap used to create bend-sensitive areas in the light pipe. (b) Block diagram of the
OptiGap system showing the optical emitters and detector, the fibers with bend-
sensitive gaps, and the internal block diagram of the STM32 microcontroller that
handles classification of the detected air gap patterns.

2.2 OptiGap Bend-Sensitive Air Gaps

OptiGap creates bend-sensitive air gaps along a piece of fiber by concentrating the

mechanical deformation to a predetermined location. This is achieved by cutting

the fiber perpendicular to the fiber axis and then re-attaching it together using soft

silicone tubing while leaving a small air gap. The simulation and model in Figure 15

shows the main working principle of the air gap: translation and/or rotation of one

fiber face relative to the other changes the fraction of light transmitted across the

gap. The greater the bend angle the more light escapes across the gap. The resulting

change in intensity of the optical signal is then correlated with known deformation

for use as a sensor.
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Figure 15. A ray optics model and simulation of the bend-sensitive air gap used
in OptiGap sensors. This model is bent at a 45◦ angle with a 15◦ cone angle light
source and shows a significant amount of light escaping at the gap.

2.3 Existing Approaches

The concept of using a gap in fiber for intensity modulation can be found in existing

literature. For a gap created by making a slice perpendicular to the fiber axis, a

simple 2-dimensional model can be used where a circular fiber face is translated

across another face and the overlap area gives the amount of transmission. This type

of model is used in [57–59] and is used to describe bending [57, 58] and pressure [59]

induced changes in optical intensity. The sensor in [57] uses one input fiber and two

output fibers to measure bending in flexion and extension with an LED source at one

end and a photodetector at the other end. Similarly, [58] uses one input fiber and

three output fibers separated by a gap. This allows for measuring flexion, extension,

and lateral planes. Both of these sensors have a single sensitive area and provide no

information on bending location. Lin et al. [59] measure pressure by correlating the

increase in optical intensity as the faces of two fibers align due to an external force.

Other similar non-gap approaches exist to measure bending and pressure [60,61].

Zhao et el. create a curve sensor by bending a 1mm acrylic fiber into a U-shape and

roughening one side with a laser cutter in order to increase optical bending losses [60].
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However, this sensor cannot provide information on bend location, motivating the

same group to investigate wavelength-based encoding of the deformation site, leading

to the SLIMS sensor [62]. The SLIMS sensor relies on color dyes in polyurethane

elastomers and color sensors to detect bend locations, which makes the fabrication

process complex, material selection limited, and imposes a centimeter-length limita-

tion [62], unlike OptiGap. The pressure sensor in [61] consists of a pressure sensing

sheet that is made of intersecting rows and columns of fiber encased in PDMS, each

with an emitter and detector. A map of displacement and/or force over an area is

generated by the intensity modulation caused by the bending of the fibers [61].

3 OptiGap as a Bend Localization Sensor

3.1 Operating Principles

The OptiGap sensor can best be thought of as a flexible absolute linear encoder. A

linear encoder measures the linear displacement of an object and typically consists

of a slider rail with a coded scale (much like a measuring ruler) and a sensing head

that slides over that scale and reads the scale. The reading of the scale can be done

by magnetic, optical, capacitive, resistive, ultrasonic, inductive, or mechanical means

[63]. Absolute encoders output a unique pulse code at each step so the displacement

relative to some scale is always known. More intuitively, an absolute encoder can be

thought of as a ruler with the numbers and tick marks present while an incremental

encoder is the same ruler with tick marks but no numbers. Similar to an absolute

encoder, the OptiGap system can encode absolute positions using bend-sensitive air

gap patterns along parallel light pipes as a FOS. The pattern of these bend-sensitive

air gaps used to encode the bend location follows an n-bit binary sequence, where n

is the number of parallel paths.
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Table 2. 3-bit Gray code sequences

Number Gray code Inverse Gray code

0 000 000

1 001 110

2 011 011

3 010 101

4 110 010

5 111 100

6 101 001

7 100 111

3.1.1 n-bit Inverse Gray Code

Gray code is a sequence of n-bit binary numbers where only a single bit is changed

when transitioning from one number to the next, which can also be thought of as

the Hamming distance between two adjacent numbers in the sequence is 1 [64]. As

shown in the first column of Table 2, this can be a form of built-in error detection

since a change of more than one bit in the sequence has to be an error, which is why

Gray code is often used as the coding for encoders as well as many communications

applications. Since the OptiGap system relies on a GNB classifier when performing

bend localization to identify the active air gap pattern it’s important to maximize the

information gain from one pattern to the next, which is the opposite of what Gray

code does. Inverse Gray code is where two adjacent n-bit numbers in the sequence

differ by n−1 bits, which is the maximum number of bits that can change in a binary

sequence. A 3-bit example of this inverse Gray code is shown in the second column

of Table 2 and was generated using the technique proposed in [65].

3.1.2 Sensor Array Gap Pattern

Each air gap pattern on an OptiGap sensor array can be thought of as an n-bit binary

word in an inverse Gray code sequence. The inverse Gray code of number 1 in Table
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2 corresponds with the first vertical pattern of air gaps in Figure 16b. Similarly,

number 7 in Table 2 corresponds with the last vertical pattern of air gaps. When a

bend happens at an air gap pattern, the attenuation in optical intensity results in the

bit pattern shown in Figure 16c and is similar to the pulse pattern generated by an

absolute encoder. Unlike an encoder, the real intensity signals, shown in Figure 16d,

are not consistent enough to directly convert to a binary signal, which is why the

GNB classifier explained in Section 3.4 is used. Finally, each n-fiber sensor is limited

to 2n − 1 sensitive patterns due to each pattern being equivalent to a binary word.

3.2 Fabrication

Table 3. OptiGap Configurations Tested

Length (m) Material Diameter (mm) Air Gap Patterns

1.1 (Sensor A) PMMA (fiber) 0.5 7

1.3 (Sensor B) PMMA (fiber) 0.75 7

0.7 (Sensor C) TPU (filament) 1.75 3

Because OptiGap is not a singular sensor but rather an adaptable sensor system,

fabrication of any one sensor is entirely dependent on the application for that par-

ticular sensor. This is especially true of the placement of the bend-sensitive air gap

patterns. While the system shown in Figure 16 has evenly spaced air gap patterns

for the sake of comparison with the illustrations, the air gap patterns can be placed

anywhere along the length of the light pipes, much like the gratings in fiber Bragg

grating (FBG) sensors [66–72].

Table 3 shows the system of Figure 16 can be built from different diameter fibers

and optical fiber materials. For PMMA fibers, the optical “combiner” in Figure 16

consists of the three fibers in a silicone tube, connected to the optical detector. Since

the TPU fibers are bigger, the combiner is a commercial 3:1 optical fiber combiner

(Industrial Fiberoptics part 97638-001, Industrial Fiberoptics Inc). With that in
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Figure 16. An OptiGap sensor with a visual explanation of the sensor operation.
(a) All the physical components of an OptiGap sensor including the emitters and
detector, the microcontroller, and the fibers with the sensor array gap pattern. (b)
The air gap pattern form bit patterns equivalent to an inverse Gray code binary
word sequence that translates to (c) a corresponding bit stream pattern similar to
an encoder pattern. (d) Since the real-world bit stream is not a consistent absolute
signal, a GNB classifier is used to identify the active patterns.
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mind, a number of key properties that affect the behavior and usability of an Opti-

Gap sensor for different applications are highlighted in the following sections. These

properties are also summarized in Table 4.

3.2.1 Light Pipe Material

The light pipe material is the most important property because it greatly influences

the total length of the sensor, the flexibility of the sensor, and the ability of the

sensor to be embedded in various media. The chosen light pipe needs to have a

very optically clear core with good flexibility. PMMA fiber was found to be the

most versatile light pipe due to its great optical properties, availability in various

diameters, and general flexibility without breaking. Specifically, part numbers CK-

20 and CK-30 from Industrial Fiber Optics with nominal diameters of 0.5mm and

0.75mm, respectively, were used. Both fibers have a fluorinated polymer cladding, a

core refractive index of 1.49, and a numerical aperture of 0.5.

3.2.2 Air Gap Sleeve Material

The material covering the air gap needs to be soft enough to allow bending to occur

at the gap but not too soft that it crumples easily. This ideal softness was found to

to equate to a Shore hardness of about 55A. The diameter of the sleeve material is

not critical as long as it is smaller than the light pipe diameter so that it can firmly

grip it. Testing found that high-temperature silicone tubing, such as McMaster-Carr

part numbers 51845K66 and 51845K67, perfectly satisfies these requirements.

3.2.3 Optical Source, Detector, and Microcontroller

The choice of optical source and detector is not as critical as the previously mentioned

design considerations, which is one of the strengths of this system. While any type of

light source can be used in an OptiGap sensor, light in the IR spectrum is preferred
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for most sensor applications. Because of the gaps created in the light pipes, it is

possible for ambient light to enter the system and raise the overall optical noise

floor. Using a light source and detector in the IR spectrum provides much-needed

immunity to ambient light, allowing the sensor to work in more conditions. The

primary requirement for the microcontroller is for it to have an analog-to-digital

converter (ADC) and as many digital outputs as optical paths in the sensor.

3.3 Signal Processing

3 dB noise reduction 4.6 dB noise reduction

Raw data Averaged Kalman-filtered

Figure 17. The signal processing stages for noise reduction of the input signal.
First, the signal is averaged, which produces a 3 dB noise reduction, and then it is
Kalman-filtered for an additional 4.6 dB noise reduction.

Before being sent to the GNB classifier, the signals go through a two-stage noise

reduction signal processing chain shown in Figure 17. First, a simple averaging filter

given by

Ā =
1

n

n∑
i=1

ai

where n is the number of values to be averaged, is applied to the data. This filter

serves both to smooth the raw data as well as stabilize the readings for the classifier by

providing a slight delay. After the initial smoothing, a Kalman filter is used to further

reduce the remaining signal noise without introducing any significant delay in the

signal chain. A Kalman filter is an optimal and recursive algorithm that can estimate
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a target value using both a current measurement as well as the a priori knowledge

about the system [73]. These filters are especially suitable for this application due to

both being computationally efficient and simple enough to run on a microcontroller.

3.4 Classification

Machine learning techniques have become important in the classification of real-time

sensor data across many domains [74–79]. Tan et al. [74] introduce a modified Long

Short-Term Memory (LSTM) network for detecting heel strikes and toe offs in gait cy-

cles. When tested against the Movement Analysis in Real-world Environments using

Accelerometers (MAREA) database, this method shows improved results compared

to six other gait event detection algorithms. Other techniques include Vu et al.’s de-

velopment of the Exponentially Delayed Fully Connected Neural Network (ED-FNN)

for gait cycle percentage prediction [75], Khandelwal et al.’s DK-TiFA methodology

for Initial Contact event estimation from accelerometers [76], and Su et al.’s use of

the Deep Convolutional Neural Network (DCNN) for gait cycle segmentation with

IMU data [78].

Algorithm 1 Logistic Regression Classification

1: Training Algorithm
2: Initialize weights w and bias b
3: repeat
4: for each data point (x, y) do
5: Calculate z = w · x+ b
6: Calculate ŷ = 1

1+exp(−z)

7: Update w and b using gradient descent

8: until convergence
9: Classification Algorithm
10: for each new data point x do
11: Calculate z = w · x+ b
12: Calculate ŷ = 1

1+exp(−z)

13: Classify x as 1 if ŷ ≥ 0.5, else 0

Logistic regression and random forest are both popular machine learning algo-
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rithms used for binary classification tasks due to their simplicity and lack of com-

plexity when compared to the aforementioned neural network approaches. Logistic

regression is a linear model that estimates the probability of a binary outcome based

on one or more predictor variables [80]. On the other hand, random forest is an

ensemble learning method that constructs multiple decision trees during training and

outputs the mode of the classes (classification) of the individual trees for prediction.

It effectively addresses the overfitting problem seen in individual decision trees by

averaging out biases and capturing the underlying patterns in the data [81]. While

logistic regression assumes a linear relationship between predictors and the log odds

of the outcome, random forest makes no such assumption, allowing it to capture com-

plex, non-linear relationships in the data. Bahel et al. in [82] provide a comparison of

binary classification algorithms, highlighting the extreme effectiveness of the random

forest classifier.

Algorithm 2 Random Forest Classification

1: Training Algorithm
2: for i = 1 to N trees do
3: Bootstrap sample Di from the original dataset D
4: Build a decision tree Ti on Di

5: For each split, randomly select m features without replacement
6: Choose the best split based on information gain or Gini impurity

7: Classification Algorithm
8: for each new data point x do
9: Initialize votes = {}
10: for each tree Ti do
11: Classify x using Ti to get ci
12: Add ci to votes

13: Classify x as the class with the majority votes

3.4.1 Naive Bayes Classifier

A GNB classifier is a supervised learning algorithm based on Bayes’ theorem that

determines how a measurement can be assigned to a particular class, Ci, assuming
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Figure 18. Simulation and experimental results. (a) The effects of bending a 1mm
piece of PMMA fiber on transmittance. A minimal drop-off starts at around 40◦. (b)
The cone angle of the light source has a noticeable impact on transmittance. The
smaller the cone angle the higher the transmittance. There is extra sensitivity at 40◦

during the downward trend. (c) A comparison of simulated and experimental data
of the bend angle and transmittance. The simulation and experimental data follow
the same curves even though the experimental data has a higher offset.

each class follows a Gaussian (normal) distribution with a certain probability P (Ci).

The naive part of the name assumes independent random variables. The operation

of the GNB classifier hinges on two key questions: (1) How can a measurement, x,

be assigned to class Ci for a given distribution? (2) What is the probability of error

in that assignment?

The answer to the first question has an intuitive start: given any number of classes,

a measurement should most likely belong to the class that has the highest probability

of occurring. This means that, assuming the class follows a Gaussian distribution, a
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Figure 19. A visualization of a binary Bayes classifier shown the decision boundary
and classification error.

measurement x belongs to class Ci,∈ [1,M ] when

max

{
fx(x|Ci)P (Ci) ∀ i ∈ [1,M ]

}
with the Gaussian probability density function given by [83]

P (x|Ci) =
1√
2πσci

exp

(
−(x− µci)

2σci

)2

(5)

Addressing the second question, the probability of error is the probability of a

measurement, x, from one class being misclassified as belonging to a different class.

Given a two-class problem, the total probability of error is defined as

Perr = P (x|C2)P (C2) x ∈ C1

+P (x|C1)P (C1) x ∈ C2

(6)

A GNB was used in this OptiGap implementation because it is more efficient than

if-statements or lookup tables, can handle new or previously unseen data, and can

be more accurate by taking into account the relationships between multiple input

variables.
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Algorithm 3 Gaussian Naive Bayes Classifier

1: Training Algorithm
2: for each class c do
3: for each feature j do
4: Calculate µc,j =

1
Nc

∑Nc

i=1 xi,j

5: Calculate σ2
c,j =

1
Nc

∑Nc

i=1(xi,j − µc,j)
2

6: Calculate P (c) = Nc

N

7: Classification Algorithm
8: for each new data point x do
9: for each class c do
10: P (c|x)← P (c)
11: for each feature j do

12: P (xj|c) = 1√
2πσ2

c,j

exp
(
− (xj−µc,j)

2

2σ2
c,j

)
13: P (c|x)← P (c|x)× P (xj|c)
14: Classify x as ĉ = argmaxc P (c|x)

3.4.2 Fitting and Prediction

Fitting of the training data to a usable GNB classifier was performed using the Gaus-

sianNB module of the popular Scikit-learn Python library. In order to fit the model,

data for each air gap pattern had to be captured from the sensor, labeled appropri-

ately, then sent to the GaussianNB module. The output of the fitting process was

a set of parameters representing the various Gaussian distributions and probabili-

ties for each pattern as determined by the sensor data. The actual prediction was

performed by a GNB classifier on the STM32 microcontroller, implemented using

the Arm CMSIS-DSP C library which contains common signal processing functions.

This allowed the microcontroller to perform real-time predictions while offloading the

compute-intensive fitting process to a desktop computer.

3.5 Testing and Results

Testing methodology involved initial validation of the model and proposed air gap

concept via simulation using COMSOL Multiphysics, followed by physical construc-

tion, characterization, and testing of system variations. Ray optics simulations were

41



Path A

No pattern detected No pattern detectedPattern detected Pattern detected

Path B
Path C

1.75mm TPU light pipe

Water

0.5mm PMMA light pipe

PET sheet

0.75mm PMMA light pipe

Fabric

Figure 20. Experimental setup and results. (a) OptiGap sensor working underwater.
(b) The sensor attached to PET. (c) OptiGap light pipes embroidered into fabric. (d)
0.5mm PMMA sensor attached to a tape spring testing rig showing how the bend
location corresponds to the air gap pattern.

chosen over wave optics due to the OptiGap system’s design to operate with multiple

materials; the fiber functions as a generic light pipe and is not material-dependent.

Simulation included bending a PMMA fiber piece with air gaps of 1mm and 2mm,

as well as a fiber piece without an air gap for reference. To accommodate various
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light source lenses, simulation also explored the impact of altering the cone angle of

the light source. Experimental testing of fiber bending involved creating and printing

a CAD pattern on paper containing outlines of all test bend angles. Fiber align-

ment atop this paper for each bend angle ensured consistent and repeatable testing.

Transmittance served as the primary metric for all tests and is given by

T =
I

I0
(7)

and is the ratio of transmitted light to incident light.

3.5.1 Bend Angle

The air gap significantly reduces transmittance as the bend angle increases. Bending

a fiber with no air gap results in minimal loss of light as the simulation in Fig.

18a shows. For the smallest 3mm bend angle, a 180◦ bend resulted in only a 6%

drop in transmittance. Conversely, adding an air gap results in a 75% drop by

50◦ and effectively a total loss in transmittance by 125◦, which is shown in Fig.

18c. The experimental results in the same figure match the simulation in terms of

percentage drop. For both experimental and simulation, the drop in transmittance

starts accelerating at 20◦ with most of the light attenuated by 50◦. This establishes

20◦ as the working angle for a recognizable bend for this particular sensor, which is

defined as the minimum bend angle required to reliably detect a bend. The offset

between the experimental and simulation results is due to the simulation optical

source not matching the intensity of the experimental source LED.

3.5.2 Gap Length

Fig. 18c also shows that the effective bend sensitivity of the sensor can be changed

by changing the gap length, which in turn changes the min working angle. An increase

in gap length increases the bend sensitivity at the cost of lower transmittance of

the entire fiber. This can be alleviated by using a more powerful light source.
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Table 4. OptiGap Sensor System Properties & Parameters

Name Has An Effect On

Bend Sensitivity Min bend angle for intensity drop

Diameter Total transmittance based on light source

Gap Length Bend sensitivity

Sensing Resolution Minimum length between gaps

3.5.3 Diameter

Simulation results in Fig. 18b show that small cone angles produce the highest

transmittance. This suggests that the diameter of the light pipe has a direct effect

on the optical intensity, and thus maximum sensor distance. Testing indicates the

transmittance can be maximized by using a light source with the smallest possible

cone angle if multiple diameter fibers are going to be used, or by matching the light

source to the fiber diameter if a single diameter is used for the application.

3.5.4 Sensing Resolution

The bend sensitivity also dictates the sensing resolution since only one air gap

pattern should be bending at a time. The sensing resolution is defined simply as the

minimum gap-to-gap spacing. Testing suggests that 5 cm is a reasonable resolution

for most materials.

3.5.5 OptiGap GUI

To make the system easily usable and reconfigurable, a GUI (Fig. 21) was devel-

oped that enables quick data gathering from the sensors, interactive data labeling,

and model fitting. Built in Python, it uses the PyQt6 framework for the graphical

user interface and pyqtgraph for plotting capabilities. The software offers a host of

functionalities, as outlined below:
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Figure 21. GUI created to facilitate fast testing, labeling, and fitting of data for
the OptiGap system.

• Serial Port Configuration: Upon launching the program, users can navigate

to the toolbar to configure the serial port. The Serial Port Configuration

dialog allows setting parameters like Port and Baud Rate. Clicking Connect

initiates the connection, and a successful link-up is indicated via a ”Connected”

status message.

• Data Capturing: The Capture button on the toolbar toggles data acquisition

from the serial device. When activated, the software captures incoming data

and updates the plot in real-time.

• Plot Customization: The right-hand panel of the GUI presents checkboxes for

each input signal. Users can activate or deactivate these to customize the signals

that appear on the plot.

• Data Labeling: A region selection tool, identifiable as two vertical lines on the

plot, permits users to demarcate a range of data for labeling. This region can

be adjusted manually by dragging the vertical lines or using the handles at the
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extremities. After entering a label name, the Add Label button inserts this

label into a table for future reference.

• Label Management: For existing labels, the Remove Label button allows users

to select and delete them from the labels table.

• Data Import/Export: The software supports importing data from CSV files

via the Import CSV button. Conversely, captured data and labels can be ex-

ported as CSV files using the Export All Data and Export Labels buttons,

respectively.

3.5.6 Full System and Classifier Performance

After validating the model and gaining a better understanding of the effects of various

properties on transmittance, the full OptiGap sensor system was validated. Initial

tests of hand bending the sensor and verifying the classification were performed. For

repeatability, an automated bending rig (Fig. 20d) was created, consisting of a tape

spring arm with a servo on one end and a free-spinning shaft on the other end.

Results (Fig. 20d) show the output tracked with the location of the bend along

the arm, showing the bend-sensitive areas and the non-sensitive areas. While there is

no single accuracy metric for the system as a whole since that is entirely dependent on

the fitting and fabrication of a particular configuration, this configuration tested had

a 100% accuracy measure. However, one potential source of error is little separation

between low and high signal levels, which can occur if the gap lengths are too large,

resulting in transmittance below a usable threshold. Using the STM32 running at

100Mhz, the sensor was outputting data at 175Hz using a UART baud rate of 115200.
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3.5.7 Sensor Attachment

Various techniques were explored for attaching the sensors to mechanisms, including

tapes such as masking, painter’s, fabric, and polyimide tape. Polyimide tape was

the most versatile especially when sticking the sensor to our tape spring test station.

Other techniques included using flexible but stabilizing material like a thin PET sheet

shown in Fig. 20b as well as flexible silicone adhesives. Since the motivating factor

around the development of the OptiGap system was to have a sensor that could sense

the bending of the TASL in the previous chapter [9], various ways of embedding the

sensor into the surface of materials are being explored. As Seen in Fig. 20c, a ZSK

tailored wire placement machine was used to sew fibers for an OptiGap sensor into a

fabric material much like the TASL.

3.5.8 Underwater Sensing

To demonstrate the versatility of the sensor system, a sensor was fabricated using

off-the-shelf clear TPU 3D printer filament as the light pipe. This provided an op-

portunity to test the performance of the sensor system underwater. The sensor,

shown in Fig. 20a, had no change in performance when submerged vs in free air,

which raises the potential for use in underwater robotics.

3.5.9 Limitations

The primary limitation of the OptiGap system is that it currently can only detect

bending at one location at a time, which stems from its basis as a linear encoder.

Because OptiGap uses a GNB classifier, it is possible for the sensor to be fooled into

thinking a bend is occurring at a particular location when multiple air gap patterns

are bent at once. This limits applications to those of linear encoders but with the

advantage of being customizable, compliant, and usable in wet conditions. The second
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limitation, common to all soft optical sensors, is the inability of the sensor to work

in very high-temperature environments due to the risk of melting the fibers.

4 OptiGap Case Study

Following the exploration of the design considerations, behavior, and inherent limi-

tations of the OptiGap sensor system, it was tested in a practical applications in the

field of soft robotics. The adaptability of the sensor system to function in varied con-

ditions, such as underwater environments and complex material interfaces, highlights

its broad utility. This adaptability becomes particularly significant in the context

of soft robots, where mechanical transparency and real-time adaptability are essen-

tial. The ensuing application involving a twisted soft beam serves as a case study

to demonstrate the integration of the OptiGap system into soft robotic structures,

thereby offering a robust solution for capturing real-time, high-frequency dynamics

essential for adaptive behavior.

Soft robots need onboard configuration sensing that doesn’t affect their overall me-

chanics. Mechanical transparency is especially important in cases where the robot’s

function depends closely on its material properties. This case study explores a twisted

soft beam (Fig. 22) developed by fellow collaborators [1] that converts simple, peri-

odic input motion into complex cyclic movements upon ground contact. Utilizing a

soft, twisted beam subjected to linear vibratory input, a repeating, semicircular tra-

jectory at the beam’s tip is generated. When this motion interacts with the terrain,

it evolves into a more intricate movement pattern suitable for robotic walking. The

experiment showcases that variables such as contact frequency, motion direction at

the contact point, and the resulting motion path can be modulated by adjusting the

input frequency [1]. For empirical validation, a test setup was constructed featuring

a linear stage driven by the oscillating motion of a brushless motor, controlled by an

ODrive motor control board. The beam was affixed to this linear stage, and optical
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tracking markers were placed at its proximal and distal ends. An OptiTrack Prime

17W system was used to monitor the system’s position at a 360 Hz rate. Additionally,

a plate equipped with four load cells measured the contact forces between the leg and

the ground along both Y and Z axes. The beam sample used had a twist angle of 90

degrees, and a 20g load represented the foot’s mass. The rigid foot length was 66.5

mm, and the distance between the translational stage and the plate was set at 72

mm. This setup ensured a fixed contact distance of 5.5 mm between the foot in its

unloaded, natural position and the plate. The experiment effectively demonstrated

how walking direction and speed could be tuned by manipulating the frequency of

the input actuator [1].

These gaits, as earlier mentioned, depend on beam loading, surface contact, and

properties of the surrounding environment such as viscosity and density – all of which

may change during run time. As a result, this case study focuses on the twisted soft

beam’s real-time dynamics. To capture these dynamics, three OptiGap sensors are

strategically placed (Figure 23) on the beam: one along the top edge, another across

the front, and the third across the back face at a 90-degree angle to the front sensor.

These placements are designed to capture the beam’s vibrational characteristics as it

interacts with its environment. As the beam vibrates within the 1Hz to 45Hz range,

the sensors record optical intensity data, which is then correlated with position data of

the beam’s tip captured by precise motion tracking system. This dataset, comprising

x, y, z tip positions and optical intensity readings from the three sensors, serves as

the foundation for the machine learning approach utilized in this case study. By

training machine learning models on this data, the aim is to predict the direction of

the beam’s motion (forward or backward) at its point of contact, offering a unique

method for real-time bend sensing in flexible structures.
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Jiang et al. 2023

Figure 22. Lab test setup [1] used to evaluate an OptiGap sensor.

Input actuation

Sensor 2 (front)

Sensor 3 (back)

Sensor 1 (top)

X

Y

Z

Figure 23. Positions of the 3 OptiGap sensors. Sensors 2 and 3 intersect in the
middle on each side of the beam while sensor 1 is placed along the top edge.
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Figure 24. Photograph of vibrating beam with OptiGap sensors using the same test
setup from [1] showing the translational stage, rigid foot, optical tracking markers,
and 50 g mass.

4.1 Determining Contact Direction using Real-time Classification

This sensor application employs 500 um Polymethyl methacrylate (PMMA) optical

fiber sensors integrated into the OptiGap system. Three fibers, featuring small air

gaps enclosed by a flexible sleeve as core sensing elements, are strategically placed

on the surface of the twisted soft beam. As first introduced, the OptiGap system

utilizes these air gaps in flexible optical light pipes to create coded segments for bend

localization but in this application, the OptiGap system is used to capture dynamic

behavior and vibrations in the beam, particularly when oscillated horizontally at

frequencies ranging from 1 Hz to 40 Hz.

The main objective is to construct a real-time binary classification model capa-

ble of determining the direction of motion at the point of contact (with the two

classes being ”forward” and ”backward”) for the beam, utilizing data from the three

OptiGap sensors. Logistic regression (LR) serves as the baseline model, providing

a straightforward yet effective starting point for classification. This is followed by

the implementation of a random forest (RF) model, which offers a more effective ap-
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proach to capturing complex data patterns. Given the sequential nature of the data,

temporal features need to be extracted from the data which in this case is achieved

by calculating a moving average (eq. 8) with a window of 5
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Figure 25. The correlation between the position displacement and sensor intensity
over 6 cycles at selected frequencies.

MA(si, t, w) =
1

w

t∑
j=t−w+1

si,j (8)

where si is a sensor reading and w is the window size, and calculating the gradient

using the central difference at each time step (eq. 9)

g(i) =
x(i+ 1)− x(i− 1)

2

g(0) = x(1)− x(0)

(9)

where g(i) is the gradient index at i and x is the input data array. In general, a

small window will better capture quick changes in the data, at the cost of noise.

The optimal choice for the window size is a compromise between the sampling fre-

quency and driving frequency, where a high driving frequency would benefit from a

smaller window to better capture rapid changes. Data preprocessing steps also in-

volve normalization and partitioning of the data into training, validation, and test

sets. Finally, another random forest model is evaluated that utilizes a time-lagged

input (TL RF) from the raw sensor data

X = [x1, x2, . . . , xN ] , where each xi ∈ R15

xi = [s1(ti), . . . , s1(ti+4), s2(ti), . . . , s3(ti+4)]
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where each input feature vector X is a concatenation of 5 sequential data points

from the three sensors. xi is the i
th feature vector, comprised of sequential data points

from sensors s1, s2, and s3.
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Figure 26. (a) The 10-fold cross validation results also show the TL random forest
model as the best performer with a much tighter distribution than the rest. (b) The
area under the curve (AUC) quantifies the models overall performance, with the TL
random forest model showing the best performance of the three.

4.2 Experimental Setup

This experiment follows the methodology used in [1] to show how the output trajec-

tory of a soft twisted beam can be influenced by the driving frequency. The same

hardware and experimental setup is used, but with a 50 g weight. The beam is set

to oscillate horizontally and the OptiTrak Prime optical motion tracking system cap-

tures the position data of the tip of the beam, which is then correlated with the

OptiGap sensor readings. The main data outputs consist of x, y, z tip positions and

three optical intensity readings at each sample point. These are recorded as the beam

vibrates at frequencies ranging from 1 to 40 Hz.
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Figure 27. Single beam contact test results. End point trajectories for selected
frequencies with arrows showing the direction of motion at the contact point.

4.3 Results and Discussion

The single beam contact test reveals distinct end-point trajectories at selected fre-

quencies, as illustrated in Figure 27, which mimic the trajectories presented in [1].

Arrows indicate the direction of motion at the contact point, providing insights into

how the twisted beam interacts with the ground. This data is further substantiated

by Figure 28, which presents a Fourier transform analysis of the optical intensity

readings from the OptiGap sensors. The dominant frequencies align well with the

system input frequencies, validating the sensor’s capability to accurately capture the

vibrational characteristics of the twisted beams. This frequency analysis further sup-

ports the reliability of the OptiGap system in real-time sensing applications. Figure
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Figure 28. Frequency analysis. Fourier transform of the optical intensity read-
ings from the OptiGap sensors. The dominant frequencies match the system input
frequencies, validating the sensor data.

29 integrates the normalized optical intensities from the three OptiGap sensors with

the endpoint trajectories at selected input frequencies.

Table 5. Performance Metrics

Metric Formula

Accuracy TP+TN
TP+TN+FP+FN

Precision TP
TP+FP

Recall TP
TP+FN

Area Under the Curve (AUC) Integral area

The antagonistic placement of sensors 2 and 3 reveals interesting behavior of the

beam’s motion, offering a better understanding of how sensor placement can influence

usefulness of the data. Figure 25 presents a cycle analysis, plotting six cycles for the
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Figure 29. OptiGap sensor intensities. The normalized optical intensities of
the three sensors overlaid over the endpoint trajectories of selected input frequencies,
especially showing the effects of the antagonistic placement of sensors 2 and 3.

y and z positions, and normalized optical intensity. This figure reveals a strong

correlation between each sensor’s optical intensity and the beam’s positional data,

providing a temporal dimension to the sensor’s capabilities. This cycle analysis not

only validates the sensor’s real-time performance but also opens the door for advanced

control algorithms that can adapt to dynamic changes in the robot’s environment or

operational parameters.

Table 6. Classification Results

Metric Logistic Regression Random Forest TL Random Forest

Accuracy 75% 90% 95%

Precision 75% 90% 96%

Recall 74% 90% 95%

4.3.1 Binary Classification

The evaluation of the three models reveals varying levels of performance. The clas-

sification report in Table 6 indicates that the logistic regression model achieves an
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accuracy of 75%, precision of 75%, and recall of 74%. In contrast, the random forest

model demonstrates an accuracy of 90%, precision of 90%, and recall of 90%. The

TL RF model outperforms both, with an accuracy of 95%, precision of 96%, and

recall of 95%. In a 10-fold cross-validation assessment shown in Figure 26(b), the

logistic regression model yields a mean accuracy of 81.82% with a standard devia-

tion of 13.16%. The random forest model’s mean accuracy stands at 73.56% with

a standard deviation of 22.88%, while the TL RF model achieves a mean accuracy

of 88.86% with a standard deviation of 11.63%. The ROC curve analysis in Figure

26(a) further substantiates these findings, with the AUC values being 0.82 for logistic

regression, 0.96 for random forest, and an impressive 0.99 for the TL RF model.

5 Conclusion

This chapter presented and demonstrated the OptiGap sensor system, a novel sen-

sor system that is low cost, flexible, simple to fabricate, able to perform real-time

sensing, and can work on any modern microcontroller. Validation through simula-

tion and experimentation supports the approach of using an air gap with a flexible

sleeve to create bend-sensitive air gap patterns in a light pipe. Potential applications

span various robotics and automation systems requiring flexibility, reconfiguration,

and noise immunity, including underwater conditions. The versatility in light pipe

material selection based on application needs gives the OptiGap system a distinct

advantage over other sensors. This chapter also demonstrated the use of OptiGap

in a real sensing application in embedded monitoring of twisted beam dynamics and

the application of machine learning for classifying forward vs reverse gaits. Results

highlight the ability of OptiGap to be repurposed, including by applying different

algorithms in the processing stage.
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6 Design Manual

The ultimate aim for this sensor system involves integration of processing into a

compact custom hardware package and development of a robust software package

and toolchain for automated fitting of new sensor patterns. To that end, a design

manual has been developed and included in Appendix .
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CHAPTER IV

DISTRIBUTED ACTUATION AND SENSING

1 Introduction

This chapter focuses on the integration of EneGate, a system designed to further the

modular capabilities initially realized in TASL and later in OptiGap. EneGate aims

to create an integrated, modular framework where sensing and actuation components

can be customized and scaled according to needs. As shown in Figure 30, it serves

as a complementary technology to TASL by adding local control functionalities and

to OptiGap by offering a modular platform for sensing that is adaptable for a wide

range of applications.

The design philosophy behind EneGate is influenced by the foundational work on

TASL, which served as the initial inspiration for reconfigurable actuation and later

led to the development of OptiGap. Building on these foundations, EneGate aims to

advance the concept of modular and decentralized actuation in robotics by essentially

breaking up the continuous TASL into discrete TASL SMA ”patches” that have the

same behavior but can attached to any SCRAM-like device. These patches can then

be energized by an EneGate node. This allows anyone without access to the spe-

cialized ZSK equipment to implement devices like the TASL by using these patches.

EneGate also seeks to complement and enhance the modular features introduced by

OptiGap by allowing OptiGap sensors to connect to an EneGate node or between two

EneGate nodes. This effectively solves the scalability issues of OptiGap and gives it

even more modularity.
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SMA Patch

TASL

EneGate
module

OptiGap daughter
board

Modularization of the TASL and OptiGap Systems using EneGate

Figure 30. The full realization of a modular framework enabled by EneGate.

1.1 Design Requirements

Modularity is a central feature in this context, providing systems with flexibility, scal-

ability, and adaptability. Such a modular design allows for the easy assembly, disas-

sembly, and reconfiguration of components, making the system versatile for a variety

of tasks and environments. EneGate is designed with a number of key requirements

drawn from the experience of developing both TASL and OptiGap. These require-

ments are outlined in Table 7 and are divided into several categories including power

management, control and monitoring, connectivity, and protection and feedback.

The following sections detail the design specifics of EneGate, including its com-

munication protocols. The ability of EneGate to act as a controller for the surface

embedded SMA actuators in TASL are also discussed. Finally, the compatibility be-

tween EneGate and OptiGap is examined to assess how these technologies can be
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Table 7. Design Requirements

Category Requirement Reference

Power Man-
agement

Voltage Stability: Maintain a stable power
source for all components.

Minimal functional require-
ment.

MOSFET Switch: Control a high current
load.

TASL needs MOSFET actua-
tion (Chapter 2)

Control and
Monitoring

Microcontroller: Serve as the central control
unit.

Minimal functional require-
ment.

Current Monitoring: Accurate monitoring of
current through the MOSFET.

TASL is current-controlled
(Chapter 2)

Temperature Sensing: Monitor temperature
levels of components.

TASL actuation force is tem-
perature dependent (Chapter
2)

Connectivity
Daisy-Chaining: Ability to connect multiple
boards in series.

TASL and OptiGap modular-
ization (Chapters 2, 3)

Communication Interface: Data extraction
and real-time communication.

OptiGap sensor data (Chap-
ter 3)

Microcontroller Programming: Update mi-
crocontroller’s firmware.

Minimal functional require-
ment.

Protection
and Feed-
back

Operational Feedback: Visual indicator of
board’s status.

Minimal functional require-
ment.

Back-powering Protection: Prevent inadver-
tent power flow between boards.

Minimal functional require-
ment.

Over-current Protection: Limit current going
through MOSFET.

TASL and minimal functional
requirement.

integrated to provide a comprehensive modular solution for both sensing and control.

2 Communication Protocols

The choice of communication protocol can significantly impact the system’s perfor-

mance, reliability, and complexity. In distributed actuation systems, low-latency and

high-reliability communication protocols are often preferred to ensure real-time con-

trol and coordination between the modules. One commonly used protocol in such

applications is the Inter-Integrated Circuit (I2C) protocol, which allows for multiple

slave devices to be controlled by a single master device. I2C is particularly well-suited

for applications where the actuation units are closely spaced and require simple, two-
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wire connections. For scenarios requiring longer-distance communication or higher

data rates, the Universal Asynchronous Receiver-Transmitter (UART) protocol may

be more appropriate. UART allows for full-duplex communication between devices

and is generally easier to implement in hardware. In the context of the SCRAM

project, I2C could be used for intra-node communication, while UART could be em-

ployed for interfacing with a central controller or external systems.

2.1 Manual Control Protocol

The EneGate board employs a simple yet effective serial communication protocol

for manual control by an operator. Operating at a baud rate of 38400, the proto-

col employs a structured ASCII string format enclosed within start and end bytes,

specifically curly braces { }. This format is designed to facilitate more precise con-

trol by allowing commands to target specific nodes within a distributed system. This

approach offers the dual advantages of simplicity and robustness, making it well-

suited for a wide range of applications, from research and development to real-world

deployments. The protocol’s straightforward design also facilitates rapid integration

into existing systems and software frameworks, thereby accelerating the development

cycle.

The protocol supports a variety of commands, each serving a specific function in

the control and monitoring of the EneGate board. Each command string follows the

format {P,1,20}, where P represents the command, 1 specifies the target node ID,

and 20 is the value to be set. This structured approach provides several advantages.

First, it allows for the direct targeting of individual nodes, enabling more granular

control. Second, the inclusion of start and end bytes adds an additional layer of

error checking, making the protocol more resilient to noise and data corruption. For

instance, the P command is used to set the Pulse Width Modulation (PWM) percent-

age, effectively disabling the Proportional-Integral-Derivative (PID) controller when
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Table 8. Manual Control Protocol Commands

Command Description Value Example

P
Set MOSFET PWM percentage.
Disables PID controller.

0 - 100 {P,1}

C
Set global current limit. Default is
2 amps.

0.00 - 3.00 {C,2,1.23}

S
Set PID setpoint in amps. 0 dis-
ables PID.

0.00 - 3.00 {S,1,1.23}

M
Set output to machine parsable val-
ues

M {M,1}

H
Set output to human-readable for-
mat

H {H,2}

D
Set output to debug mode. Re-
turns full state and raw ADC val-
ues.

D {D,1,D}

T Turn a GPIO pin on or off 0 (off) / 1 (on) {T,1,1}
A Read the analog value of a pin A {A,1}
W Write a PWM value to a pin 0 - 100 {W,1,128}

invoked. This feature provides fine-grained control over the actuation mechanism,

allowing for precise tuning and calibration. Similarly, the C command sets a global

current limit, with the default value set at 2 amps. This safety feature is particularly

crucial in applications where excessive current could result in hardware damage or

operational failure.

The S command sets the PID setpoint in amps, offering another layer of control

over the actuation mechanism. A value of zero disables the PID controller, providing

a mechanism to quickly deactivate the control loop when necessary. The M and H

commands are used to set the output format to machine-parsable comma-separated

values and human-readable format, respectively. These commands are especially

useful for data logging, enabling easy interpretation of the board’s output. Finally,

the D command activates the debug mode, which returns the full state of the device

along with raw Analog-to-Digital Converter (ADC) values. This mode is particularly

useful for troubleshooting and performance optimization, providing deep insights into
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the internal workings of the EneGate board.

2.2 Binary Protocol (Node / Machine Communication)

The EneGate board uses a binary protocol to communicate with other EneGate

boards and the central controller. This protocol serves as the backbone for the node-

to-node interactions within the distributed system or with a host. This protocol is

designed to be versatile, facilitating a wide range of commands for system control,

data retrieval, and actuation. The protocol uses a structured message format, en-

capsulated within a data structure, to ensure data integrity and allow for extensible

functionalities. A binary message using this protocol follows the form:

<0x01 ><0x01 ><NODEID ><COMMAND ><TYPE ><PAYLOADSIZE ><PAYLOAD ><CHECKSUM >

where <0x01><0x01> (<SOH><SOH>) is the start frame. The rest of the message is

encapsulated by the struct below.

typedef struct {

uint8_t node_id;

uint8_t command;

uint8_t type;

uint8_t payload_size;

uint8_t payload [32];

} Message;

where:

• node id: Specifies the target node for the command.

• command: Indicates the command to be executed.

• type: Distinguishes between GET and SET operations.

• payload size: Indicates the size of the payload.

• payload: Contains additional data required for the command.

2.2.1 Command Set

The protocol supports a variety of commands, each with specific functionalities and

payload requirements. The commands are categorized based on their operational
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type: GET, SET, or both. The following table provides a comprehensive list of

supported commands, their hexadecimal representation, operational type, expected

payload, and description.

2.2.2 System Control Commands

• HEARTBEAT: This command serves as a keep-alive message, containing the node

ID. It does not require a payload.

• NODE ID: Allows for both setting and getting the node ID and corresponding

I2C address. The payload for setting the node ID is the new ID value.

• OPERATING MODE and SWARM MODE: These commands are used to configure the

system’s operational behavior. They allow for setting and getting the operating

mode (central/distributed) and the swarm behavior mode, respectively.

• MASTER ELECTION: Initiates a master node election process and returns the ID

of the newly elected master node. This is a GET-type command and does not

require a payload.

2.2.3 Data Retrieval Commands

• NEIGHBORS, ACTUATION DATA, CURRENT LIMIT, TEMPERATURE: These commands

are primarily GET-type commands used for data retrieval. They allow for

fetching the node’s list of neighbors, actuation data (current and temperature),

actuation current limit, and actuation temperature, respectively.

2.2.4 Actuation Commands

• ACTUATE: This command is used to start or stop the actuation process with a

specified intensity. The payload contains the intensity value for the actuation.
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2.2.5 GPIO Commands

• GPIO MODE, ANALOG, GPIO: These commands are used for GPIO pin configu-

ration and data manipulation. They allow for setting and getting the mode

(input/output) of a GPIO pin, analog values, and digital values, respectively.

3 Operational Algorithm

3.1 Node Identification

Each node within the distributed system is uniquely identified by an ID, which ranges

from 0 to 63. Correspondingly, the I2C addresses for these nodes range from 0x1E to

0x5D (30 to 93 in decimal notation). The node ID directly maps to its I2C address,

given by I2C Address = Node ID + 0x1E, providing a one-to-one correspondence

that simplifies the addressing scheme. This is particularly useful for targeted actua-

tion and sensing operations, as well as for debugging purposes.

Table 10. Node IDs and Corresponding I2C Addresses

Node ID I2C Address
0 0x1E
1 0x1F
...

...
63 0x5D

3.2 System State

The system state is represented as a 64-bit register, where each bit corresponds to a

node on the I2C bus. A bit set to 1 indicates the presence of the node in the system,

while a bit set to 0 indicates its absence. This register is broadcast to all nodes

whenever a node joins or leaves the system, thereby keeping the network updated

about its current state.

The bit position for each node is calculated using the formula:
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bit_position = 93 - node_id;

The number 93 is used in the formula to align the bit position in the 64-bit system

state register with the I2C address of the node. I2C addresses in this case range from

0x1E to 0x5D, which in decimal notation is 30 to 93. For instance, if node 30 joins

the system, the system state would be updated as follows:

bit_position = 93 - 30; // 63

system_state |= (1 << bit_position );

The 63rd bit in the 64-bit register will be set to 1, indicating the presence of this

node with I2C address 0x1E (or 30 in decimal).

3.2.1 Heartbeat Messages

Each node periodically sends a heartbeat message to its immediate neighbors to

confirm its active status. If a node fails to receive a heartbeat message from a neighbor

within a predefined time window, it assumes the neighbor is disconnected, updates

its neighbor list, and if it is the master, initiates a new master election.

3.3 Operational Modes

3.3.1 Central Mode

In Central Mode, the master node serves as the intermediary between the central

controller and the other nodes. It receives commands via UART, relays them to the

appropriate nodes using the I2C protocol, and forwards any responses back to the

central controller.

3.3.2 Distributed Mode

In Distributed Mode, nodes operate autonomously based on local sensor data. They

communicate with their neighbors to make collaborative decisions. Each node’s mi-
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18mm

32mm

Figure 31. EneGate Rev. 1 PCB

crocontroller runs control algorithms that process sensor data to determine the ap-

propriate actuation.

4 PCB Design

4.1 Initial Design

The main objective of the initial design was to create a compact and flexible circuit

using the ATtiny85 microcontroller, which is simple yet versatile IC. The design aimed

to provide the functionality of a Single Pole Double Throw (SPDT) switch using a

pair of MOSFETs. Another objective was to facilitate connectivity between PCBs,

achieved through two 5-pin connectors.

The main elements on the board consisted of:

1. ATtiny85 Microcontroller: An 8-pin IC powered by a 5V supply. Despite limited

memory and peripheral options, it was considered adequate for simple switching

tasks.

2. MOSFET Pair: This included one N-channel and one P-channel MOSFET and

was used to emulate an SPDT switch.

3. Wago Surface Mount Terminal Blocks: These served as the external interface

for making connections to SMA wire or other thermal actuators. Outputs could

be switched either high or low.

The schematic was designed with a flex PCB, specifically to enable the board to

flex along its central axis without compromising the integrity of its electrical traces.

69



11

22

33

44

D
D

C
C

B
B

A
A

Ti
tle

N
um

be
r

R
ev

isi
on

Si
ze Le

tte
r

D
at

e:
10

/2
1/

20
23

Sh
ee

t
of

Fi
le

:
C

:\U
se

rs
\..

\s
m

a_
no

de
.S

ch
D

oc
D

ra
w

n
By

:

G
N

D

2

1 7
8U

2A
D

M
C

40
50

SS
D

Q
-1

3

4

35
6 U

2B
D

M
C

40
50

SS
D

Q
-1

3

12

R1 10
K

G
N

D

SD
A

SC
L

C
TR

L

C
TR

L
+5

V

V
_S

M
A

3 2 1

M
P2

M
P1 5 4

P2 53
26

1-
05

71

1
J1 20

65
-1

00
/9

98
-4

03

1
J2 20

65
-1

00
/9

98
-4

03

G
N

D

G
N

D

+5
V

V
_S

M
A

SD
A

SC
L

+5
V

G
N

D

SD
A

SC
L

SM
A

_O
U

T

C
TR

L

3 2 1

M
P2

M
P1 5 4

P1 53
26

1-
05

71

G
N

D

G
N

D

+5
V

V
_S

M
A

SD
A

SC
L

+5
V

G
N

D

SD
A

SC
L

(P
C

IN
T5

/R
ES

ET
*/

A
D

C0
/d

W
)P

B5
1

(P
C

IN
T3

/X
TA

L1
/C

LK
I/O

C1
B*

/A
D

C3
)P

B3
2

(P
C

IN
T4

/X
TA

L2
/C

LK
O

/O
C1

B/
A

D
C2

)P
B4

3

G
N

D
4

PB
0

(M
O

SI
/D

I/S
D

A
/A

IN
0/

O
C

0A
/O

C1
A

/A
RE

F/
PC

IN
T0

)
5

PB
1

(M
IS

O
/D

O
/A

IN
1/

O
C

0B
/O

C1
A

*/
PC

IN
T1

)
6

PB
2

(S
C

K
/U

SC
K

/S
C

L/
A

D
C

1/
T0

/IN
T0

/P
CI

N
T2

)
7

V
CC

8

U
1

AT
tin

y8
5V

-1
0S

U
R

12

R2 10
K

12

R3 10
K

+5
V

1

P3 A
3

M
H

1

H
2M

M

M
H

2

H
2M

M

M
H

3

H
2M

M

M
H

4

H
2M

M

M
H

5

H
2M

M

M
H

6

H
2M

M

En
eG

at
e 

D
riv

er
 B

oa
rd

1.
0

Pa
ul

B
up

eJ
r

Figure 32. EneGate Rev. 1 Schematic
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Components were placed strategically to prevent any overlap over the bending axis,

thus ensuring that the board could maintain its flexible characteristics. The design

also included the integration of pull-up resistors on each board; however, only one

board in a connected chain needed the actual installation of these resistors. Addi-

tionally, it included a designated pin for MOSFET control and another pin set aside

for general-purpose analog input. This minimalist approach was employed to focus

solely on essential functions, reducing complexity.

Initial testing of the design affirmed the preliminary hypothesis, but also brought

two major issues to light. First, a layout error resulted in the MOSFETs not be-

having as an SPDT switch. Because they were contained in a single package, their

symbol on the schematic had the N-channel MOSFET above the P-channel MOS-

FET. Typically N-channel MOSFETs are used as low-side drivers while P-channel

MOSFETs are used as high-side drivers, which was not the case in this error. Sec-

ond, the use of the ATtiny85 microcontroller posed its own set of limitations. While

the microcontroller was selected for its compact size and cost-efficiency, it was not

sufficiently powerful or had enough space for the tasks. Its restricted input/output

(I/O) functionalities further limited the design’s adaptability and scope for broader

applications. Finally, the MOSFET package’s inadequate thermal dissipation capa-

bilities, particularly when handling high current levels — a critical requirement for

thermal actuators, made the PCB not suitable for the intended work.

4.2 Second Revision

The primary intent behind the second revision was to make significant improvements

over the initial design. Notably, the revision aimed at enhancing functionality by in-

corporating a microcontroller with a higher pin and peripheral count, thereby offering

more configuration options. The most notable component switch was the upgrade

from the ATtiny85 microcontroller to the ATtiny841. The latter was chosen for its
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48mm

Figure 33. EneGate Rev. 2 PCB

higher pin and peripheral count, granting more flexibility in design options. Another

significant addition was the inclusion of a sense resistor in the MOSFET current path

to allow for accurate current measurement. The design also featured a dedicated

10 kΩ thermistor input and two LEDs: one controlled by the microcontroller and

another connected to the output of the voltage regulator. This design made use of a

3.3V voltage regulator, and due to the additional pins on the ATtiny841, a dedicated

header with three general-purpose I/Os was added.

The schematic of this revision was segmented into three primary sections: the

microcontroller, the voltage regulator, and the MOSFET driver section. With the

addition of the sense resistor in the MOSFET’s current path, the board could now

make accurate current measurements. The daisy chain headers were also modified to

carry VSMA, Ground,5V, and the I2C lines. The MOSFET circuit underwent trans-

formation from a SPDT configuration to a single-channel MOSFET. The board’s lay-

out presented a more streamlined design, primarily composed of four surface mount

headers and a programming header. It also included two holes for a 10 kΩ thermis-

tor and a 100mΩ current sense resistor. This current sense resistor played a key

role in closed-loop control when maintaining specific current levels, with similar con-

trol capabilities to the thermistor. The board design used a SOIC package for the

microcontroller, which was not the most efficient use of the available board space.
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Figure 34. EneGate Rev. 2 Schematic
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Figure 35. EneGate Rev. 3 PCB

While this revision saw various enhancements, it also had its challenges. The

MOSFET’s ability to reverse was removed, a capability present in the initial revision.

However, this MOSFET was better equipped to handle higher thermal capacities and

could manage significantly more current. Another potential limitation was the I2C

pull-up resistor, which wasn’t perpetually connected. The revision also introduced

a dedicated ISP programming port and a serial UART for real-time data extraction

from the board, an improvement over the previous board that required a programming

clip.

4.3 Third Revision

In the third revision of the design, several key refinements were made to optimize

the board’s performance and functionality. One of the most significant changes was

the transition from the SOIC package to the VQFN for the microcontroller, with a

footprint of about 5mm x 5mm. This change not only reduced the footprint of the

board but also allowed for a more compact design.

The actuator connector underwent a modification as well. Initially, an all-metal

Wago connector was used, but this was replaced with a more traditional 2-pole inser-

tion terminal, which is still surface-mounted. The change was necessitated by issues

encountered with solder wicking into the insertion hole during the soldering process.

Additionally, the metal WAGO connector proved to be tricky to desolder without
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Figure 36. EneGate Rev. 3 schematic
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damage to nearby components, making the 2-pole terminal a more practical choice.

Another noteworthy change was the adjustment of the system voltage from 3.3V

to 4.5V. The higher voltage was chosen to enable the system to run on a standard 5V

input, with a regulator stepping it down to 4.5V. This higher voltage also allowed

the microcontroller to fully turn on the MOSFET without the need for external

circuits, such as a charge pump. The MOSFET used in this iteration was updated

to one with 40W of power dissipation, capable of handling 61A peak drain current

at 25C. This MOSFET had a VGS(th) of 1.95V max with an RDSon of only 7.5mΩ

at 4.5V, meaning the microcontroller is capable of fully turning it on directly. The

same technique was employed where part of the bottom layer of the PCB serves as a

heatsink for the MOSFET. This allows for high current throughput without the need

for an external heatsink.

The connector for the daughter board was also revised. A smaller pitch connector

was used, which allowed for the inclusion of an additional pin. This resulted in a

total of four I/O pins along with power and ground, enhancing the board’s expand-

ability. To accommodate the additional pin for the daughter board, the pin LED

was removed, although the ISP header was retained. Lastly, a simple voltage shifter

circuit was added to the UART RX line to prevent back-powering the ATtiny micro-

controller. These changes collectively contribute to a more efficient and functional

board, addressing previous limitations while introducing new capabilities.

5 Firmware

The EneGate library is written in C++ and targets currently Arduino-based micro-

controllers. It aims to provide a structured way to manage individual nodes in a

network, each with its own set of commands and parameters. The library is object-

oriented, encapsulating functionalities into a class named EneGate.
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5.1 The EneGate Class

The EneGate class serves as the core of the firmware. Each object of this class

represents a unique node in the network with its own ID, message buffer, and PID

control parameters. It provides a well-structured and extensible framework for man-

aging nodes in a network, complete with message processing. Its design allows for

easy addition of new features and commands, making it a versatile choice for various

applications.

class EneGate {

public:

EneGate(uint8_t node_id );

~EneGate ();

// ... (other public methods)

private:

uint8_t node_id;

pid_data pid;

// ... (other private members)

};

Here, node id uniquely identifies each node, and pid is a struct that holds the

PID controller’s parameters and state variables. Upon instantiation, the constructor

EneGate::EneGate(uint8 t node id) initializes several key parameters. Notably, it

sets the node ID and initializes the PID control variables, such as the proportional,

integral, and derivative gains.

5.2 Data Structures

1. Message Structure

typedef struct {

uint8_t node_id;

uint8_t command;

uint8_t type;

uint8_t payload_size;

uint8_t payload [32];

} Message;

This struct encapsulates a single message, containing the message size, com-
mand, command type, node ID, and a payload.
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2. Command Enumeration

enum class Command : uint8_t {

CMD_NODE_ID = 0x42 ,

// ... (other commands)

Invalid = 0x99

};

This enum class defines various command types that a node can accept.

3. PID Data Structure

typedef struct pid_data {

double kp;

double ki;

double kd;

// ... (other PID variables)

} pid_data;

This struct holds the parameters and variables for the PID controller.

5.3 Communication Protocols

The message processing logic is encapsulated in the process byte method. This

method takes an incoming byte, appends it to a message buffer, and then decides

which protocol the message adheres to—either binary or ASCII. If the message buffer

reaches its maximum size, it gets reset to avoid overflow, ensuring robustness.

The binary protocol is designed for efficient communication. Messages in this

format start with a frame of "0x01 0x01".

bool EneGate :: is_binary_protocol () {

return (msg_buffer_index >= 2 &&

msg_buffer[msg_buffer_index - 2] == 0x01 &&

msg_buffer[msg_buffer_index - 1] == 0x01);

}

The is binary protocol() method checks if the incoming message conforms to

the binary protocol.

The ASCII protocol is human-readable and starts with a "{" and ends with a

"}".
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bool EneGate :: is_ascii_protocol(uint8_t byte) {

return (byte == ’}’ || byte == ’\n’);

}

The is ascii protocol() method checks if the incoming message conforms to

the ASCII protocol.

The process message method serves as a dispatcher that routes incoming mes-

sages based on their command type. It employs a switch-case construct to handle

various commands. For instance, in the case of the CMD CURRENT LIMIT command, it

returns the current limit.

switch (command) {

case Command :: CMD_CURRENT_LIMIT:

// Return the current limit

break;

// ... other cases

}

5.4 Real-Time Control

void EneGate :: update_pid(double setpoint , double measured_value) {

// ... (PID calculations)

pid.output = pid.kp * pid.error + pid.ki * pid.integral + ...

}

The firmware incorporates a PID controller for real-time control tasks. The PID

controller uses a separate data structure (pid data) to hold its parameters and state

variables and which updates the PID variables based on the current setpoint and the

measured value. The method calculates the error, integral, and derivative terms and

then computes the PID output.

6 Performance and Limitations

Testing the integrated system presented several challenges, particularly when imple-

menting the protocol in the firmware. The microcontroller quickly reached its flash

memory limit, a constraint exacerbated by the use of an open-source core. This

79



0 20 40 60 80 100

PWM Duty Cycle (%)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

C
u

rr
en

t
(A

)

2 Ω Load Test

Figure 37. Graph showing the corresponding current to PWM with a 2Ω load.

brought into question the feasibility of implementing the full protocol as initially

planned. The original design intended to utilize an STM32 microcontroller, given

that the first OptiGap prototype was based on this more robust platform. However,

due to the chip shortage caused by the pandemic, the required parts were unavailable.

The ATtiny microcontrollers were the available alternative, which made them perfect

candidates at the time.

Implementing just the basic code for serial and I2C communications, along with

the shell code for parsing the Enegate protocol, consumed close to 80% of the available

flash memory. To mitigate this, a low-level rewrite was initiated, employing low-

level C, register manipulation, and assembly language. This approach allowed for

the implementation of serial, I2C, PWM, and ADC functionalities with significantly

reduced flash usage. However, this low-level approach would likely deter user adoption

due to its complexity, conflicting with the project’s goal of creating a user-friendly,

widely adopted system.
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Given these constraints, the system components were tested individually. The

first set of tests aimed to confirm the serial communication and making sure the

serial connection was not back-powering the ATtiny841 microcontroller. The nodes

were able to print to the serial port as well as receive commands from the host.

Most importantly, there were no issues of back-powering the microcontroller through

the serial port. The next set of tests focused on validating the PWM and actuator

Figure 38. Oscilloscope capture of the EneGate protocol command CMD ACTUATE

with a value of 50%.

functionalities. These tests were crucial for ensuring that the board could effectively

control thermal actuators or any load. The results confirmed that both PWM and

actuator functionalities were implemented successfully, showing an increase in current

as the PWM duty cycle was increased.

Another critical aspect was the node-to-node I2C communications. Shown in

Figure 38, a master node was configured to send a message conforming to the EneGate

protocol to another node. Specifically, the CMD ACTUATE command with a value of

50% was sent. An oscilloscope with logic analyzer capabilities was used to verify

the proper implementation of the I2C protocol, with results confirming that the I2C

communication was robust and reliable. A connector was created to plug into the last
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header, equipped with I2C terminating pull-up resistors. This modification aimed to

stabilize the I2C communication lines and improve the reliability of the system.

During the testing phase, it was observed that at low voltages the ADC was not

stable on some pins, including the one used for the current shunt. This instability

resulted in inaccurate current measurements, particularly at low values. Subsequent

tests were conducted to verify that the MOSFET and PCB could sustain high cur-

rents without an external heatsink. These tests were essential for confirming that

the system could operate as a controller for thermal actuators, which can use large

amounts of current in short bursts. Results shown in Figure 39 showed very stable

thermal performance across the 3A current range.

Next, the distributed actuation capabilities of the EneGate nodes were tested. In

this test, two SMA SCRAM devices were connected at the extreme ends of a chain of
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Figure 40. EneGate distributed actuation test.

Figure 41. EneGate OptiGap test.

EneGates. The devices were then actuated to different intensities. Seen in Figure 40,

a thermal camera was used to capture the results of the thermal actuation, showing

that the successful use of EneGate for distributed actuation.

Finally, a wire harness was designed that connected to the GPIO header of an

EneGate board to power three optical emitters and a receiver in order to test an

OptiGap sensor with EneGate. Shown in Figure 41, this setup was used to successfully

verify that the optical intensity signals from an OptiGap sensor could be captured

and then relayed over the serial port.
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6.1 Adherence to Design Requirements

The following table (11) outlines how the current revision of the EneGate board

adheres to the initial design requirements set in Table 7. Overall it meets the stated

requirements, with the exception of the inadequate microcontroller being used in the

current version.

Table 11. Design Requirements

Category Requirement Implementation

Power Man-
agement

Voltage Stability: Maintain a stable
power source for all components.

LTV70245 Voltage Regulator
(4.5V, 300mA max)

MOSFET Switch: Control a high cur-
rent load.

PSMN7R0-30YLC MOSFET (61A
peak, R DS(on) = 7.5mOhm at
4.5V)

Control and
Monitoring

Microcontroller: Serve as the central
control unit.

ATtiny841 (Not fully met)

Current Monitoring: Accurate monitor-
ing of current through the MOSFET.

100m Ohm Sense Resistor

Temperature Sensing: Monitor temper-
ature levels of components.

10k Thermistor Interface

Connectivity
Daisy-Chaining: Ability to connect mul-
tiple boards in series.

Daisy Chain Connectors (I2C,
VSMA, 5V, GND)

Communication Interface: Data extrac-
tion and real-time communication.

I/O header, daughter board and
UART Interfaces

Microcontroller Programming: Update
microcontroller’s firmware.

ISP Programmer Port

Protection
and Feed-
back

Operational Feedback: Visual indicator
of board’s status.

LED (connected to voltage regula-
tor output)

Back-powering Protection: Prevent in-
advertent power flow between boards.

Schottky diode protection

Over-current Protection: Limit current
going through MOSFET.

100m Ohm Sense Resistor
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CHAPTER V

DISCUSSION AND CONCLUSION

1 Research Objectives and Contributions

The primary objectives of this research centered around the development and vali-

dation of modular sensing and actuation systems for soft robotics, with a particular

emphasis on OptiGap. These goals have been largely achieved. OptiGap has been

subjected to real-world testing and validation through a robotics case study, affirming

its role as a flexible and cost-effective solution for sensing. Concurrently, EneGate has

been engineered with hardware and software frameworks that demonstrate significant

potential for modular actuation and sensing in both lab-based and real-world robotic

scenarios. A key strength of this research is its contribution to the field of modular

technologies in robotics. OptiGap offers a unique and practical approach to sensing,

adaptable to various requirements. EneGate augments this by introducing actuation

functionalities that have the potential to enrich the modular landscape in robotics.

This research has also generated a substantial amount of code and software to

support the modular technologies developed. Recognizing the value of community

collaboration and the acceleration of technological advancement, most code and soft-

ware are being made publicly available as open-source resources on GitHub. This

initiative aims to foster further development and application of the technologies, al-

lowing other researchers and practitioners to build upon, modify, or integrate the

work into their own projects. By contributing these resources to the open-source

community, the research not only advances the field of robotics but also promotes a

collaborative ecosystem for ongoing innovation.
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2 Limitations

However, the research is not without its limitations. One such limitation is OptiGap’s

sensitivity and resolution, which are contingent on the quality of the light pipe used

and the algorithms deployed for data processing. While this presents a challenge, it

is also a strength in that it also offers an opportunity for customization. OptiGap’s

compatibility with a wide range of light pipes and data processing algorithms means

that it can be tailored to meet specific requirements. For example, OptiGap has

been successfully tested with clear 3D printer filament, which is highly flexible and

heat-resistant up to 190°C. The system’s robustness is further enhanced by a design

manual, which provides guidelines for effective utilization.

Another notable limitation is the lack of empirical testing to integrate OptiGap

and TASL in different applications. The aforementioned work being done to put

code into public repositories with documentation is a long term way of ensuring that

these systems can be integrated into new testbeds. Although TASL initially inspired

OptiGap and was intended to be integrated, OptiGap has evolved into a more versatile

technology with broader applications, which is why this research has been conducted

with an eye toward future adaptability and integration, ensuring that subsequent work

can incorporate OptiGap sensors into the TASL. EneGate’s PCB issues also posed

a challenge, particularly the need to transition to an STM32 microcontroller. While

this necessitates another significant board revision, it’s worth noting that OptiGap

was initially developed on an STM32 platform, ensuring compatibility. The focus on

user-friendly code for both EneGate and OptiGap aims to facilitate broader adoption,

justifying the decision to opt for a new board revision with increased flash memory.
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3 Future Work

The ultimate goal for OptiGap and EneGate extends beyond academic research; the

aim is to transition these technologies into real-world applications. The focus will

be on integrating OptiGap and EneGate within the larger framework of addressable

actuation and sensing in soft robotics. Addressable actuation, the ability to locally

control and isolate actuation to specific regions of the actuator [84], will be key in

achieving more precise and efficient control and can be significantly advanced by

incorporating OptiGap’s sensing technology and EneGate’s actuation capabilities.

One key area of exploration will be the customization and scalability of these

technologies for different soft robotic applications. This approach aligns with the re-

search’s focus on adaptability and integration, ensuring that subsequent work incor-

porates OptiGap sensors and EneGate actuators into various soft robotic platforms.

Addressing the limitations noted in the research, such as OptiGap’s sensitivity

and resolution, and EneGate’s transition to a more powerful microcontroller, will

also be an area of focus. Empirical testing in different scenarios will also help refine

these technologies, validating their effectiveness in real-world applications. The open-

source nature of the software developed in this research further supports this goal, as

it invites collaboration and innovation from the broader robotics community.

The commercialization process, already initiated for OptiGap, will also be a sig-

nificant focus of future work. This process will not only involve securing a patent and

refining designs for mass production but also exploring partnerships for broader mar-

ket application. The aim is to transition these technologies from academic research

into practical, real-world tools.
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OptiGap Sensor System Design Manual 
 

 

Objective of the OptiGap Sensor System 
The OptiGap Sensor System is engineered to provide a 
robust, flexible solution for bend sensing in various 
applications ranging from robotics to wearables. It 
leverages optical transmittance in flexible light pipes 
interrupted by air gaps to detect bends at customizable 
sensitivity levels. 

 

 
 

Target Applications 
The system is highly adaptable and can be implemented in: 

• Robotics: Specifically in limbs and joints 
• Specialized cases like underwater robotics 
• Wearable Technology: To monitor body movements 
• Structural Monitoring: In buildings or machinery 

Key Advantages 
• High sensitivity in bend detection 
• Operational in wet conditions 
• Customizable properties such as bend 

sensitivity and sensing resolution 
• Versatile attachment techniques 

 
 
 

 
1. SYSTEM OVERVIEW 

Working Mechanism 

The core principle is the use of air gaps in parallel flexible light pipes to create bend sensitive segments which 
reduce the optical transmittance. The microcontroller or host interprets these variations in light transmittance to 
determine bending or bend location, depending on the application. 
 

Components 
 
The system consists mainly of three components: 

• Light Pipe: Made from optical fibers of various 
materials, it is the core component for bend 
sensing. 

• Optical Source and detector: LED or other 
light sources used to emit light into the light 
pipe. A phototransistor or similar device used 
to capture light from the light pipe. 

• Processor: A microcontroller or computer 
used to emit and process the signals. 
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2. KEY PROPERTIES & PARAMETERS 

 
Bend Sensitivity  

• General Applications: If your application does not require 
high sensitivity to bends, a working angle of around 30 
degrees is sufficient. 

• Precision Robotics: For applications like surgical robotics 
where every degree matters, aim for a working angle of 
less than 10 degrees. This usually involves more 
comprehensive simulations and fine-tuning the air-gap 
patterns. 

• Wearable Devices: If you're integrating the sensor into a 
wearable device, consider that most human joint angles 
don't exceed 120 degrees. A working angle of 20 to 40 
degrees is typically suitable here. 
 

Diameter 
• Space-Constrained Applications: In compact systems like 

wearables or miniaturized robotics, a smaller diameter 
would be more beneficial despite the lower transmittance. 

• Multi-Diameter Systems: If the system uses light pipes of 
different diameters, it’s preferable to use a light source 
with the smallest possible cone angle to maximize 
transmittance across all pipes. 

 
Gap Length 

• High Sensitivity Systems: For applications demanding 
high bend sensitivity, like biomechanical studies, longer 
gap lengths could be beneficial. If low transmittance is a 
concern, this can be offset with a more powerful light 
source. 

• Optimized Systems: If you're looking for a balanced 
system, run simulations to find a gap length that offers a 
good trade-off between sensitivity and transmittance. 

• General Use: For most applications, a gap length of 1 to 
2mm will suffice.  

 
Sensing Resolution 

• Fine-Grain Sensing: In applications like macro tactile 
sensing, a lower value closer to 1-2 cm may be preferable 
for higher resolution. 

 
 
 
 
 

 
 

Figure 1 
 

 

 
 

Figure 2 
 

PARAMETER EFFECT ON SYSTEM MIN TYP MAX UNIT 
Bend Sensitivity Determines minimum bend angle for large intensity drop.  20  deg 
Diameter Affects overall light transmittance (tied to cone angle)  0.75  mm 

Gap Length Directly influences bend sensitivity at the cost of 
transmittance. 

 2  mm 

Sensing Resolution Specifies the minimum length between gaps 1 5  cm 
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• Robotic Arms or Industrial Systems: These often don’t 
require high resolution, and a 5-10 cm gap distance would 
be more than adequate. 

• Flexible or Soft Systems: In applications involving softer 
materials or more complex bending patterns, finding an 
optimal sensing resolution may require iterative testing. 

 

3. MATERIAL RECOMMENDATIONS 

Light Pipe Material Options 

MATERIAL APPLICATIONS DIAMETER 
(mm) 

MAX OPERATING 
TEMP (°C) 

Clear TPU 3D Printer 
Filament 

Prototyping, non space-constrained 
applications, high temperature applications 1.75 190 

PMMA General, space-constrained 0.5 - 1 70 
 

Air Gap Sleeve Material 

MATERIAL MAX OPERATING 
TEMP (°C) Hardness (Durometer) INNER DIAMETER (mm) 

Silicone Rubber 215 55A 0.5 – 1.75 
 

Emitter and Detector 

TYPE APPLICATION SPECTRAL RANGE (NM) EXAMPLE PART NUM 
Phototransistor For use in production 940 PT12-21C/TR8 
IR Emitter For use in production 940 IR12-21C/TR8 
Photodarlington receiver  Prototyping, TPU light pipe 600 - 900 IF-D95OC 
Emitter Prototyping, TPU light pipe 640 - 660 IF-E97 
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APPENDIX B: MODEL CODE

TASL Code

1 """

2 Helper library for the Dynamixel MX actuators using Protocol 2.0

3 Provides a 1-to -1 mapping of the entire control table as properties

of an object.

4

5 * Author(s): Paul Bupe Jr

6 """

7 from dynamixel_sdk.robotis_def import COMM_SUCCESS

8 from dynamixel_sdk import PacketHandler

9 from dynamixel_sdk import PortHandler

10 import logging

11

12

13 log = logging.getLogger(__name__)

14

15 # MX -28 Control Tables

16

17 # fmt: off

18 # EEPROM table

19 # Name (Address , Bytes)

20 MX_MODEL_NUMBER = (0, 2) # R

21 MX_MODEL_INFORMATION = (2, 4) # R

22 MX_FIRMWARE_VERSION = (6, 1) # R

23 MX_ID = (7, 1) # RW

24 MX_BAUD_RATE = (8, 1) # RW

25 MX_RETURN_DELAY_TIME = (9, 1) # RW

26 MX_DRIVE_MODE = (10, 1) # RW

27 MX_OPERATING_MODE = (11, 1) # RW

28 MX_SECONDARY_ID = (12, 1) # RW

29 MX_PROTOCOL_TYPE = (13, 1) # RW

30 MX_HOMING_OFFSET = (20, 4) # RW

31 MX_MOVING_THRESHOLD = (24, 4) # RW

32 MX_TEMPERATURE_LIMIT = (31, 1) # RW

33 MX_MAX_VOLTAGE_LIMIT = (32, 2) # RW

34 MX_MIN_VOLTAGE_LIMIT = (34, 2) # RW

35 MX_PWM_LIMIT = (36, 2) # RW

36 MX_ACCELERATION_LIMIT = (40, 4) # RW

37 MX_VELOCITY_LIMIT = (44, 4) # RW

38 MX_MAX_POSITION_LIMIT = (48, 4) # RW

39 MX_MIN_POSITION_LIMIT = (52, 4) # RW

40 MX_SHUTDOWN = (63, 1) # RW

41

42 # RAM table

43 MX_TORQUE_ENABLE = (64, 1) # RW

44 MX_LED = (65, 1) # RW
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45 MX_STATUS_RETURN_LEVEL = (68, 1) # RW

46 MX_REGISTERED_INSTRUCTION = (69, 1) # R

47 MX_HARDWARE_ERROR_STATUS = (70, 1) # R

48 MX_VELOCITY_I_GAIN = (76, 2) # RW

49 MX_VELOCITY_P_GAIN = (78, 2) # RW

50 MX_POSITION_D_GAIN = (80, 2) # RW

51 MX_POSITION_I_GAIN = (82, 2) # RW

52 MX_POSITION_P_GAIN = (84, 2) # RW

53 MX_FEEDFORWARD_2ND_GAIN = (88, 2) # RW

54 MX_FEEDFORWARD_1ST_GAIN = (90, 2) # RW

55 MX_BUS_WATCHDOG = (98, 1) # RW

56 MX_GOAL_PWM = (100, 2) # RW

57 MX_GOAL_VELOCITY = (104, 4) # RW

58 MX_PROFILE_ACCELERATION = (108, 4) # RW

59 MX_PROFILE_VELOCITY = (112, 4) # RW

60 MX_GOAL_POSITION = (116, 4) # RW

61 MX_REALTIME_TICK = (120, 2) # R

62 MX_MOVING = (122, 1) # R

63 MX_MOVING_STATUS = (123, 1) # R

64 MX_PRESENT_PWM = (124, 2) # R

65 MX_PRESENT_LOAD = (126, 2) # R

66 MX_PRESENT_VELOCITY = (128, 4) # R

67 MX_PRESENT_POSITION = (132, 4) # R

68 MX_VELOCITY_TRAJECTORY = (136, 4) # R

69 MX_POSITION_TRAJECTORY = (140, 4) # R

70 MX_PRESENT_INPUT_VOLTAGE = (144, 2) # R

71 MX_PRESENT_TEMPERATURE = (146, 1) # R

72 # fmt: on

73

74

75 class Pymixel(object):

76 """ Helper class for the Dynamixel MX -Series actuators

77 using Protocol 2.0

78 """

79

80 # SDK classes

81 port_handler = None

82 packet_handler = None

83 port = None

84 baudrate = None

85

86 def __init__(self , port , mxl_id , baudrate =57600 , protocol =2):

87 """ Create an instance of the Pymixel class """

88 self._id = mxl_id

89 self.port = port

90 self.baudrate = baudrate

91 self.port_handler = PortHandler(port)

92 self.packet_handler = PacketHandler(protocol)

93

94 # Open port

95 if not self.port_handler.openPort ():

96 raise Exception(f"ERROR: Could not open port {self.port}

")

97
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98 if not self.port_handler.setBaudRate(self.baudrate):

99 raise Exception("ERROR: Failed to change the baudrate")

100

101 def _read(self , register):

102 """ Read data from a register """

103

104 addr , num_bytes = register

105 data = response = error = None

106 if num_bytes == 1:

107 data , response , error = self.packet_handler.

read1ByteTxRx(

108 self.port_handler , self._id , addr

109 )

110 elif num_bytes == 2:

111 data , response , error = self.packet_handler.

read2ByteTxRx(

112 self.port_handler , self._id , addr

113 )

114 else:

115 data , response , error = self.packet_handler.

read4ByteTxRx(

116 self.port_handler , self._id , addr

117 )

118

119 # Check response

120 self._error_handler(response , error)

121

122 return data

123

124 def _write(self , register , value):

125 """ write to a register """

126

127 addr , num_bytes = register

128 response = error = None

129 if num_bytes == 1:

130 response , error = self.packet_handler.write1ByteTxRx(

131 self.port_handler , self._id , addr , value

132 )

133 elif num_bytes == 2:

134 response , error = self.packet_handler.write2ByteTxRx(

135 self.port_handler , self._id , addr , value

136 )

137 else:

138 response , error = self.packet_handler.write4ByteTxRx(

139 self.port_handler , self._id , addr , value

140 )

141

142 # Check response

143 self._error_handler(response , error)

144

145 @property

146 def model_number(self):

147 """ Return the model number."""

148 return self._read(MX_MODEL_NUMBER)

101



149

150 @property

151 def model_information(self):

152 """ Return the model information."""

153 return self._read(MX_MODEL_INFORMATION)

154

155 @property

156 def firmware_version(self):

157 """ Return the firmware version."""

158 return self._read(MX_FIRMWARE_VERSION)

159

160 @property

161 def id(self): # pylint: disable=invalid -name

162 """ Return the DYNAMIXEL ID."""

163 return self._read(MX_ID)

164

165 @property

166 def baud_rate(self):

167 """ Return the serial baud rate."""

168 return self._read(MX_BAUD_RATE)

169

170 @property

171 def return_delay_time(self):

172 """ Return the response delay."""

173 return self._read(MX_RETURN_DELAY_TIME)

174

175 @property

176 def drive_mode(self):

177 """ Return the drive mode."""

178 return self._read(MX_DRIVE_MODE)

179

180 @property

181 def operating_mode(self):

182 """ Return the operating mode."""

183 return self._read(MX_OPERATING_MODE)

184

185 @property

186 def secondary_id(self):

187 """ Return the secondary ID."""

188 return self._read(MX_SECONDARY_ID)

189

190 @property

191 def protocol_type(self):

192 """ Return the protocol type."""

193 return self._read(MX_PROTOCOL_TYPE)

194

195 @property

196 def homing_offset(self):

197 """ Return the home position offset."""

198 return self._read(MX_HOMING_OFFSET)

199

200 @property

201 def moving_threshold(self):

202 """ Return the velocity threshold for
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203 movement detection."""

204 return self._read(MX_MOVING_THRESHOLD)

205

206 @property

207 def temperature_limit(self):

208 """ Return the maximum internal temperature limit."""

209 return self._read(MX_TEMPERATURE_LIMIT)

210

211 @property

212 def max_voltage_limit(self):

213 """ Return the maximum input voltage limit."""

214 return self._read(MX_MAX_VOLTAGE_LIMIT)

215

216 @property

217 def min_voltage_limit(self):

218 """ Return the minimum input voltage limit."""

219 return self._read(MX_MIN_VOLTAGE_LIMIT)

220

221 @property

222 def pwm_limit(self):

223 """ Return the maximum PWM limit."""

224 return self._read(MX_PWM_LIMIT)

225

226 @property

227 def acceleration_limit(self):

228 """ Return the maximum acceleration limit."""

229 return self._read(MX_ACCELERATION_LIMIT)

230

231 @property

232 def velocity_limit(self):

233 """ Return the maximum velocity limit."""

234 return self._read(MX_VELOCITY_LIMIT)

235

236 @property

237 def max_position_limit(self):

238 """ Return the maximum position limit."""

239 return self._read(MX_MAX_POSITION_LIMIT)

240

241 @property

242 def min_position_limit(self):

243 """ Return the minimum position limit."""

244 return self._read(MX_MIN_POSITION_LIMIT)

245

246 @property

247 def shutdown(self):

248 """ Return the shutdown error information."""

249 return self._read(MX_SHUTDOWN)

250

251 @property

252 def torque_enable(self):

253 """ Return the motor torque status."""

254 return self._read(MX_TORQUE_ENABLE)

255

256 @property
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257 def led(self):

258 """ Return the status LED status."""

259 return self._read(MX_LED)

260

261 @property

262 def status_return_level(self):

263 """ Return the status return level."""

264 return self._read(MX_STATUS_RETURN_LEVEL)

265

266 @property

267 def registered_instruction(self):

268 """ Return the REG_WRITE instruction flag."""

269 return self._read(MX_REGISTERED_INSTRUCTION)

270

271 @property

272 def hardware_error_status(self):

273 """ Return the hardware error status."""

274 return self._read(MX_HARDWARE_ERROR_STATUS)

275

276 @property

277 def velocity_i_gain(self):

278 """ Return the I gain of velocity."""

279 return self._read(MX_VELOCITY_I_GAIN)

280

281 @property

282 def velocity_p_gain(self):

283 """ Return the P gain of velocity."""

284 return self._read(MX_VELOCITY_P_GAIN)

285

286 @property

287 def position_d_gain(self):

288 """ Return the D gain of position."""

289 return self._read(MX_POSITION_D_GAIN)

290

291 @property

292 def position_i_gain(self):

293 """ Return the I gain of position."""

294 return self._read(MX_POSITION_I_GAIN)

295

296 @property

297 def position_p_gain(self):

298 """ Return the P gain of position."""

299 return self._read(MX_POSITION_P_GAIN)

300

301 @property

302 def feedforward_2nd_gain(self):

303 """ Return the 2nd gain of feed -forward."""

304 return self._read(MX_FEEDFORWARD_2ND_GAIN)

305

306 @property

307 def feedforward_1st_gain(self):

308 """ Return the 1st gain of feed -forward."""

309 return self._read(MX_FEEDFORWARD_1ST_GAIN)

310
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311 @property

312 def bus_watchdog(self):

313 """ Return the dynamixel bus watchdog."""

314 return self._read(MX_BUS_WATCHDOG)

315

316 @property

317 def goal_pwm(self):

318 """ Return the desired pwm value."""

319 return self._read(MX_GOAL_PWM)

320

321 @property

322 def goal_velocity(self):

323 """ Return the desired velocity value."""

324 return self._read(MX_GOAL_VELOCITY)

325

326 @property

327 def profile_acceleration(self):

328 """ Return the acceleration value of profile."""

329 return self._read(MX_PROFILE_ACCELERATION)

330

331 @property

332 def profile_velocity(self):

333 """ Return the velocity value of profile."""

334 return self._read(MX_PROFILE_VELOCITY)

335

336 @property

337 def goal_position(self):

338 """ Return the desired position."""

339 return self._read(MX_GOAL_POSITION)

340

341 @property

342 def realtime_tick(self):

343 """ Return the count time in millisecond."""

344 return self._read(MX_REALTIME_TICK)

345

346 @property

347 def moving(self):

348 """ Return the movement flag."""

349 return self._read(MX_MOVING)

350

351 @property

352 def moving_status(self):

353 """ Return detailed information of movement status."""

354 return self._read(MX_MOVING_STATUS)

355

356 @property

357 def present_pwm(self):

358 """ Return the present pwm value."""

359 return self._read(MX_PRESENT_PWM)

360

361 @property

362 def present_load(self):

363 """ Return the present load value."""

364 return self._read(MX_PRESENT_LOAD)
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365

366 @property

367 def present_velocity(self):

368 """ Return the present velocity value."""

369 return self._read(MX_PRESENT_VELOCITY)

370

371 @property

372 def present_position(self):

373 """ Return the present position value."""

374 return self._read(MX_PRESENT_POSITION)

375

376 @property

377 def velocity_trajectory(self):

378 """ Return the desired velocity trajectory from profile."""

379 return self._read(MX_VELOCITY_TRAJECTORY)

380

381 @property

382 def position_trajectory(self):

383 """ Return the desired position trajectory from profile."""

384 return self._read(MX_POSITION_TRAJECTORY)

385

386 @property

387 def present_input_voltage(self):

388 """ Return the present input voltage."""

389 return self._read(MX_PRESENT_INPUT_VOLTAGE)

390

391 @property

392 def present_temperature(self):

393 """ Return the present internal temperature."""

394 return self._read(MX_PRESENT_TEMPERATURE)

395

396 @id.setter

397 def id(self , value): # pylint: disable=invalid -name

398 """ Set the DYNAMIXEL ID."""

399 self._write(MX_ID , value)

400

401 @baud_rate.setter

402 def baud_rate(self , value):

403 """ Set the serial baud rate."""

404 self._write(MX_BAUD_RATE , value)

405

406 @return_delay_time.setter

407 def return_delay_time(self , value):

408 """ Set the response delay."""

409 self._write(MX_RETURN_DELAY_TIME , value)

410

411 @drive_mode.setter

412 def drive_mode(self , value):

413 """ Set the drive mode."""

414 self._write(MX_DRIVE_MODE , value)

415

416 @operating_mode.setter

417 def operating_mode(self , value):

418 """ Set the operating mode."""
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419 self._write(MX_OPERATING_MODE , value)

420

421 @secondary_id.setter

422 def secondary_id(self , value):

423 """ Set the secondary ID."""

424 self._write(MX_SECONDARY_ID , value)

425

426 @protocol_type.setter

427 def protocol_type(self , value):

428 """ Set the protocol type."""

429 self._write(MX_PROTOCOL_TYPE , value)

430

431 @homing_offset.setter

432 def homing_offset(self , value):

433 """ Set the home position offset."""

434 self._write(MX_HOMING_OFFSET , value)

435

436 @moving_threshold.setter

437 def moving_threshold(self , value):

438 """ Set the velocity threshold for

439 movement detection."""

440 self._write(MX_MOVING_THRESHOLD , value)

441

442 @temperature_limit.setter

443 def temperature_limit(self , value):

444 """ Set the maximum internal temperature limit."""

445 self._write(MX_TEMPERATURE_LIMIT , value)

446

447 @max_voltage_limit.setter

448 def max_voltage_limit(self , value):

449 """ Set the maximum input voltage limit."""

450 self._write(MX_MAX_VOLTAGE_LIMIT , value)

451

452 @min_voltage_limit.setter

453 def min_voltage_limit(self , value):

454 """ Set the minimum input voltage limit."""

455 self._write(MX_MIN_VOLTAGE_LIMIT , value)

456

457 @pwm_limit.setter

458 def pwm_limit(self , value):

459 """ Set the maximum PWM limit."""

460 self._write(MX_PWM_LIMIT , value)

461

462 @acceleration_limit.setter

463 def acceleration_limit(self , value):

464 """ Set the maximum acceleration limit."""

465 self._write(MX_ACCELERATION_LIMIT , value)

466

467 @velocity_limit.setter

468 def velocity_limit(self , value):

469 """ Set the maximum velocity limit."""

470 self._write(MX_VELOCITY_LIMIT , value)

471

472 @max_position_limit.setter
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473 def max_position_limit(self , value):

474 """ Set the maximum position limit."""

475 self._write(MX_MAX_POSITION_LIMIT , value)

476

477 @min_position_limit.setter

478 def min_position_limit(self , value):

479 """ Set the minimum position limit."""

480 self._write(MX_MIN_POSITION_LIMIT , value)

481

482 @shutdown.setter

483 def shutdown(self , value):

484 """ Set the shutdown error information."""

485 self._write(MX_SHUTDOWN , value)

486

487 @torque_enable.setter

488 def torque_enable(self , value):

489 """ Set the motor torque status."""

490 self._write(MX_TORQUE_ENABLE , value)

491

492 @led.setter

493 def led(self , value):

494 """ Set the status LED status."""

495 self._write(MX_LED , value)

496

497 @status_return_level.setter

498 def status_return_level(self , value):

499 """ Set the status return level."""

500 self._write(MX_STATUS_RETURN_LEVEL , value)

501

502 @velocity_i_gain.setter

503 def velocity_i_gain(self , value):

504 """ Set the I gain of velocity."""

505 self._write(MX_VELOCITY_I_GAIN , value)

506

507 @velocity_p_gain.setter

508 def velocity_p_gain(self , value):

509 """ Set the P gain of velocity."""

510 self._write(MX_VELOCITY_P_GAIN , value)

511

512 @position_d_gain.setter

513 def position_d_gain(self , value):

514 """ Set the D gain of position."""

515 self._write(MX_POSITION_D_GAIN , value)

516

517 @position_i_gain.setter

518 def position_i_gain(self , value):

519 """ Set the I gain of position."""

520 self._write(MX_POSITION_I_GAIN , value)

521

522 @position_p_gain.setter

523 def position_p_gain(self , value):

524 """ Set the P gain of position."""

525 self._write(MX_POSITION_P_GAIN , value)

526
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527 @feedforward_2nd_gain.setter

528 def feedforward_2nd_gain(self , value):

529 """ Set the 2nd gain of feed -forward."""

530 self._write(MX_FEEDFORWARD_2ND_GAIN , value)

531

532 @feedforward_1st_gain.setter

533 def feedforward_1st_gain(self , value):

534 """ Set the 1st gain of feed -forward."""

535 self._write(MX_FEEDFORWARD_1ST_GAIN , value)

536

537 @bus_watchdog.setter

538 def bus_watchdog(self , value):

539 """ Set the dynamixel bus watchdog."""

540 self._write(MX_BUS_WATCHDOG , value)

541

542 @goal_pwm.setter

543 def goal_pwm(self , value):

544 """ Set the desired pwm value."""

545 self._write(MX_GOAL_PWM , value)

546

547 @goal_velocity.setter

548 def goal_velocity(self , value):

549 """ Set the desired velocity value."""

550 self._write(MX_GOAL_VELOCITY , value)

551

552 @profile_acceleration.setter

553 def profile_acceleration(self , value):

554 """ Set the acceleration value of profile."""

555 self._write(MX_PROFILE_ACCELERATION , value)

556

557 @profile_velocity.setter

558 def profile_velocity(self , value):

559 """ Set the velocity value of profile."""

560 self._write(MX_PROFILE_VELOCITY , value)

561

562 @goal_position.setter

563 def goal_position(self , value):

564 """ Set the desired position."""

565 self._write(MX_GOAL_POSITION , value)

566

567 def __del__(self):

568 self._close ()

569

570 def _close(self):

571 # Closes the port

572 self.port_handler.closePort ()

573

574 def _error_handler(self , res , err):

575 # Checks each request

576 if res != COMM_SUCCESS:

577 print(f"Abnormal response: {self.packet_handler.

getTxRxResult(res)}")

578 elif err != 0:

579 print(f"Error: {self.packet_handler.getRxPacketError(err
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)}")

580

581

582 if __name__ == ’__main__ ’:

583 print("Debug mode ...")

584 import time

585

586 motor = Pymixel("/dev/ttyUSB0", 1)

587 motor.torque_enable = 1

588

589 while True:

590 print(f’Voltage is: {motor.present_input_voltage / 10} V’)

591 print(f’Temperature is {motor.present_temperature} degrees C

’)

592 time.sleep (1)

Listing V.1. ”Dynamixel driver.

1 """

2 Simple extensible serial protocol for PC <-> Arduino communication

3

4 **<START ><ACTION ><DELIMITER ><COMMAND ><DELIMITER ><DATA ><END >**

5 * The START byte is ASCII "{" (123 decimal , 0x7B).

6 * The ACTION byte is an ASCII "?" for GET and ASCII "$" for SET.

7 * The COMMAND is up to three characters.

8 * The DATA bytes are variable length and are described in the Data

section.

9 * The END byte is ASCII "}" (125 decimal , 0x7D).

10 * The CHECKSUM is calculated by subtracting 32 from all the

characters in the packet(excluding the checksum) and summing them

.The modulo 95 of this value is then calculated and 32 is added

back to that value.

11

12 {?,S ,234}@

13

14 * Author(s): Paul Bupe Jr

15 """

16

17 import logging

18 import time

19 import math

20 import sys

21 import glob

22 import serial

23

24 log = logging.getLogger(__name__)

25

26 START = ’{’

27 END = ’}’

28

29 class ScramIO(object):

30 ’’’Python implementation of SCRAMio Protocol ’’’

31

32 def __init__(self , serial_port , baudrate =9600 , timeout =0.1):
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33

34 if serial is None:

35 raise ImportError("Package pyserial is required for

serial connection")

36

37 self.serial_port = serial.Serial(port=serial_port , baudrate=

baudrate , timeout=timeout)

38 time.sleep (2)

39 log.info("Arduino Connected")

40

41 def _write(self , packet):

42 """ Write to the serial port """

43 # self.serial_port.write(bytes(packet , ’utf -8’))

44 self.serial_port.write(packet.encode(’utf -8’))

45 # time.sleep (0.05)

46 # res = self.serial_port.readline ().decode(’utf -8’).rstrip ()

47 # print(res)

48

49 def command(self , command , data):

50 """

51 :param motor:

52 :param value:

53 :return:

54 """

55 packet = [START , ’@’,’,’,command ,’,’, str(data),END]

56 # packet.append(self._calculate_checksum(packet))

57 packet = "".join(packet)

58 log.debug(packet)

59 self._write(packet)

60 # print(data)

61 # try:

62 # self._device.writeList(MOTOR , packet)

63 # except:

64 # e = sys.exc_info ()[0]

65 # log.error ("Send Error: %s" % e)

66

67 @staticmethod

68 def serial_ports ():

69 """ Lists serial port names

70

71 :raises EnvironmentError:

72 On unsupported or unknown platforms

73 :returns:

74 A list of the serial ports available on the system

75 """

76 if sys.platform.startswith(’win’):

77 ports = [’COM%s’ % (i + 1) for i in range (256)]

78 elif sys.platform.startswith(’linux’) or sys.platform.

startswith(’cygwin ’):

79 # this excludes your current terminal "/dev/tty"

80 ports = glob.glob(’/dev/tty[A-Za-z]*’)

81 elif sys.platform.startswith(’darwin ’):

82 ports = glob.glob(’/dev/tty.*’)

83 else:
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84 raise EnvironmentError(’Unsupported platform ’)

85 result = []

86 for port in ports:

87 try:

88 s = serial.Serial(port)

89 s.close()

90 result.append(port)

91 except (OSError , serial.SerialException) as e:

92 # if e.errno == 13:

93 # raise e

94 pass

95 return result

96

97 @staticmethod

98 def _calculate_checksum(packet):

99 """

100 :param packet:

101 :return:

102 """

103 checksum = 0

104 for c in packet:

105 if (c != START) and (c != END):

106 try:

107 checksum += c - 32

108 except TypeError:

109 checksum += ord(c) - 32

110 return (checksum % 95) + 32

111

112 if __name__ == ’__main__ ’:

113 # obj = ScramIO(’/dev/ttyACM0 ’)

114 # obj.command ("CM",1)

115 # ser = serial.Serial(’/dev/ttyACM0 ’)

116 print(ScramIO.serial_ports ())

117 # print(ser)

Listing V.2. ”Serial bridge”

1 import os

2 # from smascram.scramio import ScramIO

3 import sys

4 from logging import debug , basicConfig

5 from flask import Flask , render_template

6 from flask_socketio import SocketIO , emit

7 import socketio

8 from pymixel2 import Pymixel

9 from scramio import ScramIO

10

11 # append the path of the parent directory

12 # sys.path.append(os.path.abspath (’./ pymixel ’))

13 # print(sys.path)

14

15

16 basicConfig(level=os.environ.get("LOGLEVEL", "INFO"),
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17 format="%( asctime)s [%( levelname)s] %(name)s: %(

message)s")

18

19 app = Flask(__name__)

20 app.config[’SECRET_KEY ’] = ’vn4dn48hd %8$2#2’
21 socketio = SocketIO(app)

22

23 dynamixel = None

24 arduino = None

25

26 @app.route(’/’)

27 def sessions ():

28 return render_template(’index.html’)

29

30 @socketio.on(’connect ’)

31 def init():

32 port_list = ScramIO.serial_ports ()

33 emit(’ports’, port_list)

34

35 @socketio.on(’actuator ’)

36 def update_actuator(actuator):

37 print(actuator)

38

39 dynamixel.torque_enable = 0

40 dynamixel.operating_mode = 1

41 dynamixel.torque_enable = int(actuator["torque"])

42 dynamixel.goal_velocity = int(actuator["rpm"])

43

44 @socketio.on(’segments ’)

45 def update_segments(segment):

46 arduino.command("CM",segment)

47 # print(segment)

48

49

50 if __name__ == ’__main__ ’:

51 socketio.run(app , port =5000 , debug=True)

Listing V.3. ”Server (main.py)”

1 <!doctype html >

2 <html lang="en">

3

4 <head >

5 <meta charset="utf -8">

6 <meta name="viewport" content="width=device -width , initial -scale=1

">

7 <meta name="description" content="HarnettLab">

8 <meta name="author" content="Paul Bupe Jr">

9 <title >SMA SCRAM Control </title >

10

11

12

13 <!-- Bootstrap core CSS -->

14 <link href="static/css/bootstrap.min.css" rel="stylesheet">
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15

16 <!-- Favicons -->

17 <!-- <link rel="apple -touch -icon" href="/docs /5.1/ assets/img/

favicons/apple -touch -icon.png" sizes="180 x180"> -->

18 <!-- <link rel="icon" href="/docs /5.1/ assets/img/favicons/favicon

-32x32.png" sizes="32x32" type="image/png"> -->

19 <!-- <link rel="icon" href="/docs /5.1/ assets/img/favicons/favicon

-16x16.png" sizes="16x16" type="image/png"> -->

20 <!-- <link rel="manifest" href="/docs /5.1/ assets/img/favicons/

manifest.json"> -->

21 <!-- <link rel="mask -icon" href="/docs /5.1/ assets/img/favicons/

safari -pinned -tab.svg" color="#7952b3"> -->

22 <!-- <link rel="icon" href="/docs /5.1/ assets/img/favicons/favicon.

ico"> -->

23 <!-- <meta name="theme -color" content="#7952b3"> -->

24

25 <!-- Custom styles for this template -->

26 <link href="static/css/scram.css" rel="stylesheet">

27 </head >

28

29 <body >

30

31 <div class="container">

32 <header class="py -1 mb -3 border -bottom">

33 <div class="position -relative">

34

35 <h3>SCRAM SMA Driver </h3>

36

37 <div id="serverBadge" class="badge bg -danger position -

absolute top -50 end -0">Server Disconnected </div >

38 </div >

39 </header >

40

41 <main >

42

43 <div class="row">

44 <div class="col -md -9">

45

46

47 <div class="card mb -2 d-inline -block" style="width: 9rem;"

>

48 <div class="card -header">

49 Input Current

50 </div >

51 <div class="card -body p-1">

52 <h5 class="text -center">0 A</h5 >

53 </div >

54 </div >

55

56 <div class="card mb -2 d-inline -block" style="width: 9rem;"

>

57 <div class="card -header">

58 Pulling Force

59 </div >
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60 <div class="card -body p-1">

61 <h5 class="text -center" >0</h5 >

62 </div >

63 </div >

64

65

66 <div class="row row -cols -5 g-0">

67 <div class="col">

68 <div class="d-grid gap -1 m-1">

69 <span id="segBadge5" class="badge bg -secondary">OFF

</span >

70 </div >

71 <div class="card">

72 <img src="static/img/seg_off.png" id="segImg5" class

="card -img -top" alt="...">

73 <div class="card -body p-1">

74 <div class="d-grid gap -2">

75 <button type="button" data -segment="5" class="

segButton btn btn -secondary btn -sm">ENABLE </button >

76 </div >

77 </div >

78 </div >

79 </div >

80 <div class="col">

81 <div class="d-grid gap -1 m-1">

82 <span id="segBadge4" class="badge bg -secondary">OFF

</span >

83 </div >

84 <div class="card">

85 <img src="static/img/seg_off.png" id="segImg4" class

="card -img -top" alt="...">

86 <div class="card -body p-1">

87 <div class="d-grid gap -2">

88 <button type="button" data -segment="4" class="

segButton btn btn -secondary btn -sm">ENABLE </button >

89 </div >

90 </div >

91 </div >

92 </div >

93 <div class="col">

94 <div class="d-grid gap -1 m-1">

95 <span id="segBadge3" class="badge bg -secondary">OFF

</span >

96 </div >

97 <div class="card ">

98 <img src="static/img/seg_off.png" id="segImg3" class

="card -img -top" alt="...">

99 <div class="card -body p-1">

100 <div class="d-grid gap -2">

101 <button type="button" data -segment="3" class="

segButton btn btn -secondary btn -sm">Enable </button >

102 </div >

103 </div >

104 </div >
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105 </div >

106

107 <div class="col">

108 <div class="d-grid gap -1 m-1">

109 <span id="segBadge2" class="badge bg -secondary">OFF

</span >

110 </div >

111 <div class="card">

112 <img src="static/img/seg_off.png" id="segImg2" class

="card -img -top" alt="...">

113 <div class="card -body p-1">

114 <div class="d-grid gap -2">

115 <button type="button" data -segment="2" class="

segButton btn btn -secondary btn -sm">ENABLE </button >

116 </div >

117 </div >

118 </div >

119 </div >

120 <div class="col">

121 <div class="d-grid gap -1 m-1">

122 <span id="segBadge1" class="badge bg -secondary">OFF

</span >

123 </div >

124 <div class="card">

125 <img src="static/img/seg_off.png" id="segImg1" class

="card -img -top" alt="...">

126 <div class="card -body p-1">

127 <div class="d-grid gap -2">

128 <button type="button" data -segment="1" class="

segButton btn btn -secondary btn -sm">ENABLE </button >

129 </div >

130 </div >

131 </div >

132 </div >

133 </div >

134 <div class="d-grid gap -2 my -2">

135 <button type="button" id="disableAll" class="btn btn -

danger btn -sm">DISABLE ALL </button >

136 </div >

137

138

139 </div >

140 <div class="col">

141 <div class="card mb -2">

142 <div class="card -header">

143 Driver Board <span class="badge bg -secondary">Offline

</span >

144 </div >

145 <div class="card -body">

146

147 <label for="driverPort" class="form -label">Serial port

</label >

148 <select id="driverPort" class="form -select form -select

-sm portSelect" data -device="driver" aria -label=".form -select -sm"
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>

149 <option value="--">--</option >

150 </select >

151

152 <button type="button" class="btn btn -outline -secondary

btn -sm my -2">Refresh List </button >

153 <button type="button" class="btn btn -dark btn -sm my -2"

>Connect </button >

154 </div >

155 </div >

156

157 <div class="card">

158 <div class="card -header">Actuator <span class="badge bg -

secondary">Offline </span ></div >

159 <div class="card -body">

160

161 <label for="actuatorPort" class="form -label">Serial

port </label >

162 <select id="actuatorPort" class="form -select form -

select -sm portSelect" data -device="actuator" aria -label=".form -

select -sm">

163 <option value="--">--</option >

164 </select >

165

166 <button type="button" class="btn btn -outline -secondary

btn -sm my -2">Refresh List </button >

167 <button type="button" class="btn btn -dark btn -sm my -2"

>Connect </button >

168

169

170 <hr >

171

172 <div >

173 <label for="rpm" class="form -label">Motor Speed (RPM

)</label >

174 <h4 id="rpmLabel" class="font -weight -bold text -

primary text -center ml -2 valueSpan2" >50</h4 >

175 <input type="range" class="form -range" autocomplete=

"off" min="1" max="100" step="1" id="rpm">

176 </div >

177 <br >

178 <div class="d-grid gap -2">

179 <div class="btn -group btn -group -sm" role="group"

aria -label="Basic radio toggle button group">

180 <input type="radio" class="btn -check" autocomplete

="off" name="btnradio" id="forward" autocomplete="off" checked >

181 <label class="btn btn -outline -primary" for="

forward">Forward </label >

182

183 <input type="radio" class="btn -check" autocomplete

="off" name="btnradio" id="reverse" autocomplete="off">

184 <label class="btn btn -outline -primary" for="

reverse">Reverse </label >

185 </div >
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186 </div >

187 <hr >

188 <div class="d-grid gap -2 ">

189 <button id="run" class="btn btn -success" type="

button">Run </button >

190 <button id="stop" class="btn btn -danger" type="

button">Stop </button >

191 </div >

192 </div >

193 </div >

194

195 </div >

196 </div >

197

198 </main >

199 <footer class="pt -5 my -5 text -muted border -top">

200 HarnettLab &middot; &copy; 2021

201 </footer >

202 </div >

203

204

205 <script src="static/js/bootstrap.bundle.min.js"></script >

206 <script src="static/js/socketio.min.js"></script >

207 <script src="static/js/main.js"></script >

208

209

210 </body >

211

212 </html >

Listing V.4. ”Frontend (index.html)”

OptiGap Code

1 import sys

2 import csv

3 import pyqtgraph as pg

4 from PyQt6.QtCore import Qt , QIODevice , QTimer , pyqtSignal , pyqtSlot

, QObject , QThread

5 from PyQt6.QtSerialPort import QSerialPort , QSerialPortInfo

6 from PyQt6.QtWidgets import (QApplication , QMainWindow , QGridLayout ,

QVBoxLayout , QWidget , QComboBox ,

7 QPushButton , QHBoxLayout , QTextEdit ,

QLineEdit ,

8 QFileDialog , QCheckBox , QLabel ,

QStatusBar , QTableWidget ,

9 QTableWidgetItem , QHeaderView)

10

11 import numpy as np

12 import qdarktheme

13

14 pg.setConfigOptions(antialias=True)

15
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16

17 class MainWindow(QMainWindow):

18 serial_data_received = pyqtSignal(str)

19

20 def __init__(self):

21 super().__init__ ()

22

23 self.setWindowTitle("OptiGap Realtime Plotting App")

24 self.resize (1300, 600)

25

26 main_widget = QWidget ()

27 self.setCentralWidget(main_widget)

28

29 main_layout = QGridLayout ()

30 main_widget.setLayout(main_layout)

31

32 # Top -level layouts

33 self.top_menu_layout = QHBoxLayout ()

34 self.plot_layout = QVBoxLayout ()

35 self.sidebar_layout = QVBoxLayout ()

36

37 self.num_detected_signals = 0

38 self.region = (0, 1)

39 self.plot_lines = []

40 self.labels = [] # [(label , region), ...]

41 self.selected_row = -1

42 self.checkboxes = []

43 self.capture_enabled = False

44 self.plot_data = None

45 self.serial_connected = False

46

47 # Create a status bar and add it to the main window

48 self.status_bar = CustomStatusBar ()

49 self.setStatusBar(self.status_bar)

50

51 # Top Menu

52 self.serial_port_dropdown = QComboBox ()

53 self.top_menu_layout.addWidget(self.serial_port_dropdown)

54

55 self.refresh_button = QPushButton("Refresh Ports")

56 self.top_menu_layout.addWidget(self.refresh_button)

57

58 self.baud_rate_dropdown = QComboBox ()

59 self.baud_rate_dropdown.addItems (["9600", "19200", "38400",

"57600", "115200"])

60 self.top_menu_layout.addWidget(self.baud_rate_dropdown)

61

62 self.connect_button = QPushButton("Connect")

63 self.top_menu_layout.addWidget(self.connect_button)

64

65 self.disconnect_button = QPushButton("Disconnect")

66 self.disconnect_button.setEnabled(False)

67 self.top_menu_layout.addWidget(self.disconnect_button)

68
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69 self.capture_button = QPushButton("Start Capture")

70 self.capture_button.setEnabled(False)

71 self.top_menu_layout.addWidget(self.capture_button)

72

73 self.clear_button = QPushButton("Clear Data")

74 self.top_menu_layout.addWidget(self.clear_button)

75

76 self.import_button = QPushButton("Import CSV")

77 self.top_menu_layout.addWidget(self.import_button)

78

79 self.export_button = QPushButton("Export All Data")

80 self.top_menu_layout.addWidget(self.export_button)

81

82 # Add a png logo to the top menu

83 logo = pg.QtGui.QPixmap("optigap_logo.png")

84 logo = logo.scaledToHeight (25)

85 logo_label = QLabel ()

86 logo_label.setPixmap(logo)

87 self.top_menu_layout.addWidget(logo_label)

88

89 # Connect UI elements with their respective functionality

90 self.capture_button.clicked.connect(self.toggle_capture)

91 self.clear_button.clicked.connect(self.clear_plot_data)

92 self.import_button.clicked.connect(self.import_csv)

93 self.export_button.clicked.connect(self.export_data)

94 self.refresh_button.clicked.connect(self.

detect_serial_devices)

95 self.connect_button.clicked.connect(self.connect_serial)

96 self.disconnect_button.clicked.connect(self.

disconnect_serial)

97 self.baud_rate_dropdown.currentIndexChanged.connect(self.

update_baud_rate)

98

99 main_layout.addLayout(self.top_menu_layout , 0, 0, 1, 4)

100

101 # Serial Monitor

102 self.serial = QSerialPort ()

103 self.detect_serial_devices ()

104

105 self.serial_worker = SerialWorker(self.serial)

106

107 self.serial_thread = QThread ()

108 self.serial_worker.moveToThread(self.serial_thread)

109 self.serial_thread.start()

110

111 self.serial_worker.data_received.connect(self.

read_serial_data)

112

113 # Plot layout

114 self.plot_widget = pg.PlotWidget(name="Serial Data")

115 self.plot_widget.showGrid(x=True , y=True)

116 self.plot_widget.setLabel(’left’, "Amplitude")

117 self.plot_widget.setLabel(’bottom ’, "Time")

118 self.plot_widget.setMouseEnabled(x=False , y=False)
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119 self.plot_widget.setMenuEnabled(False)

120 self.plot_widget.addLegend ()

121 self.region_item = pg.LinearRegionItem ()

122 self.region_item.setRegion ([0, 0])

123 self.region_item.setZValue (10)

124 self.region_item.sigRegionChangeFinished.connect(self.

region_updated)

125

126 self.plot_widget.addItem(self.region_item)

127 self.plot_layout.addWidget(self.plot_widget)

128 self.plot_layout.setSpacing (2)

129

130 # Serial Monitor Button

131 self.serial_monitor = SerialMonitorWindow(self)

132 self.launch_monitor_button = QPushButton("Launch Serial

Monitor")

133 self.launch_monitor_button.clicked.connect(self.

launch_serial_monitor)

134 self.serial_data_received.connect(self.serial_monitor.

read_serial_data)

135

136 self.plot_layout.addWidget(self.launch_monitor_button)

137

138 main_layout.addLayout(self.plot_layout , 1, 0, 1, 3)

139 main_layout.setColumnStretch (0, 3)

140

141 # Header for the labels table

142 self.input_enable_header = QLabel("Input Selection")

143 self.input_enable_header.setAlignment(Qt.AlignmentFlag.

AlignCenter)

144 self.sidebar_layout.addWidget(self.input_enable_header)

145

146 # Add space between the header and the checkboxes

147 self.sidebar_layout.addSpacing (5)

148

149 self.input_checkboxes_layout = QGridLayout ()

150 num_checkboxes = 12

151 num_columns = 2

152 self.checkboxes = []

153 for i in range(num_checkboxes):

154 checkbox = QCheckBox(f"Input {i + 1}")

155 checkbox.stateChanged.connect(self.

checkbox_state_changed)

156 checkbox.setEnabled(False)

157 row = i // num_columns

158 column = i % num_columns

159 self.input_checkboxes_layout.addWidget(checkbox , row ,

column)

160 self.checkboxes.append(checkbox)

161

162 self.sidebar_layout.addLayout(self.input_checkboxes_layout)

163

164 self.sidebar_layout.addSpacing (10)

165
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166 self.labels_table = QTableWidget ()

167 self.labels_table.setColumnCount (2)

168 self.labels_table.setHorizontalHeaderLabels (["Data Label", "

Region"])

169 self.labels_table.horizontalHeader ().setSectionResizeMode (0,

QHeaderView.ResizeMode.Stretch)

170

171 self.sidebar_layout.addWidget(self.labels_table)

172

173 self.label_input = QLineEdit ()

174 self.label_input.setPlaceholderText("Enter label name ...")

175 self.sidebar_layout.addWidget(self.label_input)

176

177 region_controls_layout = QHBoxLayout ()

178

179 self.add_label_button = QPushButton("Add Label")

180 region_controls_layout.addWidget(self.add_label_button)

181

182 self.remove_label_button = QPushButton("Remove Label")

183 region_controls_layout.addWidget(self.remove_label_button)

184

185 self.sidebar_layout.addLayout(region_controls_layout)

186

187 self.export_labels_button = QPushButton("Export Labels")

188 self.sidebar_layout.addWidget(self.export_labels_button)

189

190 # Connect UI elements with their respective functionality

191 self.labels_table.cellPressed.connect(self.

table_cell_clicked)

192 self.labels_table.cellChanged.connect(self.

table_cell_changed)

193 self.label_input.returnPressed.connect(self.add_label)

194 self.add_label_button.clicked.connect(self.add_label)

195 self.remove_label_button.clicked.connect(self.remove_label)

196 self.export_labels_button.clicked.connect(self.export_labels

)

197

198 main_layout.addLayout(self.sidebar_layout , 1, 3, 1, 1)

199

200 self.timer = QTimer ()

201 self.timer.timeout.connect(self.update_plot)

202 self.timer.start (50)

203

204 def detect_serial_devices(self):

205 """

206 Detects all available serial ports and populates the serial

port dropdown with them.

207 """

208 available_ports = QSerialPortInfo.availablePorts ()

209 self.serial_port_dropdown.clear()

210 for port in available_ports:

211 self.serial_port_dropdown.addItem(port.portName ())

212

213 def update_serial_ports(self):
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214 """

215 Updates the available serial ports in the dropdown menu.

216 """

217 self.serial_port_dropdown.clear()

218 ports = QSerialPortInfo.availablePorts ()

219 for port in ports:

220 self.serial_port_dropdown.addItem(port.portName ())

221

222 def update_baud_rate(self):

223 """

224 Updates the baud rate of the connected serial port to the

value selected in the baud rate dropdown menu

225 """

226 if self.serial.isOpen ():

227 self.serial.setBaudRate(int(self.baud_rate_dropdown.

currentText ()))

228 self.status_bar.show_message("Baud rate changed to: " +

self.baud_rate_dropdown.currentText ())

229

230 def connect_serial(self):

231 """

232 Attempts to connect to the selected serial port with the

selected baud rate

233 """

234 port_name = self.serial_port_dropdown.currentText ()

235 baud_rate = int(self.baud_rate_dropdown.currentText ())

236

237 self.serial.setPortName(port_name)

238 self.serial.setBaudRate(baud_rate)

239

240 if self.serial.open(QIODevice.OpenModeFlag.ReadWrite):

241 self.status_bar.show_message("Connected to serial port:

" + port_name)

242 self.serial_connected = True

243 # Disable the connect button

244 self.connect_button.setEnabled(False)

245 # Enable the disconnect button

246 self.disconnect_button.setEnabled(True)

247 # Enable the capture button

248 self.capture_button.setEnabled(True)

249 else:

250 self.status_bar.show_error("Failed to connect to serial

port: " + port_name , 5000)

251

252 def disconnect_serial(self):

253 """

254 Disconnects from the serial port and updates UI elements.

255 """

256

257 # Stop the capture

258 if self.capture_enabled:

259 self.toggle_capture ()

260

261 if self.serial.isOpen ():
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262 self.serial.close()

263 self.status_bar.show_message("Disconnected from serial

port")

264 self.serial_connected = False

265 # Enable the connect button

266 self.connect_button.setEnabled(True)

267 # Disable the disconnect button

268 self.disconnect_button.setEnabled(False)

269 # Disable the capture button

270 self.capture_button.setEnabled(False)

271

272 def launch_serial_monitor(self):

273 self.serial_monitor.show()

274 self.serial_monitor.raise_ ()

275 self.serial_monitor.activateWindow ()

276

277 def toggle_capture(self):

278 """

279 Toggles the capture state and updates UI elements.

280 """

281

282 if not self.capture_enabled:

283 self.capture_button.setText("Stop Capture")

284 self.status_bar.show_message("Capture started")

285 else:

286 self.capture_button.setText("Start Capture")

287 self.status_bar.show_message("Capture stopped")

288 self.capture_enabled = not self.capture_enabled

289

290 def constrain_region_to_plot_bounds(self):

291 """

292 Constrain the region of interest to the bounds of the plot.

293 """

294

295 x_range = self.plot_widget.getAxis(’bottom ’).range

296 min_x , max_x = min(x_range), max(x_range)

297 self.region = (max(min_x , self.region [0]), min(max_x , self.

region [1]))

298 self.region_item.setRegion(self.region)

299

300 def region_updated(self):

301 """

302 Updates the region of interest.

303 """

304

305 self.region_item.setZValue (10)

306 x1, x2 = self.region_item.getRegion ()

307 self.region = (int(x1), int(x2))

308

309 def table_cell_changed(self , row , column):

310 """

311 Updates the label and region information of a cell in the

labels table when it is changed by the user.

312
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313 Args:

314 row (int): The row of the cell that was changed.

315 column (int): The column of the cell that was changed.

316 """

317

318 if row >= len(self.labels):

319 return

320

321 if column == 0:

322 label = self.labels_table.item(row , 0).text()

323 if not label or label.isspace () or label == "":

324 self.status_bar.show_error("Label cannot be empty",

3000)

325 self.labels_table.item(row , 0).setText(self.labels[

row ][0])

326 else:

327 self.labels[row] = (label , self.labels[row ][1])

328 elif column == 1:

329 region_str = self.labels_table.item(row , 1).text()

330 region = self.string_tuple_to_tuple(region_str)

331 if region is not None:

332 self.labels[row] = (self.labels[row][0], region)

333 else:

334 self.labels_table.item(row , 1).setText(str(self.

labels[row ][1]))

335

336 def string_tuple_to_tuple(self , string_tuple):

337 """

338 Converts a string representation of a tuple to a tuple

object.

339

340 Args:

341 string_tuple (str): The string representation of a tuple

.

342

343 Returns:

344 tuple: The tuple object.

345 """

346

347 try:

348 str_list = string_tuple.strip("()").split(",")

349 int_list = [int(x) for x in str_list]

350

351 if len(int_list) != 2:

352 self.status_bar.show_error("Invalid region input

format")

353 return None

354

355 tuple_obj = tuple(int_list)

356 return tuple_obj

357

358 except ValueError:

359 self.status_bar.show_error("Invalid region input format.

Expected: (x1, x2)")
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360 return None

361

362 def table_cell_clicked(self , row , column):

363 """

364 Updates the selected label’s region when its cell is clicked

.

365

366 Args:

367 row (int): The row of the cell that was clicked.

368 column (int): The column of the cell that was clicked.

369 """

370

371 self.selected_row = row

372 selected_region = self.labels_table.item(row , 1).text()

373

374 if self.string_tuple_to_tuple(selected_region) is not None:

375 self.region = self.string_tuple_to_tuple(selected_region

)

376 self.region_item.setRegion(self.region)

377 else:

378 self.status_bar.show_error("Invalid region input format.

Expected: (x1, x2)")

379

380 def add_label(self):

381 """

382 Adds a new label and region to the labels table and labels

list.

383 """

384

385 label = self.label_input.text()

386 # validate the label

387 if not label or label.isspace () or label == "":

388 self.status_bar.show_error("Label cannot be empty",

3000)

389 return

390

391 row = self.labels_table.rowCount ()

392

393 self.labels_table.insertRow(row)

394 self.labels_table.setItem(row , 0, QTableWidgetItem(label))

395 self.labels_table.setItem(row , 1, QTableWidgetItem(str(self.

region)))

396

397 # Clear the label input

398 self.label_input.setText("")

399

400 # Add to the labels list

401 self.labels.append ((label , self.region))

402

403 def remove_label(self):

404 """

405 Removes the selected label and region from the labels table

and labels list.

406 """

126



407

408 if self.selected_row >= 0:

409 self.labels_table.removeRow(self.selected_row)

410 self.labels.pop(self.selected_row)

411 self.selected_row = -1

412 else:

413 self.status_bar.show_error("No label is selected", 3000)

414

415 def import_csv(self):

416 """

417 Allows the user to import a CSV file to plot data

418 """

419

420 file_name , _ = QFileDialog.getOpenFileName(self , "Import CSV

", "", "CSV Files (*.csv)")

421 if file_name:

422 with open(file_name , ’r’) as file:

423 reader = csv.reader(file)

424 plot_data = [list(map(float , row)) for row in reader

]

425 self.plot_data = np.array(plot_data)

426

427 def export_data(self):

428 """

429 Allows the user to export the plot data to a CSV file

430 """

431

432 if self.plot_data is None:

433 self.status_bar.show_error("No data to export", 3000)

434 return

435

436 file_name , _ = QFileDialog.getSaveFileName(self , "Export

Data", "", "CSV Files (*. csv)")

437

438 if file_name:

439 self.save_to_file(file_name)

440

441 def export_labels(self):

442 """

443 Allows the user to export the labels to a CSV file

444 """

445

446 if self.plot_data is None:

447 self.status_bar.show_error("No data to export", 3000)

448 return

449

450 if len(self.labels) == 0:

451 self.status_bar.show_error("No labels to export", 3000)

452 return

453

454 file_name , _ = QFileDialog.getSaveFileName(self , "Export

Labels", "", "CSV Files (*. csv)")

455

456 if not file_name:
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457 return

458

459 data = []

460

461 for i in range(len(self.labels)):

462 label_range = self.labels[i][1]

463 label_string = self.labels[i][0]

464

465 if label_range [0] >= len(self.plot_data):

466 self.status_bar.show_error("Label range is out of

bounds", 3000)

467 return

468

469 if label_range [1] >= len(self.plot_data):

470 self.status_bar.show_error("Label range is out of

bounds", 3000)

471 return

472

473 # Get the data for the current label range and add the

label string as a new column

474 label_data = self.plot_data[label_range [0]: label_range

[1] + 1]

475 label_column = np.full(( label_data.shape[0], 1),

label_string , dtype=object)

476 label_data_with_label = np.hstack ((label_data ,

label_column))

477

478 data.append(label_data_with_label)

479

480 # Combine all label data into a single array

481 data = np.vstack(data)

482

483 self.save_to_file(file_name , data)

484

485 def save_to_file(self , file_name , data=None):

486 """

487 Save plot data or specified data to a CSV file.

488

489 Args:

490 file_name (str): The name of the file to save.

491 data (Optional[List[List[float ]]]): The data to save. If

None , self.plot_data will be saved.

492

493 Returns:

494 None.

495 """

496

497 with open(file_name , ’w’, newline="") as file:

498 writer = csv.writer(file)

499 if data is not None:

500 writer.writerows(data)

501 else:

502 writer.writerows(self.plot_data)

503
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504 self.status_bar.show_message("Saved to file: " + file_name ,

3000)

505

506 def read_serial_data(self , data):

507 """

508 Process serial data received from the connected device.

509

510 Args:

511 data (str): The data received from the connected device.

512

513 Returns:

514 None.

515 """

516

517 if data:

518 self.serial_data_received.emit(data)

519 try:

520 values = [float(value) for value in data.split(’,’)]

521 if len(values) != self.num_detected_signals:

522 self.num_detected_signals = len(values)

523 self.update_inputs_checkboxes ()

524 # self.serial_data_received.emit(data)

525 if self.capture_enabled:

526 if self.plot_data is None:

527 self.plot_data = np.array([ values ])

528 else:

529 self.plot_data = np.append(self.plot_data ,

np.array([ values ]), axis =0)

530

531 except Exception as e:

532 print("read_serial_data (): " + str(e))

533

534 def update_inputs_checkboxes(self):

535 """

536 Update the input checkboxes based on the number of signals

detected.

537

538 Returns:

539 None.

540 """

541

542 for i, checkbox in enumerate(self.checkboxes):

543 checkbox.setEnabled(i < self.num_detected_signals)

544 checkbox.setChecked(i < self.num_detected_signals)

545

546 def checkbox_state_changed(self , state):

547 """

548 Callback function when a checkbox state is changed.

549 Enables/disables the corresponding input and redraws the

plot.

550

551 :param state: The new state of the checkbox.

552 :type state: int

553 """
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554

555 sender = self.sender ()

556 if state == Qt.CheckState.Checked.value:

557 msg = f"{sender.text()} is enabled."

558 self.status_bar.showMessage(msg)

559 else:

560 msg = f"{sender.text()} is disabled."

561 self.status_bar.showMessage(msg)

562

563 for plot_line in self.plot_lines:

564 plot_line.clear ()

565

566 if self.capture_enabled:

567 self.draw_plot ()

568

569 def clear_plot_data(self):

570 """

571 Clears the plot data and updates the plot.

572 """

573

574 self.plot_data = None

575 for plot_line in self.plot_lines:

576 plot_line.setData ([0], [0])

577

578

579 def update_plot(self):

580 """

581 Updates the plot with the new data if capture is enabled.

582 """

583

584 if self.capture_enabled:

585 self.draw_plot ()

586

587 def draw_plot(self):

588 """

589 Draws the plot with the filtered data from the checkboxes.

590 """

591

592 if self.plot_data is not None:

593 # Get the indices of the checked checkboxes

594 checked_indices = [i for i, checkbox in enumerate(self.

checkboxes [0: self.num_detected_signals ]) if

595 checkbox.isChecked ()]

596

597 # Filter the data based on the checked checkboxes

598 filtered_data = self.plot_data [:, checked_indices]

599

600 for i, data_line in enumerate(filtered_data.T):

601 color = self.get_unique_color(i)

602 label = f"Input {i + 1}"

603 if i < len(self.plot_lines):

604 # self.plot_widget.disableAutoRange ()

605 self.plot_lines[i]. setData(data_line)

606 # print(" data_line: " + str(data_line))
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607 # self.plot_widget.enableAutoRange ()

608 else:

609 plot_line = self.plot_widget.plot(data_line , pen

=pg.mkPen(color , width =1), name=label)

610 self.plot_lines.append(plot_line)

611

612 def get_unique_color(self , index):

613 """

614 Returns a unique color based on the index.

615

616 :param index: The index to generate the color for.

617 :type index: int

618 :return: The unique color.

619 :rtype: str

620 """

621

622 colors = [

623 "#1f77b4",

624 "#ff7f0e",

625 "#2ca02c",

626 "#d62728",

627 "#9467 bd",

628 "#8c564b",

629 "#e377c2",

630 "#7f7f7f",

631 "#bcbd22",

632 "#17 becf"

633 ]

634 return colors[index % len(colors)]

635

636 def closeEvent(self , event):

637 self.serial_thread.quit()

638 self.serial_thread.wait()

639 super().closeEvent(event)

640 app.quit() # Quit the application when the main window is

closed

641

642

643 class SerialWorker(QObject):

644 """ Worker object that reads data from a serial port and emits it

as a signal.

645

646 Attributes:

647 data_received (pyqtSignal): A signal that is emitted when

data is received from the serial port.

648

649 Args:

650 serial (QSerialPort): The QSerialPort object to read data

from.

651 """

652

653 data_received = pyqtSignal(str)

654

655 def __init__(self , serial):
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656 """ Initializes a SerialWorker object.

657

658 Args:

659 serial (QSerialPort): The QSerialPort object to read

data from.

660 """

661 super().__init__ ()

662 self.serial = serial

663 self.serial.readyRead.connect(self.read_serial_data)

664

665 @pyqtSlot ()

666 def read_serial_data(self):

667 """ Reads data from the serial port and emits it as a signal.

"""

668 try:

669 while self.serial.canReadLine ():

670 data = self.serial.readLine ().data().decode(errors="

ignore")

671 self.data_received.emit(data)

672 except Exception as e:

673 print("read_serial_data (): ", str(e))

674

675

676 class SerialMonitorWindow(QMainWindow):

677 def __init__(self , parent_window):

678 super().__init__ ()

679

680 # Save a reference to the serial port

681 self.serial = parent_window.serial

682

683 # Set minimum size of the window

684 self.setMinimumSize (600, 340)

685

686 # Create a main widget for the window

687 main_widget = QWidget ()

688 self.setCentralWidget(main_widget)

689

690 # Set the window title

691 self.setWindowTitle("Serial Monitor")

692

693 # Create a vertical layout for the main widget

694 layout = QVBoxLayout ()

695 main_widget.setLayout(layout)

696

697 # Create a text edit widget for displaying serial data

698 self.serial_monitor_text = QTextEdit ()

699 layout.addWidget(self.serial_monitor_text)

700

701 # Create a horizontal layout for input controls

702 controls_layout = QHBoxLayout ()

703

704 # Create a line edit widget for entering serial data

705 self.serial_input = QLineEdit ()

706 controls_layout.addWidget(self.serial_input)
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707

708 # Create a combo box for selecting line endings

709 self.line_ending_dropdown = QComboBox ()

710 self.line_ending_dropdown.addItems (["No Line Ending", "

Newline", "Carriage Return", "Both NL & CR"])

711 controls_layout.addWidget(self.line_ending_dropdown)

712

713 # Add the controls layout to the main layout

714 layout.addLayout(controls_layout)

715

716 # Connect the returnPressed signal of the input line edit to

the send_serial_data slot

717 self.serial_input.returnPressed.connect(self.

send_serial_data)

718

719 def read_serial_data(self , data):

720 """

721 Slot for reading data from the serial port.

722

723 Parameters:

724 data (str): Data read from the serial port.

725 """

726 # Append the data to the text edit and scroll to the bottom

727 self.serial_monitor_text.insertPlainText(data)

728 self.serial_monitor_text.verticalScrollBar ().setValue(self.

serial_monitor_text.verticalScrollBar ().maximum ())

729

730 def send_serial_data(self):

731 """

732 Slot for sending data to the serial port.

733 """

734 # Get the data from the input line edit

735 data = self.serial_input.text()

736

737 # Get the selected line ending from the combo box

738 line_endings = ["", "\r", "\n", "\r\n"]

739 ending_index = self.line_ending_dropdown.currentIndex ()

740 data += line_endings[ending_index]

741

742 # Write the data to the serial port and clear the input line

edit

743 self.serial.write(data.encode ())

744 self.serial_input.clear()

745

746

747 class CustomStatusBar(QStatusBar):

748 """

749 A custom status bar with methods for showing messages and errors

.

750

751 Inherits from QStatusBar.

752 """

753

754 def __init__(self):

133



755 """

756 Constructor for the CustomStatusBar class.

757 """

758 super().__init__ ()

759

760 # Keep track of the current message and background color

761 self.current_message = None

762 self.current_color = None

763

764 # Create a timer for resetting the background color

765 self.timer = QTimer ()

766 self.timer.timeout.connect(self.reset_background_color)

767

768 def show_message(self , message , timeout =0):

769 """

770 Displays a message in the status bar with a background color

of blue.

771

772 Args:

773 message (str): The message to display.

774 timeout (int): The number of milliseconds to display the

message. If zero , the message is displayed indefinitely.

775 """

776 self.current_message = message

777 self.current_color = "#3 f51b5"

778 self.setStyleSheet(f"background -color: {self.current_color };

color: white;")

779 self.showMessage(message , timeout)

780

781 # Reset the background color after the timeout expires

782 if timeout > 0:

783 self.timer.start(timeout)

784

785 def show_error(self , error , timeout =0):

786 """

787 Displays an error in the status bar with a background color

of red.

788

789 Args:

790 error (str): The error message to display.

791 timeout (int): The number of milliseconds to display the

error message. If zero , the message is displayed indefinitely.

792 """

793 self.current_message = error

794 self.current_color = "#f44336"

795 self.setStyleSheet(f"background -color: {self.current_color };

color: white;")

796 self.showMessage(error , timeout)

797

798 # Reset the background color after the timeout expires

799 if timeout > 0:

800 self.timer.start(timeout)

801

802 def reset_background_color(self):
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803 """

804 Resets the background color of the status bar.

805 """

806 self.current_message = None

807 self.current_color = None

808 self.setStyleSheet("")

809 self.timer.stop()

810

811 def clear_message(self):

812 """

813 Clears the current message and resets the background color

of the status bar.

814 """

815 self.reset_background_color ()

816 self.clearMessage ()

817

818

819 if __name__ == "__main__":

820 qdarktheme.enable_hi_dpi ()

821 app = QApplication(sys.argv)

822 qdarktheme.setup_theme("dark")

823 main_window = MainWindow ()

824 main_window.show()

825 sys.exit(app.exec())

Listing V.5. ”OptiGap Labeling GUI (main.py)”
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