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ABSTRACT

ADAPTIVE PERSONALIZED DRUG DELIVERY METHOD FOR WARFARIN
AND ANEMIA MANAGEMENT: MODELING AND CONTROL

Affan Affan

November 10, 2023

Personalized precision medicine aims to develop the appropriate treatments for suit-
able patients at the right time to obtain optimal results. Personalized medicine is chal-
lenging due to inter- and intra-patient variability, narrow therapeutic window, the effect
of other medications, comorbidity (more than one disease at a time), nonlinear patient
dynamics, and time-varying patient dose response characteristics which include bleed-
ing (internal and external). This research aims to develop a framework for an adaptive
personalized modeling and control method with minimum clinical patient specific dose
response data for optimal drug dosing. The proposed methodology is applied to anemia
and warfarin management. It is challenging in practice to achieve an optimal dosage
of erythropoietin (EPO) to maintain Hemoglobin (Hgb) levels between 10-12 g/dl in
case of anemia management and the optimal dosage of warfarin to maintain an Inter-
national Normalized Ratio (INR) between 2.0 to 3.0 in case of warfarin management,
based on population-based models due to inter-and intra-variability of the patients. For
personalized patient modeling, semi-blind robust system identification incorporates the
effect of non-zero initial conditions and uses the minimum number of patient specific
clinical data. The model (In)validation technique and Kalman filter are used for adap-
tation. Furthermore, Adaptive Model Predictive Control (AMPC), Extremum-Seeking
Control (ESC), Model-Free Reinforcement Learning (MFRL), and Model-Based Rein-
forcement Learning (MBRL) control policies are defined for Virtual Chronic Kidney
Disease (VCKD) patients. These methods are tested for the events of bleeding and
missing dosages. The results conclude that data-driven adaptive control methods, such
as AMPC and DQN-RL, can handle serious conditions of bleeding and missing dosage
for virtual CKD patients which have a narrow therapeutic window. However, one major
drawback of the MFRL methods is the requirement of a high number of patient spe-
cific data points to train the agent. This requirement is not suitable for personalized
medicine. To reduce the number of patient specific data points required for training
the agent, MBRL is introduced. However, MB-DQN-RL faces challenges in providing
steady EPO dosages. Therefore, AMPC along with semi-blind robust model identifica-
tion with Kalman filter provides a complete practical framework to provide personalized
optimal dosages.
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CHAPTER 1

PERSONALIZED MEDICINE

Personalized or precision medicine is an innovative approach to disease treatment that
considers differences in people’s genes, environments, and lifestyles. Precision medicine
aims to target the right treatments to the right patients at the right time to obtain optimal
results. For drug administration, the five rights, which are the right patient, the right
drug, the right time, the right dose, and the right route, are well known [3]. However,
many dosing errors occur due to the current trial-and-error approach resulting in insuf-
ficient guidance of medication and dose-response data. This chapter discusses the field
of personalized medicine for anemia management and warfarin management and the
role of control theory in this field.

1.1 Personalized Anemia Management

In Chronic Kidney Disease (CKD), the functionality of the patient’s kidneys is com-
promised to produce a hormone called erythropoietin (EPO) [4, 5]. This affects ery-
thropoiesis, a process to produce red blood cells (RBCs), and leads to low hemoglobin
(Hgb) levels [6]. This medical condition is called anemia and it affects more than 3 mil-
lion people in the US alone. Statistically, there were about 890,000 visits to emergency
departments due to anemia across the US as per the database of Centers for Disease
Control and Prevention (CDC) for 2018 [7].

The optimal dosing of external EPO is challenging due to its narrow therapeutic
window, the effect of other medications, comorbidity (more than one disease at a time),
nonlinear patient dynamics, and time-varying patient-dose response characteristics due
to bleeding (internal and external), aging, weight and dietary habits [8, 9, 10]. This
emphasizes that the one-size-fits-all model approach may not work best, and therefore
personalized and adaptive drug delivery methods are required.

Many researchers have proposed different techniques to develop dose-response mod-
els for a number of different diseases. Bayesian-based drug delivery using population
patient data is discussed in [11]. In [12], control-oriented models are developed for
Type-1 Diabetes to capture the intra-patient variability of insulin drug patients. Arti-
ficial Intelligence-based neural network models are discussed in [13, 14, 15]. Some
researchers attempted to identify individual patient models in [16]. In [17] the focus
was to predict the value for EPO instead of Hgb, which is not desired as predicting the
Hgb level gives values of EPO but it is not true for vice versa. However, most of these
models are based on predetermined model structure and noise distribution, which are
not suitable for anemia management as each patient has different characteristics. The
models obtained by the classical system identification techniques do not yield good re-
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sults as they assume that predefined model structure and model order are close to the
actual system (patient) and one fixed mathematical model works for all dynamics re-
gardless of the complexity and uncertainties existing in the system (patient). Therefore,
the modeling stage should include the effect of disturbances and uncertainties that are
being introduced during operations. In contrast to classical identification techniques,
robust system identification considers system (patient) uncertainties, unmodeled dy-
namics, and model complexity, i.e., there is no assumption on the model order, type of
uncertainties, and noise affecting the data.

Recently, [18] has reported a feedback control approach for optimal EPO dosing and
reported that patient models obtained through system identification suffer performance
degradation over time. This indicates that an adaptive modeling approach is needed to
avoid this kind of degradation. Semi-blind robust system identification-based adaptive
modeling framework for CKD patients is reported in [19, 20]. Model Predictive Control
(MPC) based approach has been proposed for optimal EPO dosing in [21, 22]. The
proposed approach is highly effective, however, there is room for testing the ability of
MPC in the event of bleeding and missing dosage. Nonlinear MPC is proposed for
optimal EPO dosing in [1]. This research has a significant contribution, however, the
model used in this work is not adaptive and the results show a long recovery time after
bleeding.

1.2 Personalized Warfarin Management

Warfarin is an oral anticoagulant used to decrease blood clotting and avoid thromboem-
bolic events in the human body. The main reason for the thrombotic events is the blood
clots that break loose and are stuck in narrow vessels. The effect of warfarin is moni-
tored by measuring the International Normalized Ratio (INR). INR is the ratio between
the patient’s prothrombin time (PT) and the mean normal PT [23]. The desired range
of INR values is between 2.0 to 3.0 [24]. In addition to the narrow therapeutic range of
INR, the INR is highly affected by genetics, change in diet, and the use of other med-
ications throughout treatment. These fluctuations can lead to under-anticoagulation,
increasing the risk of clotting, and over-anticoagulation, increasing the risk of release
of blood from broken blood vessels [25].

The dosage of warfarin is affected by dietary interactions, drug interactions, de-
mographic effects, and genetics[26]. Vitamin K is a natural antidote to warfarin and
most dark green vegetables such as broccoli consist of a high level of vitamin K [27].
On average, a human takes around 60-200 µg/day of vitamin K, while the intake of
100 µg/day of vitamin K for 4 consecutive days can lower the INR value by 0.2 [28].
One of the major factors which influence the INR value in the human body are in-
teractions of other drugs with warfarin [29]. Drugs such as amiodarone used to treat
heart rhythm problems interact with warfarin to increase the anticoagulant effect [30].
On the other hand, drugs like aspirin increase the risk of bleeding by eliminating war-
farin [31, 32, 33]. The aforementioned factors lead to the ineffective warfarin dosage,
which is the common cause of most hospital visits in the USA and UK [34, 35].

The narrow therapeutic range of Warfarin and the risk of bleeding due to uninten-
tional overdosing of Warfarin urge the need for a robust, adaptive, and patient-specific
warfarin management system that represents true patient status in the event of a change
diet and life habits [26]. Another challenge for the applications of precise drug delivery
is the slow sampling rate as often measurement sampling time is of days and weeks. It
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can slow the process of data collection and result in small data sets. Therefore, a mod-
eling algorithm is needed that can identify the model at an early stage and recursively
improve the model capabilities as the new measurement data is received. Also, due to
swift changes in factors related to warfarin, the prediction models must show the true
status of the patients using a limited number of available patient-specific clinical data.
Therefore, the model must learn the change in the dose-response characteristics of each
patient and adapt to the wavering status within an equitable time frame.

Many researchers have proposed dose-response models to predict the dosage of
warfarin using different model identification techniques. Numerous prediction mod-
els have been proposed in the literature that use the Bayesian approach to predict the
warfarin dosage [36, 37, 38, 39, 36]. The Bayesian approach is prominent in model
identification due to its ability to take full account of uncertainties related to the model
and parameter values. However, Bayesian methods require the selection of probability
distributions of disturbances and noise, which can be time-consuming and may lead to
erroneous dose-response models if the prior distributions are imprecise [40, 41]. Several
artificial intelligence (AI)-based predictive models have been proposed using different
methods [42, 43, 44]. The AI-based models can efficiently predict warfarin dosage to
reduce the risk of overdosing or under-dosing. The main challenge in AI-based models
is the requirement of a large data set, which is a drawback as patient-specific clinical
dose-response data for warfarin is usually not available in high volume. Moreover, the
AI-based models are typically trained using population-based data sets. This is very piv-
otal because, with the use of population-based data sets, the inter-and intra-variability
among the patients can not be effectively addressed.

Inspired by the methods and challenges discussed in the literature, the next section
discusses the semi-blind robust system identification method. It uses the effect of non-
zero initial conditions and the minimum number of patient-specific dose-response data
points to find the patient model.
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CHAPTER 2

SYSTEM IDENTIFICATION METHODS FOR PERSONALIZED
MEDICINE

2.1 Semi-Blind Robust System Identification

The patient (system) model is a set of mathematical equations that describes the pa-
tient’s behavior in response to the medication over time. In this research work, system
identification aims to develop a low-order model of the patient from finite, noisy mea-
surements of clinical dose-response data. The following result from the literature will
provide the foundation for the existence of linear time-invariant (LTI) models with rel-
evant features.

Lemma 1. Given a matrix-valued sequence {Gi}n−1
i=0 , there exists a discrete LTI model,

G(z) ∈ BH∞, such that

G(z) = G0 +Gz +G2z
2 + · · ·+Gn−1z

n−1, (2.1)

if and only if (T n
G)

TT n
G ≤ I .

where BH∞ denotes the open ball in an infinity normed space and TG is the Toeplitz
matrix. The patient model is required to be stable, controllable, and observable. By
considering stability margin (ρ − 1) and input bound by K, the patient model of form
S is defined as follows [45, 46]:

S .
= {G(z) = Gp(z) +Gnp(z)} , (2.2)

which consists of non-parametric portion, Gnp ∈ BH∞,ρ(K) for ρ ≥ 1 and parametric
portion, Gp, of form P is defined as follows:

P .
=

{
Gp(z) = pTH(z),p ∈ RNp

}
, (2.3)

where p is affine parameter. The Np components of vector H(z) are known as linearly
independent, rational transfer functions as shown in Fig. 2.1. The modelG(z) ∈ S, that
maps input sequence, u, to output sequence, y, in the presence of noise, η with noise
bound, ϵ ∈ N , can be obtained by the following condition.

Lemma 2. There exists an operator G ∈ S such that y = Gu+ η, given that K, ρ, and
measurement data (u,y) are provided, if and only if a parameter vector g exists, which
satisfy:

M(g)
.
=

[
KR−2 (TN

g )T

TN
g KR2

]
≥ 0,

y = TN
u Pp+ TN

u g,

(2.4)
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Figure 2.1: Framework for semi-blind identification.

where Pk =
{
h1k,h

2
k, · · ·h

Np

k

}
, here hik is the k − th Markov parameter of the

i− th transfer function H(z). gk is the k− th Markov parameter of the non-parametric
portionGnp andR = diag

[
1, ρ, ρ2, · · · ρN−1

]
. TN

u and TN
g are the lower Toeplitz matrix

associated with parameter vector, g, and input measurements u. Relation of TN
g with

measurement data (u,y) is defined as follows:
y0
y1
y2
...

yN−1

 =


g0 0 0 · · ·
g1 g0 0 · · ·
g2 g1 g0 0
...

... . . . ...
gN−1 gN−2 · · · g2N−1




u0
u1
u2
...

uN−1

 . (2.5)

In most applications of system identification zero initial conditions are considered.
However, a patient might already have a medical history, which can affect the prediction
of the identified model. It is also important to mention that for this application, the
patient data is not steady-state data, therefore, the effect of past inputs is still present.
The response of the patient model is highly affected by their initial state at t = 0. The
semi-blind robust identification technique incorporates the effect of initial conditions of
the patient (system) as follows [47, 48, 46]:

Problem 1. Given a priori set of candidate models, S, noise bound, ϵ, and posteriori
measurement data, (u,y), and maximum stability gain, ρ, determine G (z), which is
compatible with priori information and posteriori measurement data, such that τ is a

non-empty set. Given the state space model, G =

[
Ag Bg

Cg Dg

]
, τ is defined as:

τ (y)
.
=

{
G ∈ S : yk −

N∑
i=0

qiuk−i + CgA
k−1
g x0 ∈ N , k = 0, · · · ,N − 1

}
(2.6)

where q0 = Dg; qi = Cg (Ag)
i−1Bg. The solution to (2.6) involves solving a

non–convex Bilinear Matrix Inequalities (BMIs) in gi and initial conditions, x0, which
is a non-convex and NP-hard problem. The above problem can be converted to the con-
vex problem by assuming that past inputs, u−, belong to some set, U− [47]. Therefore,
the initial condition, x0, can be replaced by the effect of past inputs. Equation (2.6) can
be modified as follows:

τ (y)
.
=

{
G (z) ∈ S : yk −

(
Tgu

+
)
k
+
(
Γgu

−)
k
, k = 0, · · · ,N − 1

}
, (2.7)
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where u+ = u0,u1, · · · ,uN−1 and Γg is the Hankel matrix, which maps the past inputs
to the output as follows:

y0
y1
y2
...

yN−1

 =


g1 g2 · · · gN
g2 g3 · · · gN+1
...

... . . . ...
gN gN+1 · · · g2N−1



u−1

u−2

u−3
...

u−N

 . (2.8)

The first part of the τ set corresponds to the plant (patient) response for input u and
the latter part provides information for the system response for past inputs u− [47, 48].
The term (Γgu

−)k can be reduced to xk = (Γgu
−)k ∈ X0, by assuming that set of past

input has the form, U = Bl(Ku), and a bound, ∥Γg∥lp→l∞ ≤ γ, is available as priori
information. Here, Bl(Ku) denotes the open Ku- ball in a normed space l and Bl is the
open unit ball in space l. The modified problem statement can be written as follows:

Problem 2. Given priori set of candidate models, past inputs and noise (S,U ,N ) and
N measurement (u,y) data points, determine G (z) ∈ S , which is compatible with a
priori information and a posteriori measurement data (u,y), such that τ is a non-empty
set:

τ (y)
.
=

{
G (z) ∈ S : yk −

(
Tgu

+
)
k
− xk, k = 0, · · · ,N − 1

}
, (2.9)

where |x|k ≤ γKu. By using Lemma 2, following result can be deduced:

Proposition 1. Problem 2 can be solved by finding a feasible solution of the following
LMIs in g and x:

M(g) =

[
KR−2 (TN

g )T

(TN
g ) KR2

]
≥ 0,∣∣y − (TN

u pP + TN
u g)− x

∣∣ ∈ N ,

− γKu ⩽ x ⩽ γKu,

(2.10)

where γ,Ku, p, P represent γ-ball in a normed space, bound on the norm of the
sequence u−, affine parameters, and the parametric portion of the model, respectively.

Heretofore, we have discussed the semi-blind robust system identification to ob-
tain individualized patient models using a limited number of patient-specific clinical
data points, possibly corrupted by noise. However, as time passes the patient’s char-
acteristics may change due to aging, change in food habits, and new medication for
another disease (comorbidity). The change in the patient’s status may reflect in the pa-
tient’s drug-dose response, and the model identified at an early stage may not match
the patient’s current dose-response characteristics. Therefore, this model may not be
suitable anymore for the controller as time passes. To adapt the model to the patient’s
current status, the next sub-sections discuss the two model adaptation techniques: (1)
Model (In)validation based Adaptive Model Identification, which provides mathemati-
cal evidence about the suitability of the model by testing the model on data unseen by
the identification process and (2) Kalman Filter based Adaptive Model Identification,
which updates the model parameters based on prediction error.

2.1.1 Model (In)validation based Adaptive Model Identification
To use an individualized patient model identified by semi-blind robust system identifi-
cation, it is important to validate the identified model. Therefore, the identified model is

6



Figure 2.2: The (In)validation framework for semi-blind robust identification.

tested against the patient’s new measurement data points, which have not been used in
system identification to avoid biases. This method indicates when an identified model
is no longer compatible with the patient’s measurement data and the model needs to
be updated by re-identification using semi-blind robust system identification. This also
helps to cover system uncertainties, unmodeled dynamics, and model complexity in the
system. By assuming multiplicative uncertainty and additive noise, the problem can be
stated as follows:

Problem 3. Given M new measurement data points, (y+,u+), the nominal model,
G (z) ∈ S , descriptions of admissible noise, N , uncertainty, ∆, and initial conditions,
X0, determine if there exists at least one triple (η, ∆,x0) ∈ N × ∆ × X0 that can
reproduce the available experimental data by the following equation [47]:

y = (I +∆)
(
Tgu

+ + T ic
g x0

)
+ η, (2.11)

where u+ is the input after, t = 0. Tg maps the input to the output, whereas, T ic
g ,

maps the initial conditions to the output. The above problem has a term, T ic
g x0, where

x0 is the unknown initial condition. During the identification, this term can be replaced
with some term representing the effect of these initial conditions such as u− ∈ U−.
Therefore, (2.11) can be modified as follows:

y = (I +∆)
(
Tgu

+ + Γgu
−)+ η. (2.12)

Figure 2.2 shows the framework for the model (In)validation, which shows the model
is validated by the new measurement data if and only if there exists, ∆ ∈ ∆, such that,
y − ŷ − η

.
= ζ = ∆ŷ. Using Lemma 1, ∆ = BH∞(δ) is equal to the feasible solution

of following inequalities:

(TM
ζ )TTM

ζ ≤ δ2(TM
ŷ )TTM

ŷ ,

δ2(TM
ŷ )TTM

ŷ − (TM
y − TM

ŷ − TM
η )T (TM

y − TM
ŷ − TM

η ) ≥ 0,
(2.13)

where Tŷ
.
= TM

g TM
u+ + ΓM

g TM
u− . Here, due to cross terms, TM

η ΓM
g TM

u− , (2.13) is non-
convex. To avoid solving the non-convex problem, the following convex relaxation
is considered as shown in Fig. 2.3 [47, 48]. The measurement noise is affected by
∆, η

.
= (1 +∆) η̄, in this alternative setup for the model (In) validation. Equation

(2.12) can be modified as follows:

y = (I +∆)
(
Tgu+ Γgu

− + η̃
)

(2.14)
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Figure 2.3: The convex relaxed Model (In)validation framework for semi-blind robust
identification.

Equation (2.14) is satisfied if a triple (u−, η̄,∆) exists, where ∥η̃∥2 ≤ ϵ̃, ∥∆∥∞ ≤ δ
and ϵ̃ = ϵ

1+δ
. The solution of (2.14) satisfies the (2.12) with triple (u−, η,∆), where

η
.
= (1 + ∆)η̃. By assuming ∥∆∥∞ ≪ 1, (2.14) can be solved by following LMI

problem [46].

Theorem 1. Equation (2.14) is satisfied if there exists δ < 1, η̃ ∈ Ñ and u− ∈ U−,
such that following LMI are satisfied:

A
.
=

[
X(u−) (Tω)

T

(Tω) (δ2 − 1)−1I

]
≤ 0,

Tω
.
= TgTu + ΓgTu− ,

X
.
= (Ty)

TTy − (Ty)
TTω − (Tω)

TTy.

(2.15)

This concludes the mathematical discussion about Mode (In)validation for adapta-
tion of models identified using semi-blind robust system identification. The next sub-
section discusses the algorithmic implementation of the model (In)validation frame-
work with semi-blind robust system identification for adaptive system identification.

2.1.1.1 Algorithm
This section combines model (In)validation with semi-blind robust system identification
to develop an adaptive model identification framework, which improves the prediction
accuracy and ensures the identified models are suitable for controller design as well.
The general framework of the proposed adaptive model identification method is shown
in Fig. 2.4 [49]. The proposed adaptive identification starts by collecting a few data
points till time step T as shown in step-A of Fig. 2.4. The acquired data set is divided
into two parts. The first part indicated by the blue box has Nt data points to be used
for the identification step using semi-blind robust system identification. The second
part shown with the pink box has Mt data points equal to the number of parameters
in the identified model, to be used by the model (In)validation framework discussed in
the previous section. For example, if the reduced model order is 3rd order model then
only four data points are required for model (In)validation. However, if the 3rd order
model is not validated and a reduced model of order 4, 5 or 6 is used then six or seven
data points are required for model (In)validation. At time step T , the patient model is
identified and the model is tested for model (In)validation which completes step-A.
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Figure 2.4: Recursive adaptive model identification with Model (In)validation.

At the T +1 time step, a new data point (green) has been acquired shown in step-B.
In step-C, the model (In)validation window has moved forward to include the new data
point in the window leaving a past data point (black) available to be used for identifica-
tion in the future if needed. The model identified in step-A is tested on this new model
(In)validation window. Now, there can be two outcomes: (i) the model is validated, i.e
model is suitable for future predictions and controller design or the model is invalid for
future predictions. If the model is validated then step-E in Fig. 2.4 is followed. (ii) if
the model is (In)validated then step-D is followed, where the model identification win-
dow has expanded to include the extra available data point (black) in the window which
makes the total data points equal to Nt + 1 available for re-identification. The model is
updated by re-identification through semi-blind robust system identification. The newly
identified model is then tested on the model (In)validation window before it is used for
prediction. This procedure is followed recursively at each time step.

The practical implementation of the aforementioned adaptive individualized patient
modeling framework to develop personalized patient models representing patients’ true
dose-response characteristics is given in Algorithm 1. The user input to initialize the al-
gorithm is the patient data which includes patient ID and patient-specific dose-response
data, stability margin ρ, the minimum number of patient’s clinical data for the identifi-
cation Nt, initial and maximum acceptable reduced model order, O and Omax, respec-
tively. The full-order model is identified in steps 1-2. Step 3 reduces the model order
based on the initial value of O. The identified personalized patient model is processed
through model (In)validation at step 6. The data points Mt are selected at step 5 to be
used for model (In)validation. The amount of data points Mt is equal to the coefficients
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Algorithm 1: Adaptive personalized patient dose-response modelling.
Input: Patient-ID, clinical data, Nt, ρmax, Omax.
Output: Discrete-time individualized patient model, Gr

1 function Semiblind(Nt, ρ, clinical data, ID);
2 return(G)
3 function ReduceModelorder(G, O);
4 return(Gr)
5 Select, Mt, data points for model (In)validation.
6 function ModelInvalidation(Gr,Mt);
7 if ∥∆∥∞ < 1 then
8 print(model validated.)
9 return(Gr)

10 else
11 print(model invalidated.)
12 If O < Omax then
13 O = O + 1; repeat step 4.
14 else
15 if ρ < ρmax

16 Set default O; Increase ρ;
17 repeat step 2.
18 else
19 Set default O and ρ; Increase Nt;
20 repeat step 2.
21 endif
22 endif
23 endif
24 exit

of the reduced-order model obtained in step 4.
If the model (In)validation requirements are met, the algorithm shows the verified

personalized patient model. Otherwise, the model is not suitable for prediction and
controller design, and the reduced model order, O, is raised for the same value of ρ. ρ
is raised if the order of the model is higher than Omax. The amount of data points, Nt,
utilized for the identification process is increased if ρ > ρmax, and the algorithm returns
to step 1.

It is important to mention that for model adaptation through re-identification, the
most recent available Nt data points are used. Although the maximum low-order model
limit can be extended, low-order models are favored for controller design since they
have fewer parameters to adjust. Low-order models have also been favored in clinical
applications due to the ease with which the resulting models can be explained.

This concludes the algorithmic implementation of the Model (In)validation based
adaptive model identification. The next subsection discusses the prediction results for
the above-discussed algorithm.
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Figure 2.5: Prediction results for patient-1 model obtained by semi-blind robust identi-
fication with model (In)validation.

2.1.1.2 Anemia Management Results
This study is IRB approved by the Human Subjects Protection Program Office at the
University of Louisville. For simulation purposes, clinical data of 50 patients, previ-
ously collected at the University of Louisville, Kidney Disease Program were used.
These patients represent the good, average and bad responders to the medication. Each
patient received three EPO dosages per week and the Hgb level was tested once a
week. To match the input-output data dimension, the average of three EPO dosages
is used as input. One-step-ahead prediction is used to show the predicting capabil-
ities of the identified models. The performance of patient models obtained by the
semi-blind robust identification technique is analyzed by calculating minimum mean
squared error (MMSE) between measured clinical Hgb data and predicted Hgb level
using the reduced-order models. The performance of semi-blind robust identification
with model (In)validation is compared to semi-blind robust identification without model
(In)validation by computing the MMSE values as well. The model is checked for model
(In)validation at each time step and updated if the model is not validated. The math-
ematical expressions for patient-1 models using semi-blind robust identification with
model (In)validation are given below:

G1(z) =


0.9z4+0.07z3+0.02z2−0.1z+0.45
z4−0.56z3−0.26z2−0.15z+0.01

10 ≤ n ≤ 24
3.3z4+1.26z3−1.29z2−1.6z+0.27
z4−0.58z3−0.77z2−0.05z+0.41

n = 25
2.2z4+4z3−1.63z2−0.98z+2.3
z4−0.99z3−0.46z2+z−0.5

n = 26
−0.1z5−0.1z4+0.6z3−0.2z2−0.3z+0.2

z5−0.9z4−0.4z3+0.4z2−0.4z+0.3
27 ≤ n ≤ 50,

(2.16)

where n refers to week. The model prediction results of the above model for patient-
1 are shown in Fig. 2.6. In the following figures of semi-blind robust identification
simulation results, the red line with square markers shows the actual clinical Hgb values
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Figure 2.6: Prediction results for patient-1 model obtained by semi-blind robust identi-
fication without model (In)validation.

of the patient, the solid blue line shows the model prediction results of the full order
model obtained using semi-blind robust identification technique, the green line with
diamond markers shows the prediction results of the reduced-order model, the magenta
vertical dashed line shows the number of data points, Nt, used in the identification
process for the first time and the cyan vertical dashed line represents the points where
the model is (In)validated and then updated (i.e., the model could not be validated with
the recent patient data through the model (In)validation algorithm and therefore model
identification algorithm is rerun as shown in Algorithm-1). Finally, the vertical blue
bars show the weekly EPO dosages.

It is important to mention that whenever the model is (In)validated, all available data
points are used to update the model. The full order model is equal to the Nt + 2, the
model consists of parametric and non-parametric portion, and the reduced order model
range from 3rd order to 6th order model (not limited). The selection of the reduced-order
model is based on model (In)validation conditions, the model order which satisfies the
model (In)validation condition of ∥∆∥∞ < 1 is selected as the final reduced-order

Table 2.1: Model (In)Validation Results of Patient-1

Data Range
(Weekly)

∥∆∥∞

10-24 0.93
25 0.99
26 0.84
27-50 0.86
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Figure 2.7: Prediction results for patient-13 model obtained by semi-blind robust iden-
tification without model (In)validation.

model. The identified model is checked for model (In)validation at each time step
(week) and updated as the model is (In)validated. The model (In)validation results for
patient-1 are given in TABLE 2.1. All values of ∥∆∥∞ are less than one for patient-1,
which satisfies the condition for model (In)validation. It is important to mention that in
clinical applications personalized drug dose-response models from as few numbers of
clinical data as possible are desired.

In this application, only 5-10 data points corresponding to 5–10-week data collec-
tion time from anemia patients are used in the identification algorithm. Therefore, more
data points are not used in the identification algorithm since it would cause a delay in
the treatment (through the proposed algorithm) of patients. The identified model by
the semi-blind identification for patient-1 does (In)validate, i.e., the resulting individ-
ualized model is updated three times at weeks 25, 26, and 27. This is represented in
Fig. 2.5 with the presence of three cyan vertical lines. It is worth mentioning that all
the previously available data points are used to update the model whenever a model is
(In)validated e.g., at week 25, the previous 24 data points are used in the identifica-
tion process to update the model. For comparison, the mathematical model of patient-1
using the identification process without a model (In)validation is shown in (2.17) and
prediction results are shown in Fig. ??.

G1 (z) =
0.5 z5 − 0.3 z4 + 0.1 z3 − 0.1 z2 − 0.01 z + 0.002

z5 − 1.7 z4 + 0.8 z3 − 0.3 z2 + 0.14 z − 0.01
(2.17)

The model of patient-1 shown in (2.17) is identified using 10 data points. As this
model is not processed through model (In)validation, it is, therefore, not possible to con-
firm that the model is suitable for controller design as time passes. This is an alarming
situation because the patient’s condition may change over time due to the spread of the
disease or the patient suffers from another disease. However, model (In)validation can
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Figure 2.8: Prediction results for patient-13 model obtained by semi-blind robust iden-
tification with model (In)validation.

provide an alert for situations where a model is not suitable for prediction and controller
design anymore. The benefit of model (In)validation can be seen in the sense of predic-
tion error as shown in Fig. 2.13. The prediction error for models obtained using model
(In)validation is lower than the model obtained without model (In)validation. The math-
ematical expressions for patient-13 models obtained by semi-blind robust identification
with model (In)validation are as follows:

G13(z) =



0.6s3+0.4s2+0.1s+0.2
s3−0.7s2−0.1s−0.1

n = 5
0.6s5+0.2s4−0.2s3+0.1s2+0.1s−0.03
s5−0.8s4−0.2s3+0.004s2+0.01s+0.004

6 ≤ n ≤ 7
0.7s3−0.2s2−0.1s+0.2
s3−1.3s2+0.4s−0.1

8 ≤ n ≤ 9
0.1s4+0.5s3+0.4s2+0.5s+0.2
s4−0.9s3+0.3s2−0.3s−0.03

10 ≤ n ≤ 16
−0.2s4−0.1s3−0.03s2−0.2s+0.1

s4−0.8s3+0.5s2−0.03s−0.6
17 ≤ n ≤ 51

(2.18)

Patent-13 is a challenging patient model because the values of Hgb are varying
between 8g/dl and 14g/dl and hence EPO dosages are also varying significantly. This

Table 2.2: Model (In)Validation Results of Patient-13

Data Range
(Weekly)

∥∆∥∞

5 0.96
6-7 0.81
8-9 0.96
10-16 0.98
17-51 0.99

14



Figure 2.9: Prediction results for patient-19 model obtained by semi-blind robust iden-
tification without a model (In)validation.

can indicate that the patient is a poor responder to the medication and finding an optimal
dosage is a difficult task for this patient. The prediction results of patient-13 in Fig. 2.8
show that it was difficult to find an appropriate model which satisfies all the conditions
even at earlier time steps, the model is updated three times within the first 10 weeks.
The interesting part is between weeks 17 and 23 when the EPO dosages are zero. This
phenomenon is challenging for the identification algorithm as the model identified is for
non-zero EPO dosages, therefore, it will be challenging for the model to be validated
for zero EPO dosages. However, the semi-blind robust identification technique updated
the model to capture the dynamics of this direction of zero EPO doses as soon as the
identification algorithm sensed this trend in the data. The model (In)validation results
for patient-13 are shown in TABLE 2.2. All values of ∥∆∥∞ are less than one which
satisfies the conditions of model (In)validation. To compare the performance of models
shown in (2.18), the mathematical model of patient 13 using the identification process
without a model (In)validation is shown in (2.19) and prediction results are shown in
Fig. 2.7.

G13 (z) =
0.7z5 − 0.5z4 + 0.1z3 − 0.1z2 − 0.03z + 0.003

z5 − 2z4 + 1.3z3 − 0.5z2 + 0.2z − 0.02
(2.19)

The prediction error in models identified by semi-blind robust identification with
model (In)validation is smaller than the ones obtained by semi-blind robust identifi-
cation without model (In)validation. It can be seen by the prediction results that semi-
blind robust identification with the model (In)validation performed better by incorporat-
ing the fluctuations in the patient characteristics which is not possible without a model
(In)validation. The mathematical expressions for patient-19 models obtained by semi-
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blind robust identification with model (In)validation are as follows:

G19(z) =


0.9z5−0.5z4−0.02z3+0.04z2−0.1z+0.01

z5−2.1z4+1.6z3−0.7z2+0.2z−0.02
n = 5

0.5z5+0.2z4−0.6z3+0.3z2−0.1z+0.004
z5−2.1z4+1.6z3−0.6z2+0.1z−0.005

6 ≤ n ≤ 10
0.6z4−0.3z3+0.4z2−0.6z+1.3
z4−1.3z3+0.5z2−0.3z+0.04

11 ≤ n ≤ 12
0.7z5−0.01z4+0.5z3+0.9z2−0.7z+0.6
z5−1.2z4+0.5z3−0.04z2−0.5z+0.2

13 ≤ n ≤ 50

(2.20)

Figure 2.10: Prediction results for patient-19 model obtained by semi-blind robust iden-
tification with a model (In)validation.

Patient-19 is a very interesting case as the EPO dosage has frequent changes and
Hgb values are ranging between 8 g/dl and 14 g/dl as shown in Fig. 2.10. This patient
does not qualify as a poor responder to medication because the change between EPO
dosages is low even though Hgb values vary significantly. Therefore, it becomes an
interesting scenario where the patient’s response is not ordinary. However, the identifi-
cation process with the model (In)validation can identify the model and timely update
the model to represent the true dose-response characteristics of the patient. TABLE 2.3
shows the model (In)validation results for patient-19. The values of ∥∆∥∞ are less than

Table 2.3: Model (In)Validation Results of Patient-19

Data Range
(Weekly)

∥∆∥∞

5 0.93
6-10 0.96
11-12 0.96
13-50 0.88
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Figure 2.11: Prediction results for patient-21 model obtained by semi-blind robust iden-
tification with a model (In)validation.

one which satisfies the condition for the model (In)validation. For the sake of compari-
son, the model of patient-19 without model (In)validation is as follows:

G19 (z) =
1.1z5 − 0.9z4 + 0.2z3 − 0.08z2 − 0.1z − 0.0004

z5 − 2z4 + 1.5z3 − 0.6z2 + 0.2z + 0.00014
(2.21)

The dose-response for the above model for patient 19 is shown in Fig. 2.9. The
model shown in (2.21) is identified using 5 initial data points and the reduced model
order is 5th order. The model orders in (2.20) and (2.21) are almost similar however the
difference is the model (In)validation and the advantage of it can be seen in Fig. 2.13
in the sense of prediction error values. The error between actual clinical Hgb data and
predicted Hgb by the model is 5.6 and 8.6 given by (2.20) and (2.21), respectively.

Patient-21 models obtained by semi-blind robust identification with model (In)validation
are shown in (2.22) and without model (In)validation are shown in (2.23). The predic-
tion results for models (2.22) and (2.23) are shown in Fig. 2.11 and Fig. 2.12, respec-
tively. For the initial model identification, only five data points are used as shown in
Fig. 2.11 with the magenta color vertical lines. In Fig. 2.11, the model has been up-
dated three times. It is interesting to discuss that between weeks 14 and 17, the model
is validated for zero EPO dosages even though non-zero EPO dosages are used for ini-
tial model identification. On the other hand, between weeks 38 and 44, the model is
updated two times. This can be explained by observing the change in EPO dosages. As
the change in EPO dosages is high between weeks 38 and 44, the identification pro-
cess, therefore, has to go through an extensive search to find the model which can be
used to accommodate such fluctuations in the EPO dosages. However, the change in
EPO dosages between weeks 14 and 17 is small, therefore, the model is easily validated
during this period.
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Figure 2.12: Prediction results for patient-21 model obtained by semi-blind robust iden-
tification without a model (In)validation.

G21(z) =


0.9z5−0.3z4−0.1z3+0.002z2−0.2z+0.1
z5−1.3z4+0.2z3+0.1z2+0.03z+0.03

5 ≤ n ≤ 28
−0.3z4+0.3z3+3z2+0.02z−2
z4−0.3z3−1.2z2−0.03z+0.4

29 ≤ n ≤ 38
0.6z4+0.1z3−1.5z2+1.4z+2.4
z4+0.2z3−1.2z2−0.2z+0.3

39 ≤ n ≤ 41
−1.7z3+4.9z2−5.6z+3
z3−1.9z2+1.2z−0.24

42 ≤ n ≤ 51

(2.22)

G21 (z) =
0.9z5 − 0.3z4 − 0.1z3 − 0.01z2 − 0.2z + 0.1

z5 − 1.3z4 + 0.2z3 + 0.1z2 + 0.02z + 0.03
(2.23)

The model (In)validation results are shown in TABLE 2.4 and the prediction error
is shown in Fig. 2.13. As documented in these figures and tables, the semi-blind robust
identification technique identified individualized patient models and updated the model
to capture the time-varying patient dynamics with low error within an appropriate time
frame for each patient. This is especially important for efficient controller design and
hence for finding an individualized drug-dose regimen for the patients. The MMSE
values for the identified models using model (In)validation are considerably smaller

Table 2.4: Model (In)Validation Results of Patient-21

Data Range
(Weekly)

∥∆∥∞

5-28 0.87
29-38 0.92
39-41 0.94
42-51 0.34
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than those of models identified without model (In)validation. This shows that the semi-
blind robust identification performs better with the model (In)validation to identify the
individualized models by using a considerably lower number of clinical patient-specific
data points and by updating the models as well using time-domain clinical patient-
specific data.

Figure 2.13: Error Comparison between semi-blind robust identification with and with-
out model (In)validation for anemia management.

2.1.1.3 Warfarin Management Results
This section shows the one-step-ahead prediction results of personalized patient mod-
els produced with and without model (In)validation using the semi-blind robust model
identification approach. The MMSE between predicted and clinically obtained INR
levels is used to assess the model’s accuracy and also used to compare the performance
of patient models with and without a model (In)validation. The clinical dose-response
data of Warfarin-INR of forty-four patients were gathered at the Robley Rex Veterans
Administration Medical Center.

Dr. Brier (mentioned in the acknowledgment) was funded by the Department of
Veterans Affairs to look at the pharmacogenetics of warfarin. This dataset consists
of dose and INR data from patients collected from 2008-2012. Dose and INR data
were abstracted from pharmacy records for all subjects, additionally, using an informed
consent process, genetic information was determined for CYP2C9 and VKORC1. Data
provided for this project will be an incrementing time field starting a 1 (day), dose
schedule (ie 5mg MonWedFri, 7.5mg TueThuSatSu), INR, and CYP2C9 and VKORC1
status. The Human Subjects Protection Program Office at the University of Louisville
has given this project IRB approval. The data set contains patient ID, warfarin dosage,
and INR values. Identifying patient models at the earliest stages of treatment is desired
for precise drug delivery. It is worth mentioning that model identification with model
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(In)validation requires some extra data points depending on the order of the identified
model.

In the following results for the model (In)validation process, the model order is
selected which satisfies the conditions of model (In)validation, ∥∆∥∞ < 1, ranging
between 3rd and 5th order models. However, for models identified without model
(In)validation, we will be using the Akaike Information Criterion,AIC = 2K×2ln(L),
to select the appropriate model order. Here, L is the log-likelihood of the model best fit
and K is the independent variable of the model. As there is no adaptation involved in
models identified without model (In)validation, the model order will not change once
selected through the Akaike information criterion.

Figure 2.14 shows the MMSE results of the identified model for each patient. The
blue bars show the MMSE values of models identified without model (In)validation
and the orange textured bars show the MMSE value of models identified with model
(In)validation. The figure shows that MMSE values for models identified with model
(In)validation are less than the ones without model (In)validation. It shows that the
prediction capabilities of the model increase along with confidence in the model to be
used for controller design. To analyze these patients, we are showing the one-step-
ahead prediction results obtained by the identified models of patients 3, 7, and 10. In
these prediction results, we show the comparison between models identified with and
without model (In)validation.

Figure 2.15 shows the one-step-ahead prediction results for patient - 7 with 4th order
model shown in (2.24) identified using semi-blind robust system identification without
model (In)validation process.

G7(z) =
0.09z4 + 0.13z3 + 0.12z2 + 0.08z + 0.001

z4 + 0.50z3 − 0.09z2 − 0.45z − 0.86
(2.24)

The clinically obtained actual INR levels and warfarin dosages are shown by a red line

Figure 2.14: Error comparison of personalized Warfarin-INR dose-response models
obtained with and without model (In)validation
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Figure 2.15: Prediction results for patient-7 model obtained by semi-blind robust iden-
tification without model (In)validation for Warfarin dosing.

Figure 2.16: Prediction results for patient-7 model obtained by semi-blind robust iden-
tification with model (In)validation for Warfarin dosing.

with squared markers and blue bars (bottom), respectively. The predicted INR levels, in
response to clinically obtained warfarin dosage, using identified full-order model and
reduced-order model are shown with a blue line and green line with diamond mark-
ers, respectively. The model is identified using seven data points, Nt = 7, highlighted
with a pink dotted vertical line. It can be seen that identified 4th order model is not
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able to completely mimic the clinically obtained INR values. However, the 6th order
model, equal to one less of data points used for identification, can predict the INR
values close to actual INR values with slightly low error. It shows that this identified
model is not able to predict the does-response with better accuracy. Therefore, we ob-
serve the prediction results of the patient-7, however, this time we introduce the model
(In)validation process along with semi-blind robust system identification. Similar to
Fig. 2.15 seven data points are used for initial identification and the model is processed
through model (In)validation as shown in Fig. 2.16 and mathematical model structure
is shown in (2.25). Here, n represents days.

G7(z) =


0.12z3−0.13z2+0.04z−2.677e−5

z3−1.48z2+0.5z−0.008
8 ≤ n ≤ 12

0.064z4−0.122z3+0.09z2−0.023z+4.012e−3

z4−2.75z3+2.81z2−1.18z+0.13
n = 13

...
...

0.03z5+0.05z4+0.04z3+0.01z2−0.02z−0.013
z5+0.42z4−0.45z3−0.82z2−0.49z+0.4

27 ≤ n ≤ 64

(2.25)

Figure 2.16 shows that the model is adapted multiples times (eleven times), repre-
sented with the vertical dotted cyan line. This shows that the previously identified model
is not valid and it is needed to be updated through re-identification using a semi-blind
robust system identification method. For patient-7, there will be twelve model equa-
tions as the model is updated eleven times within sixty-four days of treatment. It can
be seen that model identified with model (In)validation predicts the INR values close
to clinically obtained INR values. This highlights the benefit of the recursive adaptive
model identification algorithm to increase the accuracy of the model prediction. It is in-
teresting to note that after the thirty data points, there is no need for model adaptation.
This illustrates that with the passage of time and the arrival of new data, the adaptive
algorithm has identified a model which can define the dose response of the patient at
later stages as all the variations to be experienced in the latter part of the treatment are
already captured by the model.

Furthermore, one-step-ahead prediction results for patient-3 based on model identi-
fication without model (In)validation are shown in Fig. 2.17. The mathematical model
identified without model (In)validation is shown in (2.26).

G3(z) =
0.09z5 + 0.02z4 + 0.003z3 + 0.02z2 + 0.05z − 2e−4

z5 − 0.78z4 − 0.17z3 + 0.16z2 + 0.31z − 0.49
(2.26)

For model identification without model (In)validation, 5th order model is used based
on AIC. To improve the prediction results, (2.27) shows the mathematical model for
patient -3 obtained using model (In)validation-based proposed adaptive identification
algorithm.

G3(z) =


0.1356z3−0.1867z2+0.1011z−0.01912

z3−1.827z2+1.024z−0.1909
8 ≤ n ≤ 12

0.0697z3+0.01878z2−0.002374z−0.04851
z3−1.044z2+0.1159z−0.05208

13 ≤ n ≤ 14
...

...
0.02z5+0.069z4+0.059z3−0.02z2−0.04z−0.01

z5+1.54z4−0.52z3−1.6z2−0.43z+0.07
53 ≤ n ≤ 59

(2.27)

Figure 2.18 shows prediction results for this model. The initial model is identified using
7 data points. The initial reduced model, selected by the adaptive algorithm discussed
in Section 2.1.1.1, is 3rd order model. It can be seen that model is updated multiple
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Figure 2.17: Prediction results for patient-3 model obtained by semi-blind robust iden-
tification without model (In)validation for Warfarin dosing.

times to reduce the prediction error throughout the treatment. It shows the effect of the
model (In)validation-based model adaptation.

Figure 2.19 shows a one-step-ahead prediction for the model identified without a
model (In)validation for patient-10. Here, seven data points and 5th order model, se-
lected based on Akaike Information Criterion, is used for semi-blind robust model iden-
tification as shown in (2.28). It can be seen that identified model predicted the INR val-
ues has some error. It can be seen that predicted INR values using the full order model,
shown in the solid blue line, are off as well.

G10(z) =
0.1z5 − 0.02z4 + 0.04z3 − 0.01z2 + 0.03z + 0.8e−3

z5 − 1.4z4 + 1.28z3 − 1.09z2 + 0.9z − 0.62
(2.28)

For comparison, we include the model (In)validation in the identification process to
use the adaptive model identification algorithm for patient-10 as shown in (2.29). The
prediction results with model (In)validation for patient-10 are shown in Fig. 2.20. The
model is updated four times within sixty days of treatment and this patient’s behavior is
not changing over time, which shows that finding the model for the patient-10 is easier
than for patient-3. It can be seen that model adaptation increases prediction accuracy
by capturing all the fluctuations. It is interesting to note that the model is updated at the
last period of treatment. During the last period of treatment clinically obtained warfarin
dosages are constant. However, INR values are changing which makes the model to
be updated. This highlights the need for model (In)validation to be introduced in the
model identification process to increase the prediction accuracy and reliability of the
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Figure 2.18: Prediction results for patient-3 model obtained by semi-blind robust iden-
tification with model (In)validation for Warfarin dosing.

model for controller design in the event of a change in dose-response characteristics.

G10(z) =


0.07z3−0.1z2+0.06z−0.009826

z3−1.9z2+1.1z−0.21
8 ≤ n ≤ 14

0.04z3−0.05z2+0.02z−0.001499
z3−1.9z2+z−0.1

n = 15
...

...
0.01z5+0.01z4+0.001z3−1.7e−05z2−0.01z−0.002

z5−0.4z4−0.4z3−0.3z2−0.63z+0.7
59 ≤ n ≤ 63

(2.29)

This concludes the adaptive system identification using semi-blind robust system
identification with model (In)validation. By MME error analysis for warfarin manage-
ment and anemia management, it can be concluded that semi-blind robust system iden-
tification by incorporating the effect of non-zero initial conditions reduces the number
of data points required for personalized model identification and model (In)validation
helps to validate the model and improve the prediction error. However, this approach in-
volves solving two optimization problems based on LMIs and inherently requires more
data points for model (In)validation. The requirement of more data points for model
(In)validation is major drawback because in medical applications measurement sam-
pling frequency is generally low such as weekly or daily. Furthermore, simultaneously
solving these LMI problems can lead to unfeasible solution, which can lead to higher
computational time as much as 50-60 minutes for processing 80 data points. This can
limit the implementation of the proposed method in a clinical setting. Therefore, in the
next section, semi-blind robust system identification is combined with Kalman Filter
for model adaptation. Kalman filter updates the model parameters based on prediction
error in real-time with minimum possible computational time.
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Figure 2.19: Prediction results for patient-10 model obtained by semi-blind robust iden-
tification without model (In)validation or Warfarin dosing.

2.1.2 Kalman Filter based Adaptive Model Identification
The parameters of the model given in (2.2) need to be updated to represent the patient’s
current characteristics as the treatment progresses. Ideally, the response of the model
defined in (2.2) should mimic the response of an actual patient as time progresses during
the treatment. We propose using online system identification with the Kalman filter to
meet this objective. For online system identification, let’s assume that the true patient
model can be written as following linear regression model [50]:

y(t) = ψTϕ(t) + e(t), (2.30)

where y(t) is the true output of the patient, ψT is the regression vector formed based on
input and output measurements of the patient, ϕ(t) is a vector of true model parameters,
and e(t) is the noise source. Let the predicted output, ŷ(t), provided by the identified
model, ŷ(t) = ψT ϕ̂(t−1). Here ϕ̂(t) contains the currently estimated model parameters.
It is assumed that ϕ(t) = ϕ(t−1)+w(t) andw(t) is the white Gaussian noise. Recursive
infinite history estimation with Kalman filter is written as [50]:

ϕ̂(t) = ϕ̂(t− 1) +K(t)[y(t)− ˆy(t)], (2.31)

where K(t) = Q(t)ψ(t) is the Kalman gain and Q(t) is defined as follows:

Q(t) =
P (t− 1)

R2 + ψT (t)P (t− 1)ψ(t)
, (2.32)

where R2 is the variance of error term in (2.30) and P (t) is computed as follows:

P (t) = P (t− 1) +R1 −
P (t− 1)ψ(t)ψT (t)P (t− 1)

R2 + ψT (t)P (t− 1)ψ(t)
, (2.33)
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Figure 2.20: Prediction results for patient-10 model obtained by semi-blind robust iden-
tification with model (In)validation or Warfarin dosing.

whereR1 = E[w(t)wT (t)]. This concludes the mathematical description of the Kalman
filter for adaptive model identification. The next section discusses the results of the
Kalman filter with semi-blind robust system identification for anemia and warfarin man-
agement.

2.1.2.1 Anemia Management Results
This section provides the simulation results for semi-blind robust system identifica-
tion with the Kalman filter for anemia management. The clinical data set discussed in
section 2.1.1.2 is used for this simulation. The prediction results for patient-1 using
semi-blind robust system identification with Kalman filter are shown in Fig. 2.21. For
these prediction results, 5 data points are used for identification, and the 4th order model
is used. The model parameters are updated based on prediction errors using the Kalman
filter at each time step. The prediction error for results shown in Fig. 2.21 is 1.23±0.718
and the minimum mean squared error (MMSE) is 2.28 as shown by Fig. 2.31. For com-
parison, the benchmark recursive 4th order ARX model with the Kalman filter is used.
Figure 2.22 shows the one-step-ahead prediction results for the recursive ARX model
for patient-1. The prediction error for the ARX model is 2.70 ± 13.33 and the MMSE
value is 20.34, which shows the significance of using the effect of non-zero initial con-
ditions in semi-blind robust system identification.

Figure 2.23 shows the prediction results for patient-13 from anemia management
using semi-blind robust system identification with Kalman filter. For this patient, 8
data points are used for identification, and the 4th order model is used for prediction
results shown Fig 2.23. Figure 2.24 shows the prediction results for patient 13 using
the 4th order ARX model with the Kalman filter. The interesting part of these results
is between weeks 15 and 24. During this time period, EPO dosages are zero, which
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Figure 2.21: Prediction results of semi-blind robust system identification with the
Kalman filter for Patient-1 of anemia management.

Figure 2.22: Prediction results of ARX with the Kalman filter for Patient-1 of anemia
management.

indicates missing dosages or intentional zero dosages by a physician to control the Hgb.
During this period, both models suffer significant prediction errors because of dis-

continuity in actual data, and identified models are linear. However, the model identified
using semi-blind robust system identification is able to adapt and suffers low error. This
is due to the fact that the parameters of this model are obtained after optimization in
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Figure 2.23: Prediction results of semi-blind robust system identification with the
Kalman filter for Patient-13 for anemia management.

Figure 2.24: Prediction results of ARX with the Kalman filter for Patient-13 of anemia
management.

the first place which reduces the number of candidate models suitable for this patient,
making it easier for Kalman filter to adapt at later stages. The prediction error for the
ARX model is 1.42 ± 1.87 and 2.54 ± 3.40 for the model identified using semi-blind
robust system identification. The MMSE values are 3.34 and 9.77 for the semi-blind
robust system identification and ARX model, respectively, as shown by Fig. 2.31.
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Figure 2.25: Prediction results of semi-blind robust system identification with the
Kalman filter for Patient-19 of anemia management.

Figure 2.26: Prediction results of ARX with the Kalman filter for Patient-19 of anemia
management.

Figure 2.25 shows the prediction results for patient-19 for the model identified using
semi-blind robust system identification with Kalman filter. The prediction error for this
model is 1.08±0.61 and the MMSE value is 1.78 as shown by Fig. 2.31. For this model,
8 data points are used and the 4th order model is used. This patient’s EPO dosage trend
is interesting, since it changes more often. However, there is no zero (missing) dosage.
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Figure 2.27: Prediction results of ARX with the Kalman filter for Patient-19 of anemia
management.

Figure 2.28: Prediction results of ARX with the Kalman filter for Patient-19 of anemia
management.

The change in EPO dosage makes it more difficult to find the optimal parameters for
the model. Figure 2.28 shows the prediction results for the 4th order ARX model for
patient 19. The prediction error for the ARX model is 1.07 ± 0.765 and the MMSE
value is 1.9 as shown by Fig. 2.31.

Figure 2.29 shows the prediction results for patient-19 for the model identified using
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Figure 2.29: Prediction results of semi-blind robust system identification with the
Kalman filter for Patient-21 for anemia management.

Figure 2.30: Prediction results of ARX with the Kalman filter for Patient-21 for anemia
management.

semi-blind robust system identification with Kalman filter. The prediction error for this
model is 1.6 ± 2.16 and the MMSE value is 4.67. For this model, 8 data points are
used and the 4th order model is used. Figure 2.30 shows the prediction results for
the 5th order ARX model for patient-19. The prediction error for the ARX model is
3.33± 21.29 and the MMSE value is 31.96.
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Figure 2.31: MMSE values for anemia management for; (1) Semi-blind with
model(In)validation (2) Semi-blind without model(In)validation, (3) Semi-blind with
Kalman Filter, (4) ARX with Kalman Filter.

Figure 2.31 shows the comparison of MMSE values of all methods. It shows that
semi-blind robust system identification with the Kalman filter has outperformed all
other methods for anemia management.

2.1.2.2 Warfarin Management Results
This section provides the simulation results for semi-blind robust system identification
with the Kalman filter for warfarin management. The clinical data set discussed in
section 2.1.1.3 is used for this simulation. The prediction results for patient-3 using
semi-blind robust system identification with Kalman filter are shown in Fig. 2.33. For
these prediction results, 7 data points are used for identification, and the 4th order model
is used. The model parameters are updated based on prediction errors using the Kalman
filter at each time step. The prediction error for results shown in Fig. 2.33 is 0.10±0.05
and the minimum mean squared error (MMSE) is 0.058 as shown in Fig. 2.38. For
comparison, the benchmark recursive 4th order ARX model with the Kalman filter is
used. Figure 2.32 shows the one-step-ahead prediction results for the recursive ARX
model for patient-1. The prediction error for the ARX model is 0.13 ± 0.12 and the
MMSE value is 0.131 as shown in Fig. 2.38, which shows the significance of using the
effect of non-zero initial conditions in system identification.

Figure 2.35 shows the prediction results for patient-7 from warfarin management
using semi-blind robust system identification with Kalman filter. For this patient, 7 data
points are used for identification, and the 4th order model is used for prediction results
shown Fig 2.35. Figure 2.34 shows the prediction results for patient-7 using the 4th

order ARX model with the Kalman filter.
The prediction error for the ARX model is 0.31±0.42 and 0.13±0.059 for the model
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Figure 2.32: Prediction results of ARX with the Kalman filter for Patient-3 of warfarin
management.

Figure 2.33: Prediction results of semi-blind robust system identification with the
Kalman filter for Patient-3 of warfarin management.

identified using semi-blind robust system identification. The MMSE values are 0.073
and 0.51 for the semi-blind robust system identification and ARX model, respectively,
as shown in Fig. 2.38.

Figure 2.37 shows the prediction results for patient-10 for the model identified using
semi-blind robust system identification with Kalman filter. The prediction error for this
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Figure 2.34: Prediction results of ARX with the Kalman filter for Patient-7 for warfarin
management.

Figure 2.35: Prediction results of semi-blind robust system identification with the
Kalman filter for Patient-7 for warfarin management.

model is 0.0812± 0.0069 and the MMSE value is 0.0133. For this model, 7 data points
are used and the 4th order model is used. Figure 2.36 shows the prediction results for
the 4th order ARX model for patient-10. The prediction error for the ARX model is
0.497± 0.769 and the MMSE value is 1.00 as shown in Fig. 2.38.

The error comparison of warfarin management and anemia management for all the

34



Figure 2.36: Prediction results of ARX with the Kalman filter for Patient-10 for warfarin
management.

Figure 2.37: Prediction results of semi-blind robust system identification with the
Kalman filter for Patient-10 for warfarin management.

methods is shown in Fig. 2.31 & Fig. 2.38. It shows that the Kalman filter with semi-
blind robust system identification is able to provide personalized patient dose-response
models with low prediction error and able to update the model parameters with low
computational time. The next task is to design the control method for optimal dosage.
To test the controller, an actual patient or virtual patient model is required. Based on
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Figure 2.38: MMSE values for Warfarin management for; (1) Semi-blind with
model(In)validation (2) Semi-blind without model(In)validation, (3) Semi-blind with
Kalman Filter, (4) ARX with Kalman Filter.

the literature review, only the virtual chronic kidney disease (V-CKD) patient model is
available. Therefore, in the next chapters, the V-CKD patient model is discussed and
the adaptive control method is tested on it.
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CHAPTER 3

VIRTUAL CHRONIC KIDNEY DISEASE (V-CKD) PATIENT MODEL

A virtual patient model of erythropoiesis for adults with sufficient iron is used [2, 1]
to analyze the performance of controllers in silico experiments. In this model, the
process of erythropoiesis is divided into five stages: (1) Burst-forming unit erythroids
(BFU-E), (2) colony-forming unit erythroids CFU-E, (3) Erhythroblasts, (4) Marrow
reticulocytes, and (5) Erythrocytes. Equation (3.1) shows the dynamics for BFU-E
where stem cells enter the erythropoiesis lineage [1, 2]:

∂

∂t
p(µp, t) +

∂

∂µp
p(µp, t) = βpp(µp, t),

p(0, t) = S0, p(µp, 0) = p0(µ
p),

(3.1)

where p is the cell population in BFU-E stage, 0 ≤ µp ≤ 7 is the maturity of cells, t is
time step for overall eyrthropoiesis and βp is proliferation rate. S0 is the rate at which
stem cells commit to erythropoiesis lineage and p0(µp) is the initial condition for cell
population in the BFU-E stage. By using the finite difference method with ∆t as the
time step and ∆µ as the discretization step for the maturity of the cell, the discretized
form for the BFU-E stage is given as follows:

βpp(µp
j , ti) =

p(µp
j , ti+1)− p(µp

j , ti)

∆t
+

p(µp
j , ti)− p(µp

j−1, ti)

∆µ
,

(3.2)

where i is the time index and j is the index for the cell maturity step. The cell evolution
dynamics for the CFU-E stage are as follows [2, 1]:

∂

∂t
q(µq, t) +

∂

∂µq
q(µq, t) = [βq − αq(E(t))]q(µq, t),

q(µq
min, t) = p(µq

max, t), q(µq, 0) = q0(µ
q),

(3.3)

where q is cell population and 7 ≤ µq ≤ 13 is cell maturity in the CFU-E stage. βq

is the constant proliferation rate, (µq
min, t) is the boundary condition value provided by

the output of the BFU-E stage, and q0(µq) is the initial value of cell density of in stage
CFU-E stage. Rate of apoptosis, αq(E(t)), based on EPO concentration in plasma,
E(t), is defined as follows:

αq(E(t)) =
a1 − b1

1 + ek1E(t)−c1
+ b1, (3.4)
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where, variables a1, b1, c1 and k1 are medically suggested patient specific variables.
The discretized form for (3.3) can be found as follows:

βq − αq(E(ti))q(µ
q
j , ti) =

q(µq
j , ti+1)− q(µq

j , ti)

∆t

+
q(µq

j , ti)− q(µq
j−1, ti)

∆µ
.

(3.5)

Dynamical evolution of cell density in the third stage of erythropoiesis named Ery-
throblasts is governed by [2, 1]:

∂

∂t
r(µr, t) +

∂

∂µr
r(µr, t) = βrr(µr, t),

r(µr
min, t) = q(µq

max, t), r(µr, 0) = r0(µ
r),

(3.6)

where r is the cell population in the erythroblast stage with a cell maturity range of
13 ≤ µr ≤ 18. βr is the constant proliferation rate, r0(µr) is the initial cell population
in this stage at t = 0 and r(µr

min, t) is the boundary condition value provided by the
output of CFU-E stage. The discretization of (3.6) can be found as follows:

βrr(µr
j , ti) =

r(µr
j , ti+1)− r(µr

j , ti)

∆t

+
r(µr

j , ti)− r(µr
j−1, ti)

∆µ
.

(3.7)

The dynamical relation of cell evolution in the stage of marrow reticulocytes is given
as follows [2, 1]:

∂

∂t
s(µs, t) + vs(E(t))

∂

∂µs
s(µs, t) = −αs

0s(µ
s, t),

vs(E(t))s(µs
min, t) = r(µr

max, t), s(µ
s, 0) = s0(µ

s),

(3.8)

where s is the cell population density in marrow reticulocytes with cell maturity range
18 ≤ µs ≤ 21 and αs

0 is the rate of ineffective erythropoiesis. The term vs(E(t))s(µs
min, t)

describes the rate at which the cell enters in marrow reticulocyte stage from erythroblast
stage. s0(µs) is initial cell density in marrow reticulocytes at t = 0 and vs(E(t)) is the
maturity velocity calculated based on EPO as follows:

vs(E(t)) =
a2 − b2

1 + ek2E(t)−c2
+ b2, (3.9)

where a2, b2, c2 and k2 are patient specific variables. The discretized form for (3.8) can
be found as:

−αs
0s(µ

s
j , ti) =

s(µs
j , ti+1)− s(µs

j , ti)

∆t

+ vs(E(ti))
s(µs

j , ti)− s(µs
j−1, ti)

∆µ
.

(3.10)

The model for erythrocytes cell stage is given by [2, 1]:

∂

∂t
m(µm, t) +

∂

∂µm
m(µm, t) = −αm(E(t),µm)m(µm, t),

m(0, t) = vs(E(t))s(µs
max, t), m(µm, 0) = m0(µ

m),

(3.11)
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where m is the cell population in the erythrocytes cell stage with cell maturity 0 ≤
µm ≤ 120, s(µs

max, t) is the number of the cells provided by the previous stage and
m0(µ

m) is the initial cell population in erythrocytes cell stage. αm(E(t),µm) is the
mortality rate of RBCs due to low EPO in plasma, and it is defined as follows:

αm =

{
αm
r +min

(
cE

E(t)kE
, bE

)
for E(t) < τE,

αm
r otherwise,

(3.12)

where, αm
r is daily random breakdown. cE , kE , bE are constants. τE is the threshold

for E(t) below which neocytolysis, selective destruction of the youngest population of
erythrocytes in blood, is triggered. The discretized form for (3.11) can be found as
follows:

−αm(E(ti),µ
m
j )m(µm

j , ti) =
m(µm

j , ti+1)−m(µm
j , ti)

∆t

+
m(µm

j , ti)−m(µm
j−1, ti)

∆µ
.

(3.13)

Equations (3.1) through (3.13) summarize the dynamical model for Virtual CKD
(V–CKD) patients. For this V–CKD patient model, the EPO is first introduced in the
second stage in (3.3). The EPO concentration in the human body is the sum of endoge-
nously produced erythropoietin, Eend, and external dosage, Eex(ti+1). It is defined as
follows:

E(ti+1) = Eend(ti+1) + Eex(ti+1). (3.14)

The human kidneys adjust the production of EPO according to the oxygen partial pres-
sure in the blood and the number of RBCs. The dynamics of endogenous EPO con-
centration, Eend(t), in plasma are defined by the following ordinary partial differential
equation.

Éend(t) =
1

TBV
Eend

in (t)− cenddegE
end(t), (3.15)

where, cenddeg is the degradation rate of endogenous EPO, TBV is total blood volume,
and Eend

in (t) is endogenous erythropoietin released by kidneys, defined as a sigmoid
function as follows:

Eend
in (t) =

a3 − b3

1 + ek3M̃(t)−c3
+ b3, (3.16)

where M̃(t) = 10−8M(t)
TBV

and M(t) =
∫ µm

max

0
m(µm, t)dµm is the total number of RBCs.

Given the above dynamics of EPO in plasma and cells at each stage, the Hgb value can
be calculated as follows:

Hgb =
M(t)×MCH

TBV × 1010
, (3.17)

whereMCH = 29 pg is the mean corpuscular hemoglobin. This concludes the V-CKD
patient model, i.e., mimicking an actual CKD patient treated for anemia. As discussed
in the next sections, this model is to be used as an actual plant model for validation of
the controllers in silico experiments.
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CHAPTER 4

OPTIMAL CONTROL DESIGN FOR PERSONALIZED MEDICINE

4.1 Adaptive Model Predictive Control (AMPC)

Traditional MPC uses a linear-time-invariant (LTI) model to predict the next control
input. However, AMPC is suitable for highly nonlinear models or time-varying models,
such as CKD patients [51]. Since the change in model parameters in the future cannot be
known beforehand, therefore, linear-time varying MPC or gain-scheduled MPC is not
suitable for the application of personalized EPO dosing. As the parameters of the CKD
patient model change over time, therefore, the controller has enough time to update
the model and predict the next dosage (control input) before the next scheduled dosing
time.

In general, AMPC consists of two parts: (1) system identification/online parameter
estimation, and (2) traditional MPC as shown in Fig. 4.1. Let’s define the time-varying
state-space form of the dynamical model in the MPC framework as follows [52, 53, 54]:

xk+1 = Akxk +Bu
kuk +Bv

vk +Bd
kdk,

yk = Ckxk +Dv
kvk +Dd

kdk,
(4.1)

where Ak is the state transition matrix associated with state vector, xk, Bu
k is the in-

put matrix associated with input vector, uk, to be controlled. Bv
k is the input matrix

associated with measured disturbances, vk. Bd
k is the matrix associated with unmea-

sured disturbances, dk. Ck is the state-to-output matrix for output, yk. Dv
k is the matrix

associated with measured disturbance to output dynamics and Dd
k is the matrix associ-

ated with unmeasured disturbances to output dynamics. These matrices are subject to
change and obtained through online system identification, discussed earlier.

Given the plant model structure for online parameter estimation, we define the cost
function and constraints for MPC for optimal EPO dosage in CKD patients. It is impor-
tant to mention that for AMPC, cost function and constraints are defined like traditional
MPC. The standard cost function is defined as follows [52, 53]:

min J(zk) = JHgb(zk) + J∆u(zk) + Jϵ(zk), (4.2)

where JHgb(zk) is the Hgb reference tracking cost function to achieve the target value
of Hgb, HgbTarget. J∆u(zk) is the cost function for the change in EPO dosage, ∆u,
and Jϵ(zk) is the cost function for the constraint violation. The constraints for this
optimization problem are as follows:

umin = 0 ≤ uk ≤ 20000 = umax,

− 1000 ≤| ∆uk |≤ 1000, 10 ≤ HgbTarget ≤ 12 g/dl.
(4.3)
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Figure 4.1: Block diagram for Adaptive MPC (AMPC) with online parameter estima-
tion for virtual CKD Patient.

Hgb reference tracking cost function is defined as:

JHgb(zk) =

ph∑
i=1

w

s

[
HgbTarget

k+i|k −HgbActual
k+i|k

]2
, (4.4)

where, HgbTarget is desired hemoglobin level of the patient and HgbActual is actual
Hgb measurement. zk =

[
uk|k,uk+1|k,uk+2|k, · · · ,uk+ph−1|k

]
is the input vector which

contains the EPO dosage values across the prediction horizon obtained by solving a
quadratic optimization problem. ph is the prediction horizon and k is the time step. w
is the weight and s is the scale factor.

The cost function to regulate the change in successive EPO dosages is defined as
follows:

J∆u(zk) =

ph−1∑
i=1

w

s

[
uk+i|k − uk+i−1|k

]2
, (4.5)

where, the goal is to minimize the difference between successive EPO dosages, pro-
vided by the optimization problem across the prediction horizon, in the input vector,
zk =

[
uk|k,uk+1|k,uk+2|k, · · · ,uk+ph−1|k

]
. For example, at i = 1,uk+1|k − uk|k = ∆u.

For the application of EPO dosing, the maximum limit on EPO dosage is a hard
constraint, however, the change in successive EPO dosages is a soft constraint. Such as
during bleeding the EPO dosage is required to be quickly increased but it is not suitable
to violate the maximum allowed limit on EPO dosage. Therefore, the cost function for
constraint violation is used as follows:

Jϵ(zk) = ρϵϵ
2
k, (4.6)

where, ϵk is the slack variable and ρϵ is the penalty weight for constraint violation.
It is useful to regulate soft constraints and avoid violation of hard constraints for the
optimization problem. This concludes the description of AMPC for V-CKD patients.
V-CKD patient model discussed in Section-3 is used as an actual plant model for in
silicio experiments for validation of the proposed controller designs.
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4.2 Extremum Seeking Control

The requirement of the dynamical model in AMPC design increases computational
complexity and incorrect nominal conditions can degrade the performance of the con-
troller. Therefore, model-free controllers, which solely rely on measurement data in-
stead of explicit dynamical models could be considered [55]. Extremum Seeking Con-
troller (ESC) is one of the prominent model-free adaptive control strategies. The basic
concept behind ESC is to maximize the objective function [56]. The main components
of ESC design are parameter estimation, modulation, and demodulation as shown in
Fig. 4.2.

Figure 4.2: Block diagram for Extremum Seeking Control (ESC) with online parameter
estimation for V–CKD Patient.

To match the notation with the literature, let

y = g(θ) = g∗ − g
′′

2
(θ − θ∗)2, (4.7)

where g(θ) is the objective function that we wish to maximize given the variable θ and
g

′′
> 0. θ is the control input provided by the controller and θ∗ is the optimal control

input for dynamical plant. The objective is to reduce the term θ− θ∗. θ̂ in Fig. 4.2 is the
estimate of unknown optimal EPO input, θ∗, for virtual CKD patient and the parameter
estimation error defined as θ̃ = θ∗ − θ̂. By focusing on the modulation part of Fig. 4.2,
we derive the following mathematical relation:

bsin(ωt)− θ̃ = θ − θ∗, (4.8)

By substituting (4.8) in (4.7) and using trigonometric identity:

g(θ) = g∗ +
g

′′

4
b2 − g

′′

4
cos2(ωt) +

g
′′

2
θ̃2 − g

′′
θ̃bsin(ωt), (4.9)

By applying high pass filter, s
s+h

, to the (4.9) to remove term the g∗:

s

s+ h
[g(θ)] = g

′′
bsin(ωt)θ̃ +

g
′′

4
cos2(ωt)− g

′′

2
θ̃2. (4.10)
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Now modulate the signal with asin(ωt) as follows:

ζ = g
′′
absin2(ωt)θ̃ +

g
′′

4
asin(ωt)cos2(ωt)− g

′′

2
θ̃2asin(ωt). (4.11)

By applying trigonometric identities 2sin2(ωt) = 1−cos2(ωt) and 2cos2(ωt)sin(ωt) =
sin3(ωt)− sin(ωt) on (4.11), one can obtain:

ζ =
g

′′

2
abθ̃ − g

′′

2
abcos2(ωt)θ̃ +

g
′′

8
a[sin3(ωt)− sin(ωt)]− g

′′

2
θ̃2asin(ωt). (4.12)

Since θ∗ is constant, therefore, ´̃θ = − ´̂
θ. By applying integrator and multiply-

ing with gain, k, we get θ̃ ≈ k
s
(ζ). In (4.12), last term is quadratic in θ̃. This term

can be neglected as our interest lies in local analysis. The second and third terms are
high-frequency terms that will be highly attenuated when passed through the integrator.
These two terms can also be neglected, this results in:

˙̃θ ≈ k

{
g

′′

2
abθ̃

}
. (4.13)

For kg′′
< 0, this is a stable system. This concludes that θ̃ → 0 and θ̂ converges to op-

timal θ∗ and hence the mathematical explanation for Extremum Seeking Control (ESC)

Parameters Meaning values
βp Proliferation rate for BFU-E cells 0.2
βq Proliferation rate for CFU-E cells 0.57
βr Proliferation rate for erythroblasts 1.024
αs
0 Rate of ineffective erythropoiesis 0.089
αm Intrinsic mortality rate for erythrocytes 0.005
a1, b1 Constants for CFU-E cells 0.35,0.07
c1, k1 Constants for CFU-E cells 3,0.14
a2, b2 Constants for marrow reticulocytes 2,0.35
c2, k2 Constants for marrow reticulocytes 2.3,0.2
a3, b3 Constants for EPO release from kidneys 9000,10000
c3, k3 Constants for EPO release from kidneys 9.1,0.2
bE, cE, kE Constants for mortality rate for erythrocytes 0.1,3.5,3
τE EPO threshold 9.8
cenddeg Degradation of kidney’s EPO 25/24
cexdeg Degradation of external EPO dose 8.5/24
S0 Rate at which stem cells commit to erythroid lineage 8× 105

Patient-specific Parameters for Patient-1
µm cell maturity duration in Erythrocytes (last stage) 14 days
∆ttotal Total cell maturity period 65 days
TBV (ml) Total blood volume 5000

Patient-specific Parameters for Patient-2
µm cell maturity duration in Erythrocytes (last stage) 20 days
∆ttotal Total cell maturity period 59 days
TBV (ml) Total blood volume 5500

Table 4.1: Virtual CKD Patient Model Parameters [1, 2]
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used in this research. The next section discusses the results of in silico experiments
of ESC and AMPC controllers for V-CKD patients in the scenarios of bleeding and
missing dosage.

4.2.1 Results
This section discusses the results of in silicio experiments for V-CKD patients for op-
timal EPO dosing. To evaluate the performance of AMPC and ESC, we analyze the
patient’s response in the normal routine and in the event of bleeding and missing doses.
For V-CKD patients as an actual plant, we considered model parameters as shown in Ta-
ble 4.1 [2, 1]. In this table, good responder patients reach desired range of Hgb quickly
and EPO dosage can be found. Poor responder patients are challenging patients which
show slow progress in the treatment.

For this research work, a white Gaussian noise with a power of 0.1db is added to the
measurement of Hgb. For in silico experiments, the one event of bleeding is introduced
at 70th day of treatment and two events of consecutive missing dosages (zero EPO)
are introduced through days 112 to 115 and 150 to 154. The simulation result for V-
CKD patient-1 with AMPC (green plot) and ESC (red plot) are shown in Fig. 4.6. The
objective is to keep the Hgb level between 10−12g/dl region shown by two solid black
lines. The initial Hgb for patient 1 is around 8.3g/dl.

Figure 4.3: In-silicio results of AMPC and ESC for V-CKD Patient-1.

AMPC is able to reach the Hgb level in around 18 days for patient-1 with a mean
EPO dosage of 1000 units and ESC to have the first touch of desired range with a mean
EPO dosage of 1500 units. AMPC is able to maintain the Hgb level in the desired range
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in the presence of measurement noise, whereas, ESC-based Hgb level kept oscillating
and stayed higher than 12 g/dl, which is not suitable for patients. The challenging parts
of this in silicio experiments are the events of bleeding and missing dosages. At 70th

day, the bleeding is introduced which decreased the Hgb level by a factor of 1.2 for
each patient. The goal is to get the Hgb level back into the desired range without high
overshoots in EPO dosing as quickly as possible. AMPC is able to achieve 11 g/dl
in around 32 days, a maximum EPO dosage of 2200 units. It shows the effectiveness
of AMPC with online parameter estimation in time and regulating EPO dosage in the
life-threatening event of bleeding. Figure 4.6 shows the event of consecutive missing
dosages through days 112 to 115 and days 150 to 154. It can be seen that AMPC is
able to handle the missing dosage with minor fluctuations in the Hgb level. However,
ESC suffers performance degradation because it is not able to maintain the Hgb level
in the event of missing dosage because ESC has not reached EPO dosage. This shows
that AMPC with recursive parameter estimation is able to maintain the desired value of
Hgb in normal conditions and in events of bleeding and missing dosages.

Figure 4.4: In-silicio results of AMPC and ESC for V-CKD Patient-2.

Figure 4.7 shows the simulation results of Hgb level and EPO dosage obtained by
AMPC (green plot) and ESC (red plot) for virtual patient-2. For this patient, it took
around 20 days for AMPC to reach desired Hgb level with a mean EPO dosage of 3500
units and ESC took a total of 38 days for ESC to first touch the desired range. It took 40
days for AMPC to recover the Hgb level after bleeding with a maximum EPO dosage of
7144 units and recovery time for ESC is 28 days. However, in the event of consecutive
missing dosages, AMPC still outperforms ESC for V-CKD patient-2 as ESC suffers an
Hgb level drop in case of missing dosage.
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One of the prominent issues in the ESC results is the small oscillations in the Hgb
results, which is inherited due to the perturbation to find the maximum of the objective
function in ESC. The results show that AMPC is able to maintain the Hgb in the desired
range without low fluctuations in events of bleeding & missing dosages as well as the
normal conditions.

4.3 Reinforcement Learning for Personalized Medicine

Artificial Intelligence has been playing a vital role in the advancement of personalized
medicine by using data-driven adaptive methodologies [57, 58]. In [59], a SARSA Re-
inforcement Learning (RL) agent is trained for optimal EPO dosage. In this research
work, Takagi-Sugeno (TS) fuzzy model is used as an interactive environment to ob-
tain the RL policy. Similarly, the Fitted Q-Iteration RL method using retrospective
treatment data is developed in [60] for CKD patients. In [61], batch RL using fitter Q-
iteration is proposed for optimal EPO dosage using training data from medical records.
These methods proposed in the literature have shown satisfactory results. However,
these studies lack the regress evaluation in the events of bleeding and missing dosages.
Therefore, in this research work, we study the model-free Deep Q-learning network
(DQN) RL method which takes advantage of a non-linear complex neural network to
solve value function and it is evaluated for the events of bleeding and missing. Further-
more, we compare the performance of the proposed RL method to the proposed AMPC
with recursive system identification to find the predictive model.

4.3.1 Model-Free Deep Q-Learning for Optimal EPO Dosing

Figure 4.5: Block diagram for DQN-RL for virtual CKD Patient.

In this research work, it is considered that the RL agent interacts with the virtual
CKD patient model, an environment, through an action, a sequence referring to EPO
dosages and observes the output, z, in the form of Hgb levels. For V-CKD patients, the
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agent has a discrete action space and continuous observation space. The agent learns
from the current action and observation and all sequences terminate in a finite time
step. For optimal policy, the agent interacts with the environment and maximizes a
discrete reward function. The discrete reward function depends on the constraints on
EPO dosages and the constraints are defined as follows:

amin = 0 ≤ ak ≤ 20000 = amax,

− 1000 ≤| ∆ak |≤ 1000, 10 ≤ zTarget ≤ 12.
(4.14)

The discrete reward function for this problem can be defined as follows:

R1 = λ1(zk ≤ 10||zk ≥ 12)

R2 = λ2(|ak − ak−1| > 1000)

R3 = λ3(zk > 10 && zk < 12)

Rk = −R1 −R2 +R3,

(4.15)

where λ1,λ2,λ3 are tunable parameters. R1 refers to the penalty if the observed Hgb is
not in the desired range of 10 − 12g/dl, R2 is the penalty if the change in successive
EPO dosages is greater than 1000 units, this part of the reward function is to avoid high
jumps in the dosages. R3 is the reward if the observed Hgb is in the desired range. Rk

is the total reward at time step k. Furthermore, we define the action-value function for
optimal EPO dosage as follows:

Q∗(z, a) = max
π

E[Rt|zk = z, ak = a, π], (4.16)

where π is a policy mapping sequences to actions. The above action-value function
obeys the Bellman equation. However, instead of implementing an action-value func-
tion, an estimator Q(z, a, θ) is used. To estimate the action-value function, we have
used a neural network-based approximator with weights θ. The loss function for the
approximator is defined as follows:

L =
1

2M

M∑
i=1

(yi −Q(zi, ai, π))
2, (4.17)

where M is the batch size and yi = Ri + γ max
π

Qi(zi, ai, π). γ is the discount factor.
This concludes the DQN-RL method to find the optimal EPO dosage in virtual CKD
patients.

4.3.1.1 Results
In this section, in-silico results of two V-CKD patients are discussed. For closed-loop
simulations, V-CKD patients with different parameters, such as maturity period of cells
in the erythropoiesis, total blood volume, and S0 as given in TABLE 4.1. are considered.
To evaluate the performance of the DQN-RL and AMPC control policies, we have
considered two life events, (1) bleeding and (2) missing dosages. In-silico results for
the first V-CKD patient are shown in fig. 4.6. The cell maturity period of this virtual
patient is 54 days, total blood volume is 5000 ml and S0 = 5 × 105. In simulation
results, the pink dashed vertical line at 70th time step refers to the bleeding event and
the vertical blue dashed line shows the two events of three consecutive missing dosages
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Figure 4.6: Results of DQN-RL and AMPC for the V-CKD Patient-1.

through time steps 112 to 115 and 150 to 153 days. The top plot shows the Hgb levels
and the bottom plot shows EPO dosages provided by the control policies. The green
plot shows the results due to DQN-RL and the red plot shows the results due to AMPC.

Figure 4.6 shows that the initial Hgb level is 9 g/dl. The AMPC provides an initial
EPO dosage of 1000 units and DQN-RL suggests an EPO dosage of 20000 units, how-
ever, DQN-RL changes it to 1000 units after a few time steps. The Hgb level rises to the
desired range of 10− 12 g/dl. The event of bleeding is introduced at the 70st time step
and the Hgb level drops to the 9.4 g/dl. The AMPC and DQN-RL changed the EPO
dosage to 2000 units to recover the Hgb level for the V-CKD patient. In response to this
change, the Hgb level rises to the desired range and both controllers decrease the EPO
dosage in order to avoid any overshoot. The events of missing dosages are introduced
through time steps 112 to 115 and 150 to 153 days. The event of missing dosage means
that zero EPO value in the bottom plot. Both control policies are able to recover the
Hgb level due to the missing dosages, however, the frequency of EPO dosage is high in
this range as expected. It shows how difficult these scenarios could be handled in the
real world.

To test the proposed control policies, the results of the second V-CKD patient are
shown in Fig. 4.7. The cell maturity period of this virtual patient is 54 days, total
blood volume is 5100 ml and S0 = 5.3 × 105. The initial Hgb level for this patient
is 10.68 g/dl. The AMPC provides an initial EPO dosage of 500 units and DQN-RL
suggests 1000 units. The Hgb level remains in the desired range. The Hgb level drops
due to the bleeding at 70th time step. Both proposed control policies increase the EPO
dosage to recover the Hgb level. The results show that DQN-RL has more frequency
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in the change of EPO dosage as compared to AMPC. The event of missing dosage
introduced through time steps 112 to 115 and 150 to 153 days results in a drop in Hgb
level. However, both controllers are able to suggest acceptable EPO dosages to recover
the Hgb level.

Figure 4.7: Results of DQN-RL and AMPC for the V-CKD Patient-2.

It concludes that data-driven adaptive control methods, such as AMPC and DQN-
RL, are able to handle serious conditions of bleeding and missing dosage for V-CKD
patients which have a narrow therapeutic window. However, one major drawback in the
model-free reinforcement learning methods is the requirement of a high number of data
points to train the agent. This requirement is not suitable for personalized medicine
where only patient-specific data is used. To reduce the number of data points required
for training the agent, Model-Based Reinforcement Learning (MBRL) is introduced in
the next section.

4.3.2 Model-Based Deep Q-Learning for Optimal EPO Dosing
To reduce the number of data points required to train model-free reinforcement learning,
the model identification block is introduced into Fig. 4.5. The updated block diagram
for MBRL is shown in Fig. 4.8. For MBRL, data is generated from model identification
in addition to measurement data points and rewards collected from the actual environ-
ment (V-CKD patient) and stored in a buffer. The stored data is used to train the agent.
This reduces the number of interactions required with an actual environment by half.
In this method, semi-blind robust system identification with a Kalman filter is used as
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the model identification method. The results for the MBRL method are compared with
AMPC and discussed in the next section.

Figure 4.8: Block diagram for Model-Based DQN Reinforcement Learning (MB-DQN-
RL) for V-CKD Patient.

4.3.2.1 Results
In this section, in-silico results of two V-CKD patients are discussed. For closed-loop
simulations, V-CKD patients with different parameters, such as maturity period of cells
in the erythropoiesis, total blood volume, and S0. are considered. To evaluate the per-
formance of the Model-Based DQN-RL (MB-DQN-RL) and AMPC control policies,
we have considered two life events, (1) bleeding and (2) missing dosages. The in-silico
results for the first V-CKD patient are shown in Fig. 4.9. The cell maturity period of
this virtual patient is 54 days, total blood volume is 5000 ml and S0 = 5 × 105. In
simulation results, the pink dashed vertical line at 70th time step refers to the bleeding
event and the vertical blue dashed line shows the two events of three consecutive miss-
ing dosages through time steps 112 to 115 and 150 to 153 days. The top plot shows the
Hgb levels and the bottom plot shows EPO dosages provided by the control policies.
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The green plot shows the results due to MB-DQN-RL and the red plot shows the results
due to AMPC.

Figure 4.9: Results of MB-DQN-RL and AMPC for the V-CKD Patient-1.

Figure 4.9 shows that the initial Hgb level is 9 g/dl. The AMPC provides an initial
EPO dosage of 1000 units and MB-DQN-RL suggests an EPO dosage of 20000 units,
however, MB-DQN-RL shows fluctuating EPO dosages. The Hgb level rises to the
desired range of 10− 12 g/dl. The event of bleeding is introduced at the 70th time step
and the Hgb level drops. The AMPC and MB-DQN-RL changed the EPO dosage to
recover the Hgb level for the virtual CKD patient. In response to this change, the Hgb
level rises to the desired range and the AMPC controller decreases the EPO dosage in
order to avoid overshoot. However, MB-DQN-RL has failed to give steady EPO value.
The events of missing dosages are introduced through time steps 112 to 115 and 150 to
153 days. Both control policies are able to recover the Hgb level due to the emissing
dosages; however, the frequency of EPO dosages is high in this range. It shows that how
difficult these scenarios could be handled in the real world. Overall, the MB-DQN-RL
provides unstable EPO dosages which result in high values of Hgb, which is not an
ideal situation for personalized medicine.

To test the proposed control policies, the results of the second V-CKD patient are
shown in Fig. 4.10. The cell maturity period of this virtual patient is 54 days, total
blood volume is 5100 ml and S0 = 5.3 × 105. The initial Hgb level for this patient is
10.68 g/dl. The AMPC provides an initial EPO dosage of 500 units and MB-DQN-RL
suggests varying EPO dosages. The Hgb level remains in the desired range for both
AMPC and MB-DQN-RL approaches. The Hgb level drops due to bleeding at 70th

time step. Both proposed control policies increase the EPO dosage to recover the Hgb
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Figure 4.10: Results of MB-DQN-RL and AMPC for the V-CKD Patient-2.

level. The results show that MB-DQN-RL has more frequency in the change of EPO
dosage as compared to the AMPC. The event of missing dosage introduced through
time steps 112 to 115 and 150 to 153 days results in a drop in the Hgb level. However,
MB-DQN-RL is not able to provide stable EPO dosages while the AMPC controller
can suggest steady EPO dosages to recover the Hgb level.

This concludes that data-driven adaptive control methods, such as AMPC and MB-
DQN-RL, is able to handle serious conditions of bleeding and missing dosage for V-
CKD patients. To reduce the number of data points required for training the agent,
model-based reinforcement learning (MBRL) is introduced. However, MB-DQN-RL
has failed to provide steady EPO dosages.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Summary

Personalized adaptive system identifications and adaptive controllers are studied for
patients with warfarin and anemia management. In this research work, four recursive
system identification techniques have been proposed: (1)semi-blind robust system iden-
tification with Kalman filter, (2) semi-blind robust system identification with model
(In)validation (3) semi-blind robust system identification without model (In)validation,
and (4) ARX with Kalman filter. Simulation results show that semi-blind robust system
identification with Kalman filter is able to adapt the personalized patient model to rep-
resent the patient’s true dose-response characteristics with the lowest error with using
the limited number of patient-specific data as time progresses during the treatment. For
controller design, four different types of control policies are studied for drug dosing
in virtual CKD patients: (1) Adaptive model predictive control (AMPC), (2) extremum
seeking control (ESC), (3) model-free reinforcement learning and (4) model-based rein-
forcement learning. The results show that AMPC outperforms the other control policies
in order to provide steady EPO dosages to keep the Hgb level in the desired range. Fur-
thermore, AMPC has an advantage over the reinforcement learning method on the merit
of a low number of data points required to design the control policy.

5.2 Future Work

The field of data-driven Control Systems has revolutionized personalized medicine from
artificial pancreas to mapping of patient dynamics. There are many opportunities in the
research area such as: (1) selecting dosage in patients with comorbidities is one of the
major challenges. The effect of Drugs can be altered by interacting with other medi-
cations when consumed simultaneously. The response of patients in this scenario can
be predicted and observed by designing model identification methods for multi-input-
multi-output (MIMO) models. The next can be the design of adaptive model identifi-
cation methods for these complex models. Furthermore, one of the major challenges in
the development of personalized dosing protocols is the availability of data and restric-
tion of clinical testing. Therefore, it is important to develop cell-level virtual models
of patient dose response which can be used in simulations to validate the performance
of proposed methods. Personalized dosing protocols need to be tested in different sce-
narios such as bleeding, missing dosages, and many others. Therefore, it is important
to identify more complex and realistic simulation scenarios. For control methods, more
robust and auto-tuneable methods are required. Also, it is important to design wearable
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sensors to sense the patient’s vitals such as Hgb levels in real-time.
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