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ABSTRACT

CAUSAL INFERENCE FOR THE EFFECT OF CONTINUOUS
TREATMENT ON TIME-TO-EVENT OUTCOMES AND
MEDIATION ANALYSIS ON HEALTH DISPARITIES IN

OBSERVATIONAL STUDIES

Triparna Poddar

November 28, 2023

The dissertation comprises two projects related to causal inference based on

observational data. In healthcare research, where abundant observational data such

as claims data and electronic records are available, researchers often aim to study

the treatment effect and the pathway of that effect. However, estimating treatment

effects in observational data presents challenges due to confounding factors. The

first project focuses on estimating continuous treatment effects for survival outcomes,

while the second concentrates on mediation analysis, allowing the exploration of the

pathway of the causal effect. Both projects involve addressing confounding variables.

In the first project, I investigate estimation of the average treatment effect

(ATE) of continuous treatment on time to event outcome by adjusting multiple con-

founding factors and considering censoring observations. To adjust confounding fac-

tors, various propensity score methods such as multinomial regression and covariate

balance propensity score models are used to estimate the ATE via the inverse proba-

bility of treatment weighting (IPTW) method. For continuous treatments, the IPTW

is generated from covariate balancing generalized propensity score. To remedy the
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possible bias in estimating ATE for time-to-event data due to censoring observations,

we incorporate the censoring weights to estimate ATE. We propose using both the

IPTW and the censoring weights (say, double weighting approach) to estimate ATE

using the marginal structural accelerated failure time (AFT) model, where the IPTW

adjusts for confounding factors and the censoring weights remedy the impact due to

censored observations. Comprehensive simulation studies demonstrated our proposed

method performed well. We applied our proposed method to examine if blood lead

level impacts the time to death of older people in the United States, utilizing data

from the NHANES III survey dataset.

In the second project, I delve into the more complex causal pathways of expo-

sure on the outcome using mediation analyses. I begin with basic mediation analyses

and progress to the more advanced four-way decomposition of causal effects from ex-

posure to outcome. This includes the interaction between multiple mediators and the

exposure. Expanding the scope of mediation analyses and four-way decomposition, I

extend it to survival analysis and demonstrate the IOM-defined disparity in terms of

four-way decomposition effects within the mediation analysis framework. Mediation

analysis proves to be a crucial tool in unraveling the intricate pathways contributing

to disparities among racial groups. Extensive simulation studies are conducted to

examine the contribution of decomposition effects under various settings of mediators

and outcomes. Finally, I investigate the factors influencing racial disparity among the

black and white populations in the United States based on the NHANES III database.
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CHAPTER 1

ESTIMATION OF AVERAGE TREATMENT EFFECT FOR

SURVIVAL OUTCOMES WITH CONTINUOUS TREATMENT IN

OBSERVATIONAL STUDIES

1.1 Introduction

In observational studies, the estimation of the Average Treatment Effect (ATE) en-

counters notable challenges due to the absence of random assignment, leading to

potential confounding. Propensity score weighting methods are commonly employed

to address this issue, although the estimation of propensity scores for continuous

treatments poses distinct challenges that require careful consideration. Moreover,

when dealing with time-to-event data as the outcome of interest, it is crucial to ac-

count for bias introduced by censored observations in the ATE estimation models.

The primary objective of our first project is to develop a novel method for estimating

ATE in situations involving continuous treatment and time-to-event outcomes.

In clinical trials, Randomized Control Trials (RCTs) stand as the gold stan-

dard for estimating the treatment effect of a new exposure or treatment on various

outcomes. Within an RCT, participants are randomly allocated to different treat-

ment groups, ensuring that the distributions of confounding factors, whether they

are measured or unmeasured, are comparable among the various treatment groups.

The treatment effect on outcomes can be directly estimated by calculating the differ-

ence in sample means between treated and control participants. However, in practical
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terms, it is not always ethical, feasible, or cost-effective to conduct an RCT. On the

contrary, observational data is often more readily available, prompting researchers to

attempt to assess treatment effects using this type of data. It’s important to note that

in observational studies, treatment assignment, denoted as A, is frequently influenced

by patients’ characteristics, represented by X. Additionally, the outcome Y is influ-

enced by both patients’ characteristicsX and the treatment A, as illustrated in Figure

1.1. Hence, the relationship between treatment and outcome becomes confounded by

Figure 1.1: Causal effect of treatment A on outcome Y confounded by X.

patients’ characteristics and various other potential confounding factors. A direct

comparison of outcomes between the treated and control groups no longer serves as

a valid estimator for the ATE. To estimate the ATE using observational data, it is

essential to control for these confounding factors. The most commonly used methods

for this purpose are propensity score-based techniques, such as matching, stratifi-

cation, regression, inverse probability of treatment weighting (IPTW) (Rosenbaum,

1987), and doubly robust methods (Lunceford and Davidian, 2004). The majority

of these existing propensity score estimation methods are based on binary treatment

settings where the propensity scores are estimated by logistic regression. However,

employing these techniques often requires researchers to dichotomize a continuous

treatment, leading to the loss of crucial information and insights within the data.
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In recent years, there has been an exploration of ATE estimation for multiple

treatment groups using the generalized propensity score (GPS) (Imbens, 2000). How-

ever, research on ATE estimation for continuous treatments remains limited. Hirano

and Imbens (2004) have extended these methods to estimate the ATE for continu-

ous treatment when dealing with binary or continuous outcomes through the use of

regression models on both treatment and propensity scores. It’s worth noting that

ATE estimates relying solely on regression analysis may introduce bias (Hade and Lu,

2014), and mis-specification of GPS can also lead to biased ATE estimates. To alle-

viate the potential impact of mis-specification of of GPS, Imai and Ratkovic (2014)

introduced the concept of a covariate balancing propensity score (CBPS) for binary

treatment. CBPS leverages two fundamental properties of the propensity score: esti-

mating the likelihood of treatment assignment for each subject based on their covari-

ates and achieving a balance in covariates across different treatment groups. CBPS

effectively improves the covariate balance among various treatment groups, thereby

enhancing the robustness of the estimation. Fong et al. (2018) expanded on this

idea by introducing the covariate balancing generalized propensity score (CBGPS)

for continuous treatment scenarios. CBGPS estimates propensity scores by minimiz-

ing the correlation between treatment and confounding covariates through weighting,

thereby improving the balance of covariates across treatment groups in cases involving

continuous treatments.

In this study, our primary focus is on estimating ATE when the treatment is

continuous, and the outcome is represented as time-to-event data, accounting for the

presence of right-censored observations. Time-to-event outcomes often involve cen-

sored observations, which occur when subjects do not experience the event outcome

during the study period. Estimating ATE for time-to-event outcomes necessitates

addressing the bias introduced by right censoring. To correct for this bias, the in-

verse probability of censoring weights (IPCW) is frequently employed, as detailed in

3



the works of Cain and Cole (2009); Cole and Hernán (2008); Robins and Finkelstein

(2000). This approach involves estimating the probability of censoring over time,

and the inverse of the probability of remaining uncensored is used as a weight for

uncensored observations when modeling. Estimating the probability of censoring is

typically accomplished using Kaplan-Meier curves for situations involving indepen-

dent censoring and the Accelerated Failure Time (AFT) model when dealing with de-

pendent censoring. Various methods have been developed to address right censoring

and estimate ATE for time-to-event data when the treatment is binary or categori-

cal (Andersen et al., 2017; Austin, 2010). Xie and Liu (2005) proposed an adjusted

Kaplan–Meier estimator of the survival function and the log-rank test incorporating

IPTW. Andersen et al. (2017) introduces the concept of creating a parallel dataset

using pseudo observations to account for right censoring for survival outcomes, which

can be used in traditional causal inference methodologies. Austin (2018) examines

the effectiveness of the generalized propensity score in estimating the impact of con-

tinuous exposures on survival or time-to-event outcomes. To account for censoring

the dose-response function was modified as the survival function which was estimated

from the Cox-Proportional hazard model.

In our study, we extend these methods to estimate ATE for time-to-event

outcomes when the treatment is continuous. We apply both the IPTW and IPCW

to estimate ATE using a marginal structure AFT model. We also investigate the

performance of the double-weighting method in estimating ATE when the generalized

propensity score is estimated using the maximum likelihood method or the CBGPS

method. The remainder of this paper is structured as follows. In Section 1.2, we

first outline the notations and the fundamental assumptions that underpin our study.

Following this, we describe the proposed double weighting method for estimating ATE

for continuous treatment in the context of time-to-event outcomes and provide an in-

depth exploration of the associated theoretical properties. In Section 1.3, we conduct
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a series of simulated studies to assess the performance of the proposed methodology.

In Section 1.4, we apply our proposed method to investigate the impact of blood lead

levels on all-cause mortality among older individuals in the US population. The final

section of this chapter is dedicated to an in-depth discussion.

1.2 Basic assumptions and the proposed method

In this section, we begin by defining all the terms we used for our paper and explain

the identification assumptions required under the causal framework to develop our

proposed method. Then we describe our proposed method with the double weighting

method for estimating ATE for continuous treatment for time-to-event outcomes.

In the final subsection, we delve into the theoretical properties associated with the

estimators derived from our proposed method.

1.2.1 Notations

LetX ∈ X denote a p-dimensional vector of covariates of a patient, and A ∈ A denote

the treatment that the patient received. Here X and A are the support of X and A

respectively. In this work, X is a compact set in Rp andA is either R ifA is continuous,

or a set with finite many values if A is discrete. We use T to denote the actual survival

time of the patient and T (a) to denote the potential survival time if the patient has

received treatment a. As in practice, the survival time T is often subject to right

censoring by C, the observed variable is T̃ = min{T,C} and δ = 1{T < C} is the

censoring indicator, where 1{·} is an indicator function. The observed data consist of

n i.i.d replicates of D := (X, A, T̃ , δ), denoted by {Di = (Xi, Ai, T̃i, δi), i = 1, · · · , n}.

For convenience, we define Yi = log Ti and Ỹi = log T̃i. We further denote Y (a) =

log T (a), T̃ (a) = min(T (a), C), and Ỹ (a) = log T̃ (a) as the notations associated with

potential outcomes if the patient has received treatment a where a ∈ A. For generic

random variables U and V , let fU(·) and fU(·|V ) denote the density (probability
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mass) function of U and the conditional density (probability mass) function of U

given V . In addition, we use fU(·|V,η) to denote the conditional density (probability

mass) function of U given V governed by parameters η. In particular, we use G∗(·)

to denote the survival function of C, that is, G∗(u) = P (C > u).

Our target estimand is ATE which is defined as the difference of potential

outcomes under two treatments (say a vs a′). That is

ATE(a, a′) = E[Y (a)]− E[Y (a′)] (1.1)

Note that, not all potential outcomes are observable. Indeed only one potential

outcome is observed which is the potential outcome corresponding to the received

treatment. To estimate ATE based on observational data, the following assumptions

are required (Brown et al., 2021; Imbens, 2000):

(1) Weak unconfoundedness (or Ignorability): the treatment assignment A is inde-

pendent of the potential outcome Y (a) given confounding variables X. That is,

Y (a) ⊥⊥ A|X ∀a ∈ A. (1.2)

(2) Positivity: a subject has a non-zero probability of receiving any treatment. That

is,

f(a|X) > 0 ∀a ∈ A, X ∈ X , (1.3)

where f(a|X) is the density function of A given X.

(3) Consistency: the observed outcome is the potential outcome corresponding to the

observed treatment assignment. That is,

Y =
∑
a∈A

1(A = a)Y (a) (1.4)

(4) Correct specification of GPS model and correct specification of censoring proba-

bility model.
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Given the four underlying assumptions, we present the following double weighting

method to estimate ATE for time-to-event data in the presence of right-censored

observations.

1.2.2 The proposed method

We have considered X to be standardized with zero mean and unit variance. Let

wp(a;x) denote the weights that balance the observed covariates X across different

values of the treatment variable A. We consider wp(a;x) = fA(a)/fA(a|x), where the

numerator fA(a) is the stabilizing factor (Robins et al., 2000) and the denominator

fA(a|x) is the generalized propensity score (GPS) (Imbens, 2000).

In continuous treatment setup, the GPS, f(a|x) is defined as the conditional

density of receiving a treatment A = a given confounding covariates X = x (Hirano

and Imbens, 2004). Following Hirano and Imbens (2004) and Imai and Van Dyk

(2004), we assume that the GPS fA(a|x) has the conditional normal density as follows:

fA(a|x, ξ∗) =
1√
2πσ∗

exp

(
−(a− x⊤β∗)2

2σ∗2

)
,

where ξ∗ = (β∗⊤, σ∗)⊤. Then the weights that balance the confounding variables can

be expressed as

wp(a;x) =
fA(a)

fA(a|x)
= wp(a;x, ξ

∗) =
σ∗

σ∗∗ exp

(
(a− x⊤β∗)2

2σ∗2 − a2

2σ∗∗2

)
, (1.5)

where σ∗∗2 = βTβ+σ∗2. In practice, ξ∗ is typically unknown but can be well estimated

by ξ̂, a maximum likelihood estimator (MLE). According to the MLE theory (see,

e.g. Le Cam, 1990), ξ̂ = ξ∗ + Op(n
−1/2). Another robust method to estimate the

IPTW is the CBGPS method which estimates parameters in the propensity scores

model by setting the correlation between treatment and confounding covariates in

the weighted sample being zero (Fong et al., 2018). The method can be implemented

using R-package CBPS (Fong et al., 2021) .

With time-to-event outcomes, we consider the AFT marginal structural model
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(AFT-MSM) as follows:

E
[
log T (a)

]
= E[Y (a)] = Z(a)⊤θ∗, ∀a ∈ A. (1.6)

In our methodology, we consider Z(a) as a generalized known function of treatment

a. For instance, when the potential outcome Y (a) exhibits a linear relationship with

the treatment level a, we can set Z(a) = (1, a)⊤ to form a simple linear function,

where Z(a)⊤θ∗ = θ∗0 + aθ∗1. However, if the potential outcome Y (a) has a piecewise

linear relationship with treatment level a, we may employ different basis functions

for Z(a). For example, Z(a) = (1, a, (a− c)+)
⊤ helps capture relationship changes at

the threshold c. Z(a) can be designed as a flexible vector of functions to effectively

describe the relationship between the potential outcome Y (a) and a, characterized by

the parameter θ∗. To estimate the causal parameters θ∗ within the AFT-MSM, we

must account for the bias arising from confounding and censoring. For simplicity, we

assume that the random censoring C is independent of (T,A,X). It is worth pointing

out that our proposed method can be extended into the case where C is independent

of T given X and A. Please see Remark 1.2.1 for more detailed discussions.

Let denote Z = Z(a) =
(
Z0(a), Z1(a), · · · , Zq(a)

)⊤
, let θ = (θ0, θ1, · · · , θq)⊤

and h = (ξ, G) where G(·) is a survival function. Define m(D,θ, h) = w(D, h)Z(Ỹ −

Z⊤θ) and M(θ, h) = E [m(D,θ, h)], where w(D, h) = δwp(A;X, ξ)G
−1(Y ). Then

the marginal structure equation for the parameters in the AFT-MSM model is

M(θ∗, h∗) = 0, (1.7)

where h∗ = (ξ∗, G∗). We refer the validation of the equation to the Appendix.

Moreover, we define Mn(θ, h) := n−1
∑n

i=1m(Di,θ, h) and consider the esti-

mating equation as follows:

Mn(θ, ĥ) =
n∑

i=1

m(Di,θ, ĥ) =
n∑

i=1

w(Di, ĥ)Zi(Yi − Z⊤
i θ) = 0, (1.8)

where ĥ = (ξ̂, Ĝ), and Ĝ(·) is the Kaplan-Meier estimator of G∗(·). Simple algebra
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yields the solution to (1.8) as

θ̂ =

(
n∑

i=1

w(Di, ĥ)ZiZ
⊤
i

)−1 n∑
i=1

w(Di, ĥ)ZiYi, (1.9)

Remark 1.2.1. If C is independent of T given X and A, we can estimate the con-

ditional survival probability P (C > u|A,X) by the conditional Kaplan-Meier method

(see, e.g., Dabrowska, 1989; Gonzalez-Manteiga and Cadarso-Suarez, 1994) and de-

note the resulting estimator by Ĝ(·;A,X). Then we can replace Ĝ(·) by Ĝ(·;A,X)

in ĥ and subsequently Mn(θ, ĥ) in Equation (1.8). It can be shown that our proposed

method would still provide consistent estimates of θ∗.

1.2.3 Theoretical Properties

In this subsection, we investigate the theoretical properties of our proposed esti-

mators. We begin with introducing some necessary notations. We use c to repre-

sent an unspecified positive constant whose value may vary. Let ∥B∥l denote the

l-norm of B, where B can be a vector or a matrix. We assume that ξ∗ is an in-

terior point of Ω and θ∗ is an interior point of Θ, where Ω and Θ are two com-

pact sets in Rd. In addition, G∗ ∈ G and G is an infinite dimensional parameter

space. Define Ωϵ := {ξ ∈ Ω : ∥ξ − ξ∗∥∞ ≤ ϵ}, Θϵ = {θ ∈ Θ, ∥θ − θ∗∥ ≤ ϵ}, and

Gϵ := {h ∈ G : ∥G−G∗∥∞ ≤ ϵ}. In addition, we denote Ω×G and Ωϵ ×Gϵ by H and

Hϵ, respectively.

For any (θ, h) ∈ Ωϵ × Hϵ, we denote the ordinary derivative of M(θ, h) with

respect to θ as Γ1(θ, h), which satisfies Γ1(θ, h)(θ1 − θ) = limt→0 t
−1[M(θ + t(θ1 −

θ), h) −M(θ, h)] for all θ1 ∈ Ω. Additionally, for any ξ ∈ Ωϵ, we say M(θ, h) is

path-wise differentiable at h ∈ Hϵ in the direction [h1 − h] if {h + t(h1 − h) : t ∈

[0, 1]} ⊂ H and limt→0 t
−1[M(θ, h+ t(h1−h)))−M(θ, h)] exists. We denote the limit

by Γ2(θ, h)(h1 − h).

We next impose the following regularity conditions that facilitate our technical

9



derivations:

(C1) The study has a finite duration L such that T ∈ (0, L] and G∗(L) > τ for some

constant τ > 0.

(C2) (a) Conditional exchangeability: {T (a), a ∈ A} ⊥ A|X; (b) Consistency: if

A = a, T (A) = T (a) = T ; (c) Positivity: if A is discrete, f(a;x, ξ∗) > ν > 0

and if A is continuous, for all values of x with f(x) > 0 we have f(a|x) > 0,

where f(·) is the density of X and f(a|x) is the conditional density function of

A given X.

(C3) The fisher information matrix for ξ, I(ξ∗), is invertible.

Remark 1.2.2. Without loss of generality, we consider Ω and G such that for all

ξ ∈ Ω and G ∈ G, ∥E
[
w2

p(A;X, ξ)
]
∥ < c and ∥G−G∗∥∞ < τ/2, where τ is defined

in Condition (1). In fact, ∥E
[
w2

p(A;X, ξ)
]
∥ < c is satisfied by σ2 > (2σ∗2)/(2σ∗2+1)

for σ in ξ, given that X and Ω are compact.

Theorem 1.2.1. Under AFT-MSM (1.6) and regularity conditions (C1)–(C3), θ̂ →p

θ∗, where →p denotes the convergence in probability.

Theorem 1.2.2. Under the same conditions as in Theorem 1.2.1,

√
n(θ̂ − θ∗) →d N

(
0, (E[ZZ⊤])−1V(E[ZZ⊤])−1

)
,

where →d denotes the convergence in distribution, V is the covariance matrix of

(m(Di,θ
∗, h∗) + η(Ai,Xi) + ψ(T̃i, δi)), and η(Ai,Xi) and ψ(T̃i, δi)) are defined in

Equations (2.27) and (2.28) respectively, in the Appendix.

The proofs of Theorem 1.2.1 and Theorem 1.2.2 are provided in the Appendix at the

end of this chapter.
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1.3 Simulation study

Through a comprehensive simulation study, we assess the performance of our proposed

method in estimating ATE for time-to-event outcomes. Our methodology leverages

double weighting, which involves both confounding and censoring weights. To gauge

the effect of the weights used in estimation, we also incorporate true weights, wherein

both propensity scores and censoring probabilities are generated from the underlying

models. Additionally, we obtain ATE estimates without any weighting, with only

weights derived from the estimated propensity scores while ignoring censoring, and

with only estimated censoring weights while overlooking confounding. We also delve

into the impact on ATE estimation resulting from the strength of the association

between confounding and treatment assignment, the censoring rate, and the sample

size.

1.3.1 Simulation settings

Let us denote X as a vector of confounding variables. Let assume X ∈ Rp, where

p = 10. The treatment A was generated based on the following GPS model.

A ∼ N(X⊤β, 22), (1.10)

where β = κ(14,06). Here 14 indicates a vector of 1 with four elements and 06 indi-

cates a vector of 0 with six elements. κ was used to capture the degree of association

between treatment and confounding variables. κ took value 0.1 to indicate a weak

association between treatment and confounding variables, and κ took value 0.5 to

indicate a strong association between treatment and confounding variables.

Given X and A, the outcomes were generated from the following outcome

model:

log(T ) = θ0 + θ1A+X⊤γ + σϵ. (1.11)
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Here θ0 was set as 1 and θ1 was varied in the set {0, 0.25, 0.5, 0.75, 1} to capture dif-

ferent levels of treatment effect of A on Y . γ = (1, 0.5,−0.3, 0.2,06), which indicated

that the outcome was associated with the first four confounding variables only. We

set σ = 0.5 and ϵ ∼ N(0, 1) in the outcome model (1.11).

The censoring time was generated from the model:

log(C) = µc + σcϵc. (1.12)

Here we set ϵc ∼ Gumbel(0, 1) and µc = 3.6. We set σc as 3.6 and 13.2 to control the

censoring probability at 15% and 30% respectively.

In each of the aforementioned scenarios, we conducted simulation studies em-

ploying two distinct sample sizes: n = 1000 and n = 5000. Consequently, we have

a total of 8 simulation settings, reflecting two values for κ to denote varying degrees

of association between treatment and confounding variables, two different censor-

ing probabilities, and two sample sizes. For each simulation set, we generated 1000

samples. The simulations for each setting were conducted in the following steps.

Step 1: Generated a sample with n i.i.d observations for (X, A, T̃ , δ), where each ob-

servation was generated through the following steps: (i) generating 10 indepen-

dent covariates, denoted as X = (X1, X2 . . . X10), from a multivariate normal

distribution MVN(0, I); (ii) generating treatment A using the GPS model de-

scribed in Equation (1.10), where A was only associated with the first four

covariates; (iii) generating the survival time from the AFT model specified in

Equation (1.11); (iv) generating the censoring outcome using the model pre-

sented in Equation (1.12); and (v) generating the observed outcome, denoted

as T̃ = min{T,C}, and the censoring indicator, δ = 1{T < C}.

Step 2: For each observation in the sample, two potential outcomes under control (a =

0) and under exposure at level 1 (a = 1) were generated. Specifically, they were

generated from log(T (0)) = θ0 +X⊤γ + σϵ and log(T (1)) = θ0 + θ1 +X⊤γ + σϵ.
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Consequently, we calculated the true sample treatment effect as the difference

between the sample mean of log(T (1)) and the sample mean of log(T (0)).

Step 3: Obtained the inverse probability of treatment weights for each observation based

on the true propensity score model as well as the estimated propensity score

models, which were obtained from MLE method and CBGPS, respectively. The

weight based on the true propensity score was calculated as Wp.true =
fA.true

fA.true|X
,

where A.true ∼ N(0, ||β||2 + 22), and A.true|(X = x) ∼ N(x⊤β, 22). The

weight based on the MLE estimated propensity score by MLE method was

obtained by Wp.est = fA.est

fA.est|X
, where A.est ∼ N(µsample(A), σ̂

2
(A)), A.est|(X =

x) ∼ N(x⊤β̂, σ̂2
A), and β̂ and σ̂A were estimated from linear regression model.

For comparison, we also estimated generalized propensity scores by CBGPS

method directly using the R package.

Step 4: Obtained the censoring weights based on true censoring model and estimated

censoring model. The true censoring weights were obtained from P [log(T̃ ) > t],

where log(T̃ ) ∼ Gumbel(µc, σc) with µc and σc defined in Equation (1.12). The

estimated censoring weights wc were estimated using Kaplan-Meier estimator,

which were the inverse of the survival probability of the censoring variable. We

set wc at 0.0001 if the estimated weight was 0.

Step 5: θ̂ was estimated by the equation (1.9) with different specifications of weights as

specified in Steps 3 and 4.

Step 6: Obtained variance estimation of the treatment effects by bootstraping procedure

with 100 resampling for each specification of weighting method.

We repeat our simulation procedure 1000 times from Step 1 to Step 6 under

each setting. From 1000 simulations, we obtained the mean of the 1000 estimated

treatment effects, root mean square error (RMSE), mean standard error from boot-

strap estimate, and mean coverage rate for 95% CI, respectively.
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1.3.2 Simulation results

In Figures 1.2 and 1.3, we present boxplots illustrating the 1000 ATE estimates

derived from our simulation studies. These studies aimed to explore different methods

for estimating ATE under varied conditions, specifically focusing on the censoring rate

and the degree of association between confounding and treatment. The simulations

were conducted for two sample sizes, namely n = 1000 and n = 5000, as depicted in

Figure 1.2 and Figure 1.3, respectively. For each sample size, we explored four distinct

simulation scenarios. These scenarios encompassed two levels of censoring rates (15%

and 30%, indicated in the first row and second row, respectively, in each figure)

and two levels of association strength between confounding variables and treatment:

κ = 0.1 for low association (shown in Panel A) and κ = 0.5 for moderate association

(displayed in Panel B). In each cluster of boxplots, the first boxplot illustrates the ATE

estimates without weighting. The second and third boxplots show ATE estimates with

the inverse of the probability of treatment weighting (IPTW) and the inverse of the

survival probability of censoring, respectively. These probabilities were estimated by

the Maximum Likelihood Estimation (MLE) method for treatment and the Kaplan-

Meier method for censoring. The last three boxplots depict ATE estimates using the

double weighting method. The process starts with true propensity score and true

censoring weights, followed by estimates using weights derived from the propensity

score estimated by the MLE method and the estimated probability of survival of

censoring by the Kaplan-Meier method. Finally, the last set of estimates uses weights

derived from the propensity score estimated by the CBGPS method and the estimated

probability of survival of censoring by the Kaplan-Meier method. The horizontal line

for each cluster of boxplots represents the true ATE obtained from the true potential

outcomes at the particular level of treatment effect on Y . The boxplots reveal that

ATE estimates obtained without any weighting or with solely IPTW or censoring

weighting exhibited substantial bias across all simulation settings. As the association
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between confounding and treatment increased, the bias for ATE estimates by the

estimated censoring weights got larger. Conversely, ATE estimates generated by the

three different double weighting methods tended to show lower bias. However, as

the association between confounding and treatment increased, the variance for ATE

estimates for double weighting with true weights and weights estimated by MLE

method and Kaplan-Meier method also increased. The smallest bias and variance

were obtained by the double weighting method with weights estimated by the CBGPS

method and Kaplan-Meier method in all simulation scenarios. As the sample size

increases, Figure 1.3 demonstrates a reduction in overall bias and variance for all

double weighting methods.

Figures 1.2 and 1.3 clearly demonstrate that the ATE estimates from double

weighting methods (see the last three boxplots in each condition) were unbiased,

while the unweighting method, IPTW only, and censoring only weighting methods

exhibited bias. In Figure 1.4 for n = 1000 and Figure 1.5 for n = 5000, we plotted the

RMSE obtained from 1000 estimates of ATE for the three double weighting methods:

true weights, estimated weights by MLE and Kaplan-Meier method, and estimated

weights by CBGPS and Kaplan-Meier method. From these figures, we find that the

ATE estimates of the double weighting method based on CBGPS and Kaplan-Meier

method had the smallest RMSE, indicating that this double weighting method works

best. Comparing Panel A and Panel B, we observe that the RMSE increased as the

association between confounding variables and treatment increased. Additionally,

comparing Figure 1.4 for n = 1000 and Figure 1.5 for n = 5000, we conclude that as

the sample size increased, the RMSE decreased.

In Figures 1.6 and 1.7, we plotted the coverage rates of the 95% CI for the

true ATE obtained from 1000 simulation runs for n = 1000 and n = 5000 based

on the three double weighting methods. When the association between confounding

variables and treatment was small (Panel A), the coverage rates from the three double
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weighting methods were quite similar and close to the nominal rate of 95%. However,

when the association between confounding variables and treatment became moderate

(Panel B), only the coverage rates of the double weighting method based on CBGPS

were closest to the 95% nominal coverage rate.

These simulation results clearly underscore the importance of addressing con-

founding and censoring when estimating the ATE for time-to-event outcomes. Un-

biased results can be achieved by incorporating both propensity score weights and

censoring weights in the AFT-MSM for outcomes with censored observations. In-

creasing the sample size enhances the performance of our proposed model. Moreover,

propensity score weighting by the CBGPS method proves to be more robust in esti-

mating ATE. From all the figures, it is evident that the double weighting method by

CBGPS outperforms others, exhibiting smaller bias, smaller variance, smaller RMSE,

and a coverage rate closest to the 95% nominal rate.

1.4 Case study: blood lead level versus mortality based on NHANES

III dataset

The relationship between blood lead levels (BLL) and mortality is a complex and

multifaceted topic. Lead is a toxic metal that can affect multiple organ systems in

the body, including the nervous, cardiovascular, and renal systems (Ara et al., 2015).

Studies have suggested that elevated blood lead levels may be associated with an in-

creased risk of mortality, particularly due to cardiovascular diseases. Lead exposure

has been linked to hypertension, atherosclerosis, and other cardiovascular conditions

that can contribute to mortality (Schober et al., 2006; Pirkle et al., 1994). However,

it’s essential to note that the relationship between BLL and mortality is not always

straightforward, and can be confounded by socioeconomic status, lifestyle, and envi-

ronmental factors. In our present study, we employed data from the third National
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Health and Nutrition Examination Survey (NHANES III), conducted in two phases

from 1988 to 1994 (Data, 1994). The aim was to explore the causal relationship be-

tween BLL and mortality, taking into account confounding variables and adjusting

for censored observations using our proposed method. To assess mortality, informa-

tion up to December 31st, 2019, regarding NHANES III participants was gathered

from the Linked Mortality Files (LMF) provided by the National Center for Health

Statistics (NCHS).

The blood lead levels (BLL) for participants in NHANES III were obtained

during the mobile physical examination day, and a detailed description of BLL mea-

surements can be found in Pirkle et al. (1994). The limit of detection (LOD) for

the lead level was 1.0 mg/dL, and for participants with BLL below LOD, it was

imputed as LOD/
√
2, resulting in 0.7mg/dL. In our analysis, we focused on partici-

pants within the age range of 50 − 70 years at the time of the survey interview and

excluded individuals with accidental death records. BLL was considered as the treat-

ment variable in our analysis. To satisfy the normality assumption for the estimation

of propensity score weights, we applied a log transformation to BLL.

For our covariates, we included age, sex, race-ethnicity, metro area, educa-

tion level, poverty income ratio (PIR), exercise, smoking, and alcohol consumption.

Additionally, we considered comorbidities such as cancer, stroke, cardiovascular dis-

ease, diabetes, and chronic kidney disease (CKD). Race and ethnicity information

for participants was categorized as Non-Hispanic Black, Non-Hispanic White, His-

panic origin, and others. Education levels were classified into three categories: no

education, less than high school, and College or above. The PIR (Poverty-to-Income

Ratio) was determined by evaluating the family income in relation to the poverty

threshold, adjusted for both family size and the annual inflation status. For the ex-

ercise variable, the frequency of any physical activity undertaken by participants was

aggregated and expressed as “times per month”. Smoking status was classified into
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three levels: “former” for those who had smoked more than 100+ cigarettes in their

lifetime but had since quit, “current” for participants who were smoking at the time

of the survey, and “never” for those who had not smoked more than 100+ cigarettes in

their life time. Participants’ alcohol consumption was categorized into three groups:

“former” if they had consumed at least 12 alcoholic drinks in their lifetime but had

not had at least 12 drinks in the last 12 months, “current” if they had consumed at

least 12 drinks in the last 12 months, and “never” otherwise. A participant was iden-

tified as having diabetes based on self-report during the interview or having glycated

hemoglobin ≥ 6.5% or plasma glucose ≥ 125 mg/dL. Participants with a history of

heart disease were identified if they reported a past heart attack or had congestive

heart failure. Participants were identified with CKD based on lab reports indicating

estimated GFR (eGFR) ≤ 60 ml/min per 1.73m2 or Urine albumin to creatinine ra-

tio (ACR) ≥ 30 (Selvin et al., 2007). eGFR is creatinine-based estimated glomerular

filtration rate. Serum creatinine was measured using a kinetic rate Jaffe method and

all serum creatinine measurements were re-calibrated to standardized creatinine mea-

surements (Coresh et al., 2007). The total number of patients within the specified

age range of 50-70, considering all the mentioned covariates, exposure, and outcome,

was 3621. Out of these, 2456 individuals passed away before December 31st, 2019,

while the remaining 1165 participants were alive, accounting for 32% of censoring.

The study by Schober et al. (2006) suggested that individuals with BLL ex-

ceeding BLL 5 ug/dL are more susceptible to mortality. To evaluate potential con-

founding effects of certain covariates on the relationship between exposure to BLL

and mortality, participants were classified into two groups: “low BLL” for those with

BLL ≤ 5 ug/dL and “high BLL” for those with BLL > 5 ug/dL . The distribution of

characteristics among participants for each categorical covariate is summarized in Ta-

ble 1.1. The “Total #(%)”, “Died #(%)”, and “P-value” columns present the overall

distribution, mortality rates, and associated p-values, respectively. Additionally, the
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association between each categorical covariate and BLL exposure is detailed in the

last two columns of Table 1.1. Notably, it is evident that (1) males exhibited a higher

mortality rate than females (73.7% vs. 62.3%), with males also having a higher BLL

exposure than females (42.6% vs. 20.7%); (2) Black participants had a higher mortal-

ity rate than white participants (73.3% vs. 67.9%), and Black individuals had higher

BLL exposure than their white counterparts (47.5% vs. 23.7%). Similar trends are

observed for current smokers and participants with hypertension, which are detailed

in Table 1.1. Moving on to continuous confounding variables, Table 1.2 presents the

mean and standard deviation (SD) values. These statistics are further stratified based

on survival status and BLL exposure (low vs. high). Noteworthy findings include (1)

participants who died and those exposed to high BLL had lower Poverty-to-Income

Ratio (PIR); (2) individuals who died and those with high BLL exposure engaged in

less physical exercise. These observations suggest a potential confounding effect of

PIR and physical exercise on the relationship between BLL and mortality.

To address this confounding, we employed the proposed double weighting

method with propensity score weights estimated by CBGPS. This approach aims

to untangle the causal relationship between BLL and survival, accounting for the

influence of confounding variables. Figure 1.8 displays a scatterplot featuring each

continuous covariate plotted against Blood Lead Level (BLL), showcasing regression

lines derived from both the original and weighted samples. The continuous covariates,

such as age, poverty-income ratio, BMI, and physical exercise level, are presented in

a logarithmic scale. Notably, the regression lines, adjusted by the CBGPS weights,

reveal a shift towards zero, indicating that in the weighted sample, these covariates

no longer exhibit a significant association with BLL. This adjustment underscores the

effectiveness of the CBGPS weights in mitigating the covariate-exposure association.

In Figure 1.9, stacked barplots illustrate the distribution of characteristics for

each categorical covariate, stratified by low and high BLL exposure levels. The initial
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Figure 1.8: Scatterplot illustrating the relationships between continuous covariates
(age, PIR, BMI, and exercise level) and Blood Lead Levels (BLL), accompanied by
the fitted regression lines in both the original and the weighted sample.

observation reveals distinct covariate distributions between low and high BLL expo-

sure. However, considering CBGPS weights in the weighted sample, covariate distri-

butions emerge similar between low and high BLL exposure groups. For instance, in

the original sample, there was a higher percentage of females in the low BLL group

and a higher percentage of males in the high BLL group but in the weighted sam-

ple the gender distribution becomes remarkably similar between low and high BLL

exposure groups. This further supports the effectiveness of the IPTW methodology

in balancing covariate distributions, thereby enhancing the comparability between

different BLL exposure levels.

Figure 1.10 illustrates the scatterplot of time-to-death in months versus BLL

among the participants who died. The plot features two predicted trend lines: one

derived from the original sample (solid line) and the other from the weighted sample

using double weights (dashed line). In both the original sample and the weighted

sample, a noticeable decrease in months to death is observed when BLL exceed 5
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ug/dL (equivalent to 1.6 in log-scale). In other words, as BLL increases, survival time

decreases, though the decline rate in the weighted sample is less pronounced than in

the original sample. To formally investigate the causal relationship between BLL and

survival time, considering 5 ug/dL as a change point, we employed the Accelerated

Failure Time-Marginal Structural Model (AFT-MSM) with a change point at log(5):

log(Y ) = θ0 + θ1log(BLL) + θ2
(
log(BLL)− log(5)

)
+
+ ϵ. (1.13)

Here the function (x)+ takes value x if x ≥ 0, and 0 if x < 0. Table 1.3 shows the

estimated parameters obtained from the model in (1.13), both without and with the

application of double weights. The standard errors and 95% confidence intervals for

these estimated parameters were obtained through bootstrap sampling. Based on the

results from the double weighting approach, it can be concluded that when BLL is less

than 5 ug/dL, there is no significant causal association with time to death. However,

when BLL exceeds this threshold, it becomes significantly causally associated with

mortality time. Specifically, with a 1-unit increase in BLL in log-scale, there is a

21.3% decrease in survival time in months.

In Figure 1.11, we compared the survival curves between the low BLL and

high BLL in both the original sample and the weighted sample. Log-rank tests, both

without and with weights, were applied to examine the survival difference between

the low BLL and high BLL groups in both samples. We conclude that a significant

difference exists in the survival curves between the low BLL and high BLL groups

in both the original and weighted samples. Although the difference in the weighted

sample is not as pronounced as in the original sample, adjusting for the effects of

confounding covariates through weighting demonstrates a clear causal association

between BLL and survival time.
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Table 1.3: Estimated effect of Blood lead on time to death, Standard Error and
Confidence Interval at 95%

No weighting

Parameters Estimate Std Error 95% CI
θ0 5.129 0.040 (5.051, 5.207)
θ1 -0.019 0.034 (-0.085, 0.047)
θ2 -0.368 0.093 (-0.55, -0.187)
θ1 + θ2 -0.388 0.074 (-0.534, -0.242)

Double Weighting: CBGPS

Parameters Estimate Std Error 95% CI
θ0 5.212 0.048 (5.118, 5.306)
θ1 0.055 0.040 (-0.023, 0.133)
θ2 -0.301 0.131 (-0.556, -0.045)
θ1 + θ2 -0.246 0.108 (-0.458, -0.034)

1.5 Discussion

In the context of abundant observational data, estimating ATE of exposure on out-

comes within a causal framework becomes essential. Controlling for confounding bias

arising from patient characteristics that influence both the exposure and the outcome

is crucial in achieving accurate estimates. In scenarios involving continuous treatment

settings, a shift from traditional propensity score weighting to the use of generalized

propensity scores is employed to enhance the precision of causal inference.

In this chapter, we employed the double weighting method to estimate the

average treatment effect of a continuous treatment on survival outcomes with cen-

sored observations. The double weighting methods utilized propensity score weights

to control the effect of confounding and censoring weights to address bias in estima-

tion resulting from right censoring. Based on the simulation results, we can assert

the significance of incorporating censoring weights when estimating treatment effects

for time-event outcomes. In this study, for obtaining propensity score weights, we

compared two methods: weights estimated by MLE and the CBGPS method. Our

conclusion is that the double weighting method with CBGPS performs the best, ex-
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hibiting the least bias, variance, and the smallest overall variability.

In this paper, we have assumed random censoring for estimating the censoring

weights for our proposed method. Our approach can be extended by using condi-

tional Kaplan Meier estimator for censoring weights in case of dependant censoring.

However, the detailed investigation will be carried out in our future work.

34



CHAPTER 2

CAUSAL MEDIATION ANALYSIS WITH EXTENSION TO

SURVIVAL ANALYSIS AND HEALTH RACIAL DISPARITY

STUDIES

2.1 Introduction

In healthcare research, randomized control trials (RCTs) are commonly regarded as

the gold standard for establishing the causal effect of an exposure variable, denoted

as A, on the outcome, denoted as Y . In RCTs, eligible participants are randomly

assigned to either the treatment group or the control group. However, RCTs are

not always feasible, especially when race is the exposure variable. On the contrary,

observational studies are prevalent, and they have been utilized to investigate the

causal effect of exposure with appropriate adjustments for confounding variables. In

observational studies, the relationship between the exposure and the outcome is often

confounded by the variables X. It is crucial to consider the impact of these confound-

ing variables and eliminate their effect. Figure 2.1 (a) illustrates a directed acyclic

graph (DAG) of an RCT, where the treatment assignment of A is independent of

X, even though X may influence the outcome Y . Figure 2.1 (b) depicts a scenario

where the relationship between A and Y is confounded by X, with X being causally

associated with both A and Y . In medicine and healthcare research, more complex

pathways are often encountered. Mediation analysis aims to uncover the intricate

mechanisms underlying the relationship between an exposure variable (e.g., A) and
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Figure 2.1: Illustration of directed acyclic graph (DAGs) for various study designs:
(a) randomized control trials; (b) observational studies; (c) simple mediation model;
and (d) a mediation model with confounding variables.

an outcome variable (e.g., Y ) through an intermediary variable referred to as a me-

diator (e.g., M), as depicted in Figure 2.1 (c) (Baron and Kenny, 1986). Unlike the

typical estimation of the average treatment effect of exposure variable A on outcome

Y , a mediation model posits that A influences the mediator variable M , which sub-

sequently affects Y . Subsequent research has expanded the application of mediation

analysis within a causal framework, as depicted in Figure 2.1(d), representing a me-

diation model in the presence of confounding variables X. Analyzing this pathway

often provides a deeper understanding of the causal chain in complex systems. Me-

diation analysis decomposes the treatment effect into the mediation effect and the

direct effect, where direct effect measures the effect of exposure A on outcome Y

directly while indirect effect captures the effect of A on Y through mediator M . The

mediator variable explains the mechanism of the relationship between the exposure

and outcome variables (MacKinnon et al., 2007; Pearl, 2001).

Mediation analysis, initially introduced by Baron and Kenny (1986), has be-

come an active research area with various methodologies and applications proposed.
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For instance, VanderWeele and Vansteelandt (2009) utilized an outcome model in-

corporating interaction terms between the mediator and exposure, as depicted in

Figure 2.2(a). This approach has been further extended to scenarios involving mul-

tiple mediators and interactions (VanderWeele, 2015). Additionally, these scenarios

encompass situations where multiple mediators may operate either in parallel or in a

sequential order. Figure 2.2(b) illustrates a causal mediation graph with two parallel

mediators. To analyze the intricate relationships of the mediated pathways along with

interactions between the mediator and exposure, the two-way decomposition has been

extended to a more comprehensive 4-way decomposition (VanderWeele, 2014). This

advanced decomposition of effects from the mediation model with multiple mediators

facilitates the identification of the individual effect of each mediator and each of their

interactions with the exposure. Thus, in the context of complex causal relationships,

researchers can analyze the causal pathways and evaluate the specific contribution

of each component. In this chapter, we will expand the scope of mediation analysis

to encompass survival analyses and delve into its application in the context of racial

disparity studies.

While mediation analysis has found applications in various research domains,

it has been particularly prevalent in investigating racial disparities in healthcare, ed-

ucation, and medicine. When applied to the context of structural racism, mediation

analysis serves as a valuable tool for researchers to explore how societal and insti-

tutional factors, rooted in historical and systemic biases, contribute to disparities

among racial or ethnic groups. According to the Institute of Medicine’s (IOM) defi-

nition (Nelson, 2002), healthcare disparities related to race and ethnicity are deemed

unjustifiable when they result from factors other than clinical need and patient pref-

erences. Differences in healthcare access and use based on age, gender, health status,

and patient choices are considered acceptable. However, any other sources of differ-

ences, including those influenced by a patient’s socioeconomic status and other social
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Figure 2.2: Illustration of mediation models with interaction of exposure and media-
tor: (a) one mediator and (b) multiple mediators

determinants of health, as well as inequalities in the functioning of the healthcare

system caused by systemic racism, are regarded as unjust. In observational studies

aimed at assessing health disparities, researchers often use regression models to esti-

mate the effect of race. However, it is crucial to recognize that multiple factors can

contribute to these disparities. Consequently, researchers are interested in identifying

the key drivers of racial discrimination among groups—factors that can potentially

be addressed through targeted interventions.

We structure the remainder of our project as follows. In Section 2.2, we pro-

vide detailed insights into expressing the total effect of the exposure on the outcome

in individual effects along the pathways of multiple mediators and discuss its inter-

pretation within a causal framework. In Section 2.3, we extend the mediation effect

to survival outcomes, demonstrating that the IOM-defined disparity can be articu-

lated in terms of the 4-way decomposition effects derived from the mediation model

analysis. Section 2.4 is dedicated to extensive simulation studies designed to examine

estimation accuracy. In Section 2.5, we conduct a case study to explore the factors

influencing health racial disparity based on the NHANES III database. The final

section is reserved for discussion and conclusion.
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2.2 General framework for mediation analysis

Let us denote (A,M,X, Y ) as the random variables involved in a mediation model,

let A denote as the exposure of interest, Y the outcome of interest, M the mediator,

and X confounding variables which impact all other three variables A, M , and Y .

2.2.1 Potential outcomes and basic assumptions

We start with the simple mediation model (refer to Figure 2.1 panel c), and we then

proceed to elaborate the cases with confounding variables (refer to Figure 2.1 panel

d) and multiple mediators (refer to Figure 2.2). For the simple mediation model, to

compare between two exposure levels of A, say a and a∗, we denote the potential

mediator M under exposure levels a and a∗ as M(a) and M(a∗), respectively. The

potential outcome, given that A and M are set to a and m, is defined as Y (a,m).

Y (a,M(a∗)) is the potential outcome when the exposure is set at level a and the

mediator is set at the level of M(a∗).

In mediation analysis, researchers often make the consistency and composition

assumptions (VanderWeele and Vansteelandt, 2009). The consistency assumption

states that the observed outcome Y is equal to the potential outcome of Y (a) and the

observed mediator M is equal to the potential mediator of M(a) when the exposure

A takes value of a . The composition assumption states that the potential outcome

Y (a) equals to the potential outcome Y (a,M(a)) where the exposure A is set to

a and mediator is set at the value M(a). Under the consistency and composition

assumptions (VanderWeele and Vansteelandt, 2009), the causal effect, E{Y (a) −

Y (a∗)}, which is also referred as the total effect of A on Y , can be decomposed in two

components as natural direct effect (NDE) and natural indirect effect (NIE). That is,
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E[Y (a)− Y (a∗)] = E[Y (a,M(a∗))− Y (a∗,M(a∗))] + E[Y (a,M(a))− Y (a,M(a∗))].

(2.1)

Here NDE = E[Y (a,M(a∗))−Y (a∗,M(a∗))], which captures the direct causal effect

of A on Y with the mediator fixed at the value of M(a∗). NIE = E[Y (a,M(a)) −

Y (a,M(a∗))], which captures the indirect causal effect through the mediator M as

mediator changes from level of M(a) to M(a∗). Generalising to finite number of

mediators M = (M1, · · · ,MQ), Q ∈ R, the identification of direct effects and indirect

effects require the following four assumptions (VanderWeele and Vansteelandt, 2009;

Gao et al., 2022):

(1) There is no unmeasured exposure-outcome confounding

Y (a,m1, . . . ,mQ) ⊥⊥ A | X;

(2) There is no unmeasured mediator-outcome confounding

Y (a,m1, . . . ,mQ) ⊥⊥Mq | (A,X);

(3) There is no unmeasured exposure-mediator confounding

Mq(a) ⊥⊥ A | X;

(4) There is no unmeasured mediator-outcome confounding influenced by exposure

Y (a,m1, . . . ,mQ) ⊥⊥Mq(a
∗) | X.

2.2.2 Four fold decomposition of total effect

Considering the interaction between exposure and mediation, which can influence the

outcome as illustrated in Figure 2.2 Panel (a), the total causal effect is dissected into

three components. The NIE is further decomposed into mediated interaction effect
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(INTmed) and pure indirect effect (PIE). That is,

E[Y (a)− Y (a∗)] =E
[
Y (a,M(a∗))− Y (a∗,M(a∗))

]
+ E

[(
Y (a,M(a))− Y (a∗,M(a))

)
−
(
Y (a,M(a∗))− Y (a∗,M(a∗))

)]
+ E

[
Y (a∗,M(a))− Y (a∗,M(a∗))

]
(2.2)

Here, the second term in Equation (2.2) is denoted as INTmed, signifying its role in

capturing the interaction between the mediator and the exposure. This term precisely

reflects the difference in direct effects when the mediator is held at M(a) compared

to M(a∗). To understand the complex relationships in the mediation pathways with

interaction, VanderWeele (2014) has decomposed the total effect of A on Y into

4 components, where the first term in (2.2), namely, NDE is further decomposed

into two components as the controlled direct effect (CDE) and interaction effect at

reference level of mediator (INTref ). That is,

E[Y (a)− Y (a∗)] =E[Y (a,m∗)− Y (a∗,m∗)]

+ E
[(
Y (a,M(a∗))− Y (a∗,M(a∗))

)
−
(
Y (a,m∗)− Y (a∗,m∗)

)]
+ E

[
Y (a,M(a))− Y (a∗,M(a))− Y (a,M(a∗)) + Y (a∗,M(a∗))

]
+ E[Y (a∗,M(a))− Y (a∗,M(a∗))].

(2.3)

Here m∗ is a fixed value for M . CDE represents the direct effect of the exposure

when M is fixed at the value m∗. INTref (m
∗) quantifies the variation in the direct

effect of A on Y as M transitions from M(a∗) to m∗ while INTmed illustrates the

change in the direct effects of A on Y asM shifts fromM(a) toM(a∗). PIE captures

the impact of A on Y through M , where M undergoes a change from M(a∗) to

M(a). In lieu of concentrating solely on the overall influence of the mediator on

the pathway from exposure to outcome, a four-way decomposition proves essential in

elucidating the causal relationships inherent in the individual components through
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which A influences Y . Note that the interaction effects can be expressed as:

INTref =
∑
m

[
Y (a,m)− Y (a∗,m)− Y (a,m∗) + Y (a∗,m∗)

]
I(M(a∗) = m)

INTmed =
∑
m

[
Y (a,m)− Y (a∗,m)

][
I(M(a) = m)− I(M(a∗) = m)

]
.

The additive interaction term,
[
Y (a,m)−Y (a∗,m)−Y (a,m∗)+Y (a∗,m∗)

]
=
[(
Y (a,m)−

Y (a∗,m∗)
)
−{
(
Y (a,m∗)−Y (a∗,m∗)

)
+
(
Y (a∗,m)−Y (a∗,m∗)

)
}
]
, indicates that the

difference between Y (a,m) and Y (a∗,m∗) is different from the sum of the controlled

direct effect at m∗ and the indirect effect with M changing from m∗ to m. In other

words, INTref exists if M is set to M(a∗) and INTmed exists if M varies for different

levels of exposure.

In case of multiple parallel mediators M, the total effect of A on Y can also

be decomposed into four components. The interaction effects capture the interaction

between the exposure and all the mediators and the pure indirect effect captures

the effect solely due to the mediators. For simpler notation, we illustrate the de-

composition by considering two mediators M = (M1,M2) but note that this can be

generalized for more than 2 mediators. The total effect of exposure on the outcome,

including the interaction effect with two mediators, can be written as:

TE = CDE(m∗
1,m

∗
2) + INTrefAM1M2(m

∗
1,m

∗
2) + INTmedAM1M2 + PIEM1M2 . (2.4)

The total effect and all the components are defined as follows:

TE = Y (a)− Y (a∗) = Y (a,M1(a),M2(a))− Y (a∗,M1(a
∗),M2(a

∗)),

CDE(m∗
1,m

∗
2) = E

[
Y (a,m∗

1,m
∗
2)− Y (a∗,m∗

1,m
∗
2)
]
,

INTrefAM1M2(m
∗
1,m

∗
2) =E

[
Y (a,M1(a

∗),M2(a
∗))− Y (a∗,M1(a

∗),M2(a
∗))

−
(
Y (a,m∗

1,m
∗
2)− Y (a∗,m∗

1,m
∗
2)
)]
,
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INTmedAM1M2 =E
[
Y (a,M1(a),M2(a))− Y (a∗,M1(a),M2(a))

−
(
Y (a,M1(a

∗),M2(a
∗))− Y (a∗,M1(a

∗),M2(a
∗))
)]
,

and

PIEM1M2 =E
[
Y (a∗,M1(a),M2(a))− Y (a∗,M1(a

∗),M2(a
∗))
]
.

Here m∗
1 and m∗

2 are the fixed values for M1 and M2 respectively.

2.2.3 Four-way decomposition under linear models

For a continuous outcome Y , binary exposure A, and a single continuous mediatorM ,

we assume that the relationship between (X, A,M, Y ) follows the linear regression

models and can be expressed as:

E[M |A = a,X = x] = β0 + β1a+ β2
′x, (2.5)

E[Y |A = a,M = m,X = x] = θ0 + θ1a+ θ2m+ θ3am+ θ4
′x. (2.6)

Under the four causal assumptions, the decomposed effects of A on Y can be estimated

by deriving the expected values of the four components defined in (2.3):

E[CDE|x](m∗) = (θ1 + θ3m
∗)(a− a∗), (2.7)

E[INTref |x](m∗) = θ3(β0 + β1a
∗ + β2

′x−m∗)(a− a∗),

E[INTmed|x] = θ3β1(a− a∗)2,

E[PIE|x] = (θ2β1 + θ3β1a
∗)(a− a∗).

From the four equations in (2.7), we can obtain the proportion attributed to each

effect to evaluate the contribution of different pathways for the causal relation of

A, M and Y . If we set m∗ = 0, then E[CDE|x](m∗) and E[INTref |x](m∗) are

obtained as θ1(a− a∗) and θ3(β0 + β1a
∗ + β2

′x)(a− a∗) respectively. We can obtain

E[TE|x] by taking sum of all the 4 effects. The proportions attributed to CDE,

INTref , INTmed and PIE can be obtained from the four ratios E[CDE]
E[TE]

,
E[INTref ]

E[TE]
,
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E[INTmed]
E[TE]

and E[PIE]
E[TE]

, respectively. The standard errors (SE) and confidence intervals

(CI) for the four components and their attributable proportions can be obtained using

the delta method, as demonstrated in VanderWeele and Vansteelandt (2009), or by

employing the bootstrap method. This involves drawing numerous bootstrap samples

from the observed data.

In case of multiple continuous mediators M = (M1,M2, . . .MQ), which are

not causally ordered instead are parallel, as shown in Figure 2.2 (b), we assume the

relationship between X, A, M , and Y are given by the following equations:

E[Mq|A = a,X = x] = β0q + β1qa+ β′
2qx for q = 1, · · · , Q (2.8)

E[Y |A = a,M = m,X = x] = θ0 + θ1a+ θ21m1 + · · ·+ θ2QmQ + (2.9)

θ31am1 + · · ·+ θ3QamQ + θ4
′x.

Here m = (m1, · · · ,mQ). Following the definitions of the decomposed effects in (2.4),

the expected values can be obtained as:

E[CDE|x](m∗
1, · · · ,m∗

Q) = (θ1 + θ31m
∗
1 + ...θ3Qm

∗
Q)(a− a∗) (2.10)

E[INTrefAM1···Mq |x](m∗
1, . . . ,m

∗
Q) =

Q∑
q=1

θ3q(β0q + β1qa
∗ + β2q

′x−m∗
q)(a− a∗)

E[INTmedAM1,··· ,MQ
|x] =

Q∑
q=1

θ3qβ1q(a− a∗)2

E[PIEM1,··· ,MQ
|x] =

Q∑
q=1

(θ2q + θ3qa
∗)β1q(a− a∗).

If the jth mediator is binary, while keeping the set of regression models in (2.9) the

same for the outcome and all other mediators, the model for the jth mediator can be

formulated according to VanderWeele (2015) as:

logit[P (Mj = 1|A = a,X)] = β0j + β1ja+ β′
2jx.

Thus for the expected values of the decomposed effects in (2.10), the CDE would re-
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main the same, and all other mediation effects would be altered by modifying the term

involving the jth mediator in the equations: (1) the jth term in INTrefAM1,··· ,MQ
is re-

placed by θ3j
[ exp(β0j+β1ja

∗+β
′
2jx)

1+exp(β0j+β1ja∗+β
′
2jx)

−m∗
j

]
(a−a∗); (2) the jth term in INTmedAM1,··· ,MQ

is

replace by θ3jϕ(a−a∗), and (3) the jth term in PIEM1...Mq is replaced by (θ2j+θ3ja
∗)ϕ,

where ϕ =
exp(β0j+β1ja+β

′
2jx)

1+exp(β0j+β1ja+β
′
2jx)

− exp(β0j+β1ja
∗+β

′
2jx)

1+exp(β0j+β1ja∗+β
′
2jx)

. Similarly, the total effect of A

on Y can be obtained by summing all the decomposed effects, and the proportion

attributed to each component can be further calculated by taking the ratio of the

estimated effect to the estimated total effect.

2.3 Extension to survival outcomes and health racial disparity

2.3.1 Extension to survival outcomes

Up to this point, we have focused on continuous outcome models for variable Y .

However, in healthcare research, time-to-event data, often used in survival analysis,

plays a crucial role. In this section, we extend the mediation analysis to survival

outcomes, where the outcome is a time-to-event variable. Time-to-event outcomes

are frequently subject to right censoring, occurring when the event of interest does

not happen within the designated study period or when subjects are prematurely

dropped from the study.

Existing literature on causal mediation analysis with time-to-event outcomes,

including various survival models, has been established (VanderWeele, 2011; Lapointe-

Shaw et al., 2018). In survival analysis, Cox proportional hazard (Cox PH) models

are commonly used as semi-parametric models. However, applying the Cox PH model

in mediation analysis can be challenging, given its assumption that the hazard ratio

remains constant over time (VanderWeele, 2011). The interpretation of hazard ra-

tios for indirect effects in mediation contexts can be complex and may not lend itself

to meaningful causal insights. On the other hand, utilizing the accelerated failure
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time (AFT) model for the outcome in mediation analysis offers advantages. AFT

models assume a linear relationship between the logarithm of survival time and the

covariates and confounding variables, making the interpretation of direct and indirect

effects more straightforward. Additionally, AFT models facilitate the incorporation

of exposure-mediator interaction terms. These models estimate parameters by maxi-

mizing the likelihood function, accounting for both observed and censored data (Wei,

1992). We extend the four-way decomposition to time-to-event data using the AFT

model.

The AFT outcome model, considering a single mediator and interaction be-

tween exposure and mediator, can be expressed as:

Y = log(T ) = θ0 + θ1a+ θ2m+ θ3am+ θ4
′x. (2.11)

Taking the counterfactual time-to-event outcome in log scale, both the direct and

indirect effects remain consistent with those obtained for continuous outcomes. Thus,

the direct effect can be redefined as E[log(T (a,M(a∗)))− log(T (a∗,M(a∗)))], and the

indirect effect as E[log(T (a,M(a)))−log(T (a,M(a∗)))]. The four-way decomposition

can be similarly conducted, and the estimated decomposed effects will be the same as

those obtained for continuous outcomes in (2.7). The extension to multiple mediators

follows a similar approach.

2.3.2 Extension to health racial disparity study

In public health research, the exploration of racial disparities emerges as a substan-

tial yet intricate issue, involving the analysis of divergent outcomes or opportunities

among racial groups, particularly between black and white populations. The defi-

nition and measurement of racial disparity encompass various perspectives, with a

critical consideration being whether adjustments should be made for associated fac-

tors such as socioeconomic status, education, or healthcare access. In accordance with
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the Institute of Medicine’s (IOM) definition as outlined by (Nelson, 2002), racial dis-

parity is measured by the outcome differences between racial groups influenced by

intervening factors (designated as M1), including socioeconomic status, health cov-

erage, and other social determinants of health. Non-intervening factors (referred to

as M2), such as sex, age, and other specific health details of patients, are not con-

sidered in this definition. Adhering to the IOM’s definition of disparity, our focus

is specifically on addressing the mediating effect of intervening variables (M1) with

room for improvement. Our approach involves the use of joint regression models for

both the outcome and mediators, yielding a comprehensive four-fold decomposition

of effects. These effects include the controlled direct effect, interaction at reference

effect, mediated interaction effect, and pure indirect effect.

In an alternative methodology, Clemans-Cope et al. (2023) employs the Kitagawa-

Blinder-Oaxaca (KBO) decomposition approach (Blinder, 1973) to estimate the IOM

disparity between black and white racial groups. This approach involves the utiliza-

tion of two group-specific models: one for the black population and another for the

white population. To assess the comparison between the black and white racial groups

while considering the influence of two mediators, the two group-specific models are

expressed as follows:

YB = γ0B + γ2BM1 + γ3BM2 + ϵ, (2.12)

YW = γ0W + γ2WM1 + γ3WM2 + ϵ.

The group-specific models for the outcome aid in detecting disparities when measuring

the difference between two groups, especially when one group is at a disadvantage

compared to the other (Blinder, 1973), such as comparing black and white groups.

The IOM is defined using the following terms:

(1) Total difference = ȲB − ȲW ;

(2) Difference due to coefficients = (γ2B − γ2W ) ∗ M̄1W + (γ3B − γ3W ) ∗ M̄2W ;
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(3) Difference due to the interaction between covariates and coefficients

= (γ2B − γ2W ) ∗ (M̄1B − M̄1W ) + (γ3B − γ3W ) ∗ (M̄2B − M̄2W );

(4) Difference due to M1 = γ2W (M̄1B − M̄1W ), and

difference due to M2 = γ3W (M̄2B − M̄2W ).

The IOM disparity is defined as the total difference in (1) minus the difference due

to M2 in (4). The IOM disparity is equal to the summation of the difference due

to coefficients in (2), the difference due to the interaction between covariates and

coefficients in (3), and the difference due toM1. In the following, we demonstrate that

the various terms in the IOM disparity definition can be connected to the mediation

models and four-way decomposition.

Let’s consider race as the binary exposure variable, with a = 1 for the black

population and 0 for the white population. Let’s assume we have two parallel media-

tors, M1 and M2, without considering the confounders X. In the mediation analyses,

we consider the following outcome model:

E[Y |A = a,M1 = m1,M2 = m2] = θ0 + θ1a+ θ21m1 + θ2m2 + θ31am1 + · · ·+ θ32am2,

and the mediation models:

E[Mq|A = a] = β0q + β1qa for q = 1, 2.

The total difference in the IOM disparity definition is equivalent to the total effect in

the mediation model. Based on the models for mediators, we have

β01 = M̄1W = E[M1|A = 0], β11 = M̄1B−M̄1W = E[M1|A = 1]−E[M1|A = 0] for M1,

β02 = M̄2W = E[M2|A = 0], β12 = M̄2B−M̄2W = E[M2|A = 1]−E[M2|A = 0] for M2.

Comparing with the outcome model in the mediation analysis with the two group

specific models, we have

θ0 = γ0W , θ0 + θ1 = γ0B, θ21 = γ2W , θ21 + θ31 = γ2B, θ22 = γ3W , θ22 + θ32 = γ3B.
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Thus, the four decomposition effects defined in (2.10) can be expressed in terms of

coefficients from the group-specific models:

CDE(m∗
1,m

∗
2) = θ0+θ31m

∗
1+θ32m

∗
2 = (γ0B−γ0W )+(γ2B−γ2W )m∗

1+(γ3B−γ3W )m∗
2,

IntrefAM1M2(m
∗
1,m

∗
2) =θ31(β01 −m∗

1) + θ32(β02 −m∗
2)

=(γ2B − γ2W ) ∗ (M̄1W −m∗
1) + (γ3B − γ3W ) ∗ (M̄2W −m∗

2),

IntmedAM1M2 = θ31β11+θ32β12 = (γ2B−γ2W )∗(M̄1B−M̄1W )+(γ3B−γ3W )∗(M̄2B−M̄2W ),

P IEM1M2 = θ21β11 + θ22β12 = γ2W (M̄1B − M̄1W ) + γ3W (M̄2B − M̄2W ).

Henceforth, we can clearly see IntmedAM1M2 is equivalent to the difference due to

interaction between mediators and coefficients while PIEM1M2 can be expressed as

the sum of the mediation effects due to M1 and M2. As a special case, by fixing

m∗
1 and m∗

2 to 0, we can see that IntrefAM1M2 is equivalent to the difference due to

coefficients from the IOM definition. If we take values of m∗
1 and m∗

2 as the mean of

control group of white, i.e., m∗
1 = M̄1W and m∗

2 = M̄2W , then IntrefAM1M2 becomes 0

and CDE is obtained as the sum of γ0B − γ0W and the difference due to coefficients.

2.4 Simulation studies

To assess the estimation of decomposition effects in mediation analysis we conducted

a simulation study using 1000 Monte Carlo simulations. We compare the results

across various configurations of mediators and outcomes. In the first setting we

present the results obtained by considering a single continuous mediator in the joint

mediation model. Subsequently in second setting, we extended the mediation model

to incorporate multiple mediators, both continuous and binary. Additionally, we

demonstrated the decomposition effects within the context of survival outcomes.

For each setting, we considered two distinct scenarios for the variation in the
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exposure levels. In the first scenario, we evenly distribute 50% to each exposure level

and in the second scenario we allocate 35% to the exposed group setting as later

for our case study we have classified the Black race as the exposure group which

is in minority. We have further compared the direct effects and the interaction at

reference level for two settings of m∗, one by fixing it to 0 and another by setting it as

E[M [A = 0]]. For comparison, we have obtained the standard error of the estimates

and confidence interval both by Delta method and bootstrap method.

For each setting of mediators and outcome, we generate a set of independent

covariates X ∈ Rp, p = 3, say with X ∼ N(0, I) which impacts the exposure A, medi-

ators M and Y . The binary exposure A was generated from the logistic model with

pA = exp(X⊤δ)
1+exp(X⊤δ)

where δ = (δ0, 1, 1, 1). δ0 was varied as 0 and −0.85 to adhere to the

two exposure group settings of 50% and 35% respectively. Then we generate media-

tors and outcome as per our different settings. The sample size for each simulation

setting was set to n = 1000.

2.4.1 Simulation Settings

In the first setting we have considered a setting with single continuous mediator. We

generate M being linearly associated with A and X and Y being linearly dependant

on A, M and X as given in the models:

M = β0 + β1A+ β
′

2X+ ϵM , (2.13)

Y = θ0 + θ1A+ θ2M + θ3AM + θ4
′
X+ ϵY , (2.14)

where β0 = 0, β1 = 1, β2 = (0.2, 0.4, 0.6), θ0 = θ1 = 1, θ2 = 0.5, θ3 = 0.4, θ4 =

(0.5, 1, 1.5), ϵY ⊥⊥ ϵM ∼ N(0, 1).

We have obtained the estimated parameters by fitting the linear models on outcome Y

and mediator M separately and from there we obtain the four estimated decomposed

effects and the estimated total effect from the equations in (2.7). We calculate the
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proportion attributed to the total effect by each decomposed effect taking the ratio

of each effect and the total effect.

For multiple mediators scenario we have set up the second setting with three

mediators. We independently generate two continuous mediatorsM1 andM2 and one

binary M3 and outcome Y from the linear models, with M1 and M2 being related to

X and A, M3 related to A only and Y being related to A,M1,M2,M3 and X:

M1 = β01 + β11A+ β
′

21X+ ϵM1 (2.15)

M2 = β02 + β12A+ β
′

22X+ ϵM2 , (2.16)

logit(M3) = β03 + β13A, (2.17)

Y = θ0 + θ1A+ θ21M1 + θ22M2 + θ23M3 (2.18)

+ θ31AM1 + θ32AM2 + θ33AM3 + θ4
′
X+ ϵY ,

where β01 = 0.5, β11 = 0.2, β21 = (0.1, 0.2, 0.3), β02 = 0, β12 = 0.4, β22 = (0.2, 0.4, 0.6), β03 =

0.1, β13 = 0.6, and θ0 = θ1 = 1, θ21 = 0.5, θ22 = θ23 = 0.3, θ31 = θ32 = θ33 = 0.4, θ4 =

(0.5, 1, 1.5). The error terms for the models for M1, M2 and Y are generated from

N(0, 1). The generated dataset can be expressed as D = (Y,A,M1,M2,M3,X).

To illustrate performance of the mediation model for a time-to-event outcome,

we generated survival time T from a lognormal distribution linked to the treatment A,

M and covariates X. The dataset was simulated within a generalized framework that

accounts for multiple mediators with the mediators being simulated under settings

analogous to our multi-mediator model with a continuous outcome. We generated

the survival time T from AFT model so that Y = log(T ):

T = exp(θ0+θ1A+θ21M1+θ22M2+θ23M3+θ31AM1+θ32AM2+θ33AM3+θ4
′
X+ϵY )

(2.19)

The parameters for the model are identical to those specified in the second setting.

To address about 15% right censoring in the data, the censoring time independent of

any other variables was obtained from the Gumbel distribution by log(C) = µc+σcϵc

51



where µc = 4.8, σc = 3.6 and ϵc ∼ Gumbel(0, 1) Then the observed outcome is

generated by T̃ = min{T,C}, and the censoring indicator, Status= 1{T < C}.

2.4.2 Simulation results

In Figures 2.3, 2.4 and 2.5, we utilize boxplots to show the estimated proportion of

the total effect attributed to each of the decomposition effects across 1000 simulations

where each proportion was obtained by the ratio of the estimated decomposed effect

and the estimated total effect. Figure 2.3 focuses on the results with single mediator

in the model while figure 2.4 extends the results to cases with multiple mediators.

Figure 2.5 further explores parameter settings for three mediators within the context

of a time-to-event outcome. Each figure employs a 2x2 panel format to compare

four distinct scenarios. Row-wise, the first row of panels demonstrates proportion

attributions when the exposure group constitutes a minority, accounting for 35% of

the total sample. The second row illustrates cases where both the exposed and control

groups are equally distributed. The first column showcases how the effects vary when

m∗ is fixed at 0. In contrast, the second column depicts results when m∗ depends on

exposure at control group. In Figure 2.4 and Figure 2.5, the estimated proportion

attributed by the interaction and the mediated effects due to three mediators are

shown together.

From the three figures, it is evident if the value of m∗ is held constant at 0, the

contribution of the decomposed effects to the total effect remains consistent across

different distributions of the exposure group. However, when m∗ depends on the

mean value of M taken at control group of exposure, variations in the proportion at-

tributable to CDE and INTref are observed. However, there is no significant change

in the the mediated effects of INTmed and PIE. With single mediator in the model,

there is more proportion attributed by CDE to TE when m∗ is fixed at 0 compared

to when mstar is varied whereas with multiple mediators in the model it is the oppo-
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site. The thick horizontal line in each boxplot represents the proportion attribution

from the true effects obtained from the true potential outcomes implicating minimal

deviation from the estimated results. This suggests robustness and reliability in the

estimation process, reinforcing the validity of the mediation analysis under varying

conditions and parameter settings.

Through Figures 2.6, 2.7 and 2.8 we compare the performance of SE estimation

obtained through bootstrap sampling procedure and the Delta method across different

settings of mediators and outcomes in the model. The red line represents the ratio

of the mean SE by bootstrap method and and Empirical SD for decomposed effects,

while the blue line depicts the corresponding ratio for SE by Delta method. We

clearly see for the decomposed effects in different settings, the ratio of SE by the

bootstrap method to the empirical SD tends to converge to unity compared to the

corresponding ratio obtained by the Delta method. This observation suggests that

despite the computational intensity associated with the bootstrap procedure, it yields

greater accuracy in variance estimation compared to the Delta method.

2.5 Case study: racial disparity on all-cause mortality in the United

States based on NHANES III dataset

Although there have been a significant decline is US morality rates over the decade

due to the advancement of medical science and technologies, persistence of racial dis-

parities in Black-white mortality rates remains a pressing concern (Benjamins et al.,

2021). Recent research indicates that black population experience higher age adjusted

death rate in comparison to the White population in the United States of America

(USA) (Haines, 2003). This kind of disparity in race is often attributed to the decades

of various aspects of socioeconomic differences. By analyzing the mediated pathways

and estimating the effects of these socioeconomic factors, our goal is to identify the
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specific socioeconomic factors contributing to the structural racism that influences

these elevated mortality rates. For our study, we have considered the third National

Health and Nutrition Examination Survey (NHANES III), conducted from 1988-1994

in two phases. The 6 year survey represents the nationwide population with an overall

black and white population in the USA . We are specifically interested in comparing

the two racial groups (black versus white), thus we have restricted our data to the

participants from black and white population only. For mortality information, we

have used Linked Mortality Files (LMF) by the National Center for Health Statistics

(NCHS) which have been followed up till December 31st, 2019.

In our analysis, we have considered participants within the age range of 50−70

years at the time of interview for the survey and excluded patients who had accidental

death records. As we are primarily focused on explaining the racial disparity between

black and white population, we included participants from these two races only in our

study. The study cohort for our analysis include 2640 participants with 1768 white

and 872 black accounting to 33% of the minority group. At the end of the study 1840

participants died and 800 were still alive leading to 30% censoring. Within the black

population the mortality rate was 73.8% which is higher than the white population

with 67.6% morality rate.

We have identified a set of intervening mediators as health insurance coverage,

poverty income ratio (PIR) and education. Health insurance coverage was determined

through participant reports of having any insurance during the last month of the in-

terview, including Medicare/Medicaid or private. We note that approximately 5% of

the white population did not have insurance coverage, whereas this percentage was

about 10% in the black population. PIR was determined by evaluating the family

income in relation to the poverty threshold, adjusted for both family size and the

annual inflation status. Average PIR among the white population was 3.58 while

that among black population was 2.1. Education was categorized into two levels as
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“till high school”, and “College or high”. Education and PIR reflect the socioeco-

nomic status of the participant. The data revealed that the proportion of participants

without college education was considerably higher among the black population com-

pared to the white population. Age, gender, metro area residence, physical exercise,

smoking, and alcohol consumption, along with comorbidities such as cancer, stroke,

cardiovascular disease, and diabetes are considered as the set of non-intervenable me-

diators. A participant’s exercise level were quantified by aggregating the frequency

of any physical activity undertaken and expressing it as “times per month”. Smoking

history among participants was marked as “Yes” based on if they had smoked more

than 100+ cigarettes in their lifetime or smoking at the time of the survey and “No”

if they had not smoked more than 100+ cigarettes in their life time. Participants’

were identified with history of alcohol consumption if they had consumed at least 12

alcoholic drinks in their lifetime or in the last 12 months. A participant was identi-

fied as having diabetes based on self-report during the interview or having glycated

hemoglobin ≥ 6.5% or plasma glucose ≥ 125 mg/dL. Participants were identified

with a history of heart disease if they reported a past heart attack or had conges-

tive heart failure. Similarly history of cancer and stroke were recorded based on the

self-reports of the participants. The continuous mediators PIR, BMI, age and exer-

cise were standardized. We conducted the joint regression model including all the

mediators with AFT outcome model to obtain the four decomposed effects and their

proportion attributions to the total effect due to race on the survival time in months in

log scale. We assumed the survival time follows a Weibull distribution. To assess the

effect of the mediators collectively, we multiplied negative one for some variables so

that all variables are positively related to survival time. For example, as age and BMI

are negatively associated with the time-to-death, we multiplied negative one for these

variables. For gender, male was considered at the reference level as they have shorter

time-to-death compared to females. As participants with history of any comorbidity,

61



smoking or alcohol consumption had shorter survival time, positive occurrence were

taken as the reference. The fixed values of m∗ for each of the continuous mediators

were taken at the estimated mean among the white population and for each of the

binary mediators at the estimated proportion within the white population.

In Table 2.1, we present the estimated effects, its standard error, and its 95%

CI obtained by bootstrap method. When we consider both the interaction effects,

the combined influence of mediators and race does not exhibit a statistically signifi-

cant effect on mortality. But the PIEs for both sets of mediators are significant, we

conclude that the mediators alone have a significant negative impact on the time to

death. The IOM score implies that there is racial disparity on all-cause mortality in

the USA.

2.6 Conclusion and discussion

In this project we have illustrated the mediation analysis with parallel multiple me-

diators within causal framework considering the interaction between the mediation

and exposure. The four-way decomposition of the total effect of exposure on outcome

helps us to identify the complex pathways of mediation as it accounts for the indi-

vidual effects due to neither mediation nor interaction, to just interaction between

exposure and mediator, to both mediation and interaction, and to just mediation.

We were able to illustrate that the four way decomposition method can be extended

to survival outcome. From the findings of our case study we are able to establish

the importance of considering direct, indirect as well as the interaction pathways in

understanding the complex relationships between race, mediators, and mortality in

the population under study. As the future aspect of our work, we intend to include

mediators with multiple categories and consider continuous treatment for mediation

model.
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APPENDIX

This section includes proofs of theoretical properties for Chapter 1:

Let λmin and λmax denote the smallest and largest eigenvalues of E[ZZ⊤], respectively.

We validate the marginal structure equation (1.7). Noting that T < C implies Ỹ = Y ,

E

[
δwp(A;X, ξ

∗)

G(T )
Z(Ỹ − Z⊤θ∗)

]
= E

[
E

[
1{T < C}wp(A;X, ξ

∗)

G(T )
Z(Ỹ − Z⊤θ∗)

∣∣∣T,Z]]
= E

[
wp(A;X, ξ

∗)Z(Y − Z⊤θ∗)
]
= E [wp(A;X, ξ

∗)ZY ]− E
[
wp(A;X, ξ

∗)ZZ⊤θ∗] .
For the first item, let Y denote the support of Y (a), a ∈ A,

E [wp(A;X, ξ
∗)ZY ] = E [wp(A;X, ξ

∗)ZE [Y |A,X]]

=

∫
A×X

fA(a)

fA(a|x, ξ)
zE [Y (a)|x] dFA,X(a,x)

=

∫
A

∫
X

fA(a)

fA(a|x, ξ)
z

[∫
Y
y(a)

fY (a),X(y(a),x)

fX(x)
dy(a)

]
fA(a|x, ξ)fX(x)dxda

=

∫
A

∫
Y
fA(a)y(a)z

[∫
X
fY (a),X(y(a),x)dx

]
dy(a)da

=

∫
A
fA(a)z

∫
Y
y(a)fY (a)(y(a))dy(a)da =

∫
A
fA(a)zE [Y (a)] da

=

∫
A
fA(a)zz

⊤θ∗da = E
[
ZZ⊤θ∗] ,

where the second last equality follows from (1.6).

For the second item,

E
[
wp(A;X, ξ

∗)ZZ⊤θ∗] = E
[
E
[
wp(A;X, ξ

∗)ZZ⊤θ∗
∣∣∣X]]

=

∫
X

[∫
A

fA(a)

fA(a|x, ξ)
zz⊤θ∗fA(a|x, ξ)da

]
fX(x)dx =

∫
X
E
[
ZZ⊤θ∗] fX(x)dx = E

[
ZZ⊤θ∗] .

Thus, (1.6) is a valid marginal structure equation.
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Proof of Theorem 1.2.1: We prove the result by invoking Theorem 1 in Chen

et al. (2003) (hereafter CLK). Thus, we need to check their conditions (1.1) – (1.4)

and (1.5’).

We note that condition (1.3) is trivially satisfied. Because ξ̂ = ξ∗ +Op(n
−1/2)

and ∥Ĝ − G∗∥∞ = Op((log log n/n)
1/2) (Stute, 1995), ∥ĥ − h∗∥∞ = op(n

−1/4). Thus,

condition (1.4) in CLK holds. We thus only need to verify conditions (1.1), (1.2) and

(1.5’).

To verify condition (1.1) in CLK, we want to show that ∥Mn(θ̂, ĥ)∥ = op(n
−1/2),

that is, ∀u > 0 limn→∞ P (
√
n∥Mn(θ̂, ĥ)∥ > u) = 0. Let Ξ denote the event that

n−1
∑n

i=1wi(ĥ)ZiZ
⊤
i is invertible.

P (
√
n∥Mn(θ̂, ĥ)∥ > u)

= P
(√

n∥Mn(θ̂, ĥ)∥ > u|Ξ
)
P (Ξ) + P

(√
n∥Mn(θ̂, ĥ)∥ > u|Ξc

)
P (Ξc)

≤ P
(√

n∥Mn(θ̂, ĥ)∥ > u|Ξ
)
P (Ξ) + P (Ξc). (2.20)

Given Ξ, θ̂ = (n−1
∑n

i=1wi(ĥ)ZiZ
⊤
i )

−1(n−1
∑n

i=1wi(ĥ)ZiỸi) andMn(θ̂, ĥ) = 0. Thus,

P
(√

n∥Mn(θ̂, ĥ)∥ > u|Ξ
)
P (Ξ) = 0. (2.21)

Since ∥ĥ−h∗∥∞ = op(1) and X is a compact set in Rp, supa∈A,x∈X |wp(a;x, ξ̂)−

wp(a;x, ξ̂)| = op(1) and supt∈(0,L] |Ĝ(t) − G(t)| = op. As G(t) is bounded away from

0 by the regularity condition (C1), max1≤i≤n |wi(ĥ) − wi(h
∗)| = op(1), Therefore,

n−1
∑n

i=1wi(ĥ)ZiZ
⊤
i = n−1

∑n
i=1wi(h

∗)ZiZ
⊤
i + op(1) = E

[
wi(h

∗)ZiZ
⊤
i

]
+ op(1) =

E
[
ZiZ

⊤
i

]
+ op(1) by the strong law of large number. Then

lim
n→∞

P

(∥∥∥∥∥n−1

n∑
i=1

wi(ĥ)ZiZ
⊤
i − E

[
ZiZ

⊤
i

]∥∥∥∥∥ > λmin

)
= 0.
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If ∥n−1
∑n

i=1wi(ĥ)ZiZ
⊤
i − E

[
ZiZ

⊤
i

]
∥ < λmin, then ∀d ∈ R2 with ∥d∥ = 1,∥∥∥∥∥n−1

n∑
i=1

wi(ĥ)ZiZ
⊤
i d

∥∥∥∥∥ ≥
∥∥E [ZiZ

⊤
i

]
d
∥∥− ∥∥∥∥∥

(
n−1

n∑
i=1

wi(ĥ)ZiZ
⊤
i − E

[
ZiZ

⊤
i

])
d

∥∥∥∥∥
> λmin − λmin = 0,

which implies that Ξ. Therefore,

lim
n→∞

P (Ξc) ≤ lim
n→∞

P

(∥∥∥∥∥n−1

n∑
i=1

wi(ĥ)ZiZ
⊤
i − E

[
ZiZ

⊤
i

]∥∥∥∥∥ > λmin

)
= 0. (2.22)

Combining (2.20), (2.21), and (2.22) together yields that ∀u > 0,

lim
n→∞

P (
√
n∥Mn(θ̂, ĥ)∥ > u) = 0 + lim

n→∞
P (Ξc) = 0.

Thus, condition (1.1) is satisfied.

To verify condition (1.2) in CLK, ∀u > 0, it is easy to see that

inf
∥θ−θ∗∥>u

∥M(θ, h∗)−M(θ∗, h∗)∥ =
∥∥E [ZZ⊤] (θ − θ∗)

∥∥ ≥ λmin∥θ − θ∗∥ ≥ λminu.

Thus, condition (1.2) is satisfied.

By Condition (C1) and Remark 1.2.2, we have G(T ) ≥ τ/2, ∀G ∈ G. Consider

∥θ1 − θ∥ < u and ∥h1 − h∥∞ < u, where θ1,θ ∈ Θ, h1, h ∈ H, and u = o(1).

m(D,θ1, h1)−m(D,θ, h)

=
δfA(A)

fA(A|X, ξ1)G1(T )
Z(Ỹ − Z⊤θ1)−

δfA(A)

fA(A|X, ξ)G(T )
Z(Ỹ − Z⊤θ)

=

[
δfA(A)

fA(A|X, ξ1)G1(T )
− δfA(A)

fA(A|X, ξ)G(T )

]
Z(Ỹ − Z⊤θ1)

+
δfA(A)

fA(A|X, ξ)G(T )
ZZ⊤(θ1 − θ)

=

[
δfA(A)

fA(A|X, ξ1)G1(T )
− δfA(A)

fA(A|X, ξ)G1(T )

]
Z(Ỹ − Z⊤θ1)

+ δwp(A;X, ξ)

[
1

G1(T )
− 1

G(T )

]
Z(Ỹ − Z⊤θ1) +

δwp(A;X, ξ)

G(T )
ZZ⊤(θ1 − θ)

=: I1 + I2 + I3.

72



We first consider I2. As ∥h1 − h∥∞ < u,

E
[
I⊤2 I2

]
≤ 2

∥G1 −G∥2∞(
τ
2

(
τ
2
− u
))2{(logL)2E [w2

p(A;X, ξ)ZZ
⊤]+ E

[
w2

p(A;X, ξ)ZZ
⊤ZZ⊤] }

≤ c2∥G1 −G∥2∞, (2.23)

for some constant c2, where the second inequality follows from Remark 1.2.2.

We next evaluate I3. By Remark 1.2.2 again,

E
[
I⊤3 I3

]
≤ 4

τ 2
(θ1 − θ)⊤E

[
w2

p(A;X, ξ)ZZ
⊤ZZ⊤ (θ1 − θ)

]
≤ c3∥θ1 − θ∥2, (2.24)

for some constant c3.

We now assess I1. By (1.5) and the mean value theorem,

I1 =
δ

G1(T )
exp

(
−A

2

2

)[
σ1 exp

(
(A−X⊤β1)

2

2σ2
1

)
− σ exp

(
(A−X⊤β)2

2σ2

)]
Z(Ỹ − Z⊤θ)

=
δ

G1(T )

[
∂

∂ξ
wp(A;X, ξ̃)

]⊤
(ξ1 − ξ)Z(Ỹ − Z⊤θ),

where ξ̃ = (β̃
⊤
, σ̃)⊤ lies between ξ1 and ξ and its value depends on X and A. Noting

that X and Ω are two compact sets in Rd, according to Remark 1.2.2,

E
[
I⊤1 I1

]
≤ c1∥ξ1 − ξ∥2, (2.25)

for some constant c1. Combining (2.23), (2.24), and (2.25) together yields Equation

(3.2) in CLK with r = 2 and sj = 1.

Since Ω is a compact set in Rd and ∥G − G∗∥∞ ≤ τ/2 by Remark 1.2.2,

the covering number condition (3.3) in CLK that
∫∞
0

√
logN(v,H, ∥ · ∥∞)dv <∞ is

satisfied, Therefore, by Theorem 3 in CLK, for all positive values u = o(1),

sup
∥θ−θ∗∥≤u,∥h−h∗∥∞≤u

∥Mn(θ, h)−M(θ, h)−Mn(θ
∗, h∗)∥ = op(n

−1/2). (2.26)

By the law of large number Mn(θ
∗, h∗) = op(1). Thus,

sup
∥θ−θ∗∥≤u,∥h−h∗∥∞≤u

∥Mn(θ, h)−M(θ, h)∥ = op(1).

Condition (1.5) in CLK is satisfied.
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By Theorem 1 in CLK, θ̂ − θ∗ = op(1). This completes the proof of Theorem

1.2.1. □

Proof of Theorem 1.2.2: We prove the result by invoking Theorem 2 in CLK.

Thus, we need to check their conditions (2.1) - (2.6).

In the proof of Theorem 1.2.1, we have already verified the conditions (2.4)

and (2.5).

To verify the condition (2.1), as θ̂ is the solution ofMn(θ, ĥ) = 0, ∥Mn(θ̂, ĥ)∥ ≤

infθ∈Θ ∥Mn(θ, ĥ)∥. As θ̂ →p θ∗, ∀u > 0, limn→∞ P (∥θ̂ − θ∗∥ > u) = 0. Since θ∗ is

an interior point of Θ, we can find an u0 such that Θu0 ⊂ Θ.

If ∥θ̂−θ∗∥ ≤ u0, we obtain ∥Mn(θ̂, ĥ)∥ ≥ infθ∈Θ ∥Mn(θ, ĥ)∥ and subsequently

∥Mn(θ̂, ĥ)∥ = infθ∈Θ ∥Mn(θ, ĥ)∥. Thus, for any u > 0

lim
n→∞

P

(√
n
∣∣∣∥Mn(θ̂, ĥ)∥ − inf

θ∈Θ
∥Mn(θ, ĥ)∥

∣∣∣ > u

)
≤ lim

n→∞
P

(∣∣∣∥Mn(θ̂, ĥ)∥ − inf
θ∈Θ

∥Mn(θ, ĥ)∥
∣∣∣ > 0

)
≤ lim

n→∞
P (∥θ̂ − θ∗∥ > u0) = 0.

Thus, ∥Mn(θ̂, ĥ)∥ = infθ∈Θ ∥Mn(θ, ĥ)∥+ op(n
−1/2).

To verify the condition (2.2), it is straightforward to obtain that Γ1(θ, h
∗) =

E
[
w(D, h∗)ZZ⊤], which is continuous at θ = θ∗. In addition, Γ1(θ

∗, h∗) = E
[
ZZ⊤]

is of full rank. Thus, condition (2.2) is satisfied.
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To verify the condition (2.3), simple algebra yields that

Γ2(θ, h)(h1 − h) = lim
t→0

M(β, h+ t(h1 − h)))−M(β, h)

t

=E

[
lim
t→0

δ
{
wp(A;X, ξ + t(ξ1 − ξ)) [(G+ t(G1 −G))(T )]−1 − wp(A;Xi, ξ) [G(T )]

−1}
t

× Z(Ỹ − Z⊤θ)

]

=E

[
lim
t→0

δ {wp(A;X, ξ + t(ξ1 − ξ))− wp(A;Xi, ξ)}
(G+ t(G1 −G))(T )t

Z(Ỹ − Z⊤θ)

]
+ E

[
lim
t→0

δwp(A;X, ξ)
{
[(G+ t(G1 −G))(T )]−1 − [G(T )]−1}

t
Z(Ỹ − Z⊤θ)

]

=E

[[
∂

∂ξ
wp(A;X, ξ)

]⊤
(ξ1 − ξ)Z(Ỹ − Z⊤θ)

]

+ E

[
δ

G2(T )
[(G−G1)(T )]wp(A;X, ξ)Z(Ỹ − Z⊤θ)

]
.

By Condition (C1), ∀θ ∈ Θ, Γ2(θ, h
∗)(h1 − h∗) exists in all directions [h1 − h∗] ∈ H.

∀(θ, h) ∈ Θϵn ×Hϵn with a positive sequence ϵn = o(1).

(i) we show ∥M(θ, h)−M(θ, h∗)− Γ2(θ, h
∗)(h− h∗)∥ ≤ C∥h− h∗∥2∞.

M(θ, h)−M(θ, h∗)− Γ2(θ, h
∗)(h− h∗)

=E

{
δ

G(T )
[wp(A;X, ξ)− wp(A;X, ξ

∗)]Z(Ỹ − Z⊤θ)

}
+ E

{
δwp(A;X, ξ

∗)

[
1

G(T )
− 1

G∗(T )

]
Z(Ỹ − Z⊤θ)

}
− Γ2(θ, h

∗)(h− h∗).

By Taylor expansion and Remark 1.2.2,∥∥∥∥E { δ

G(T )
[wp(A;X, ξ)− wp(A;X, ξ

∗)]Z(Ỹ − Z⊤θ)

}
−

[[
∂

∂ξ
wp(A;X, ξ

∗)

]⊤
(ξ − ξ∗)Z(Ỹ − Z⊤θ)

]∥∥∥∥∥
=

∥∥∥∥E {(ξ − ξ∗)⊤
∂2

∂ξ2
wp(A;X, ξ̃)(ξ − ξ∗))Z(Ỹ − Z⊤θ)

}∥∥∥∥ ≤ C1∥ξ − ξ∗∥2∞,
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for some constant C1.∥∥∥∥∥E
{
δwp(A;X, ξ

∗)

[
1

G(T )
− 1

G∗(T )

]
Z(Ỹ − Z⊤θ)

}

− E

[
δ

G∗2(T )
[(G∗ −G)(T )]wp(A;X, ξ

∗)Z(Ỹ − Z⊤θ)

] ∥∥∥∥∥
=

∥∥∥∥E [ δ

G∗2(T )G(T )
[(G∗ −G)(T )]2wp(A;X, ξ

∗)Z(Ỹ − Z⊤θ)

]∥∥∥∥ ≤ C2∥G−G∗∥∞

for some constant C2. Combining the above two equations yields (i).

(ii) we show ∥Γ2(θ, h
∗)(h− h∗)− Γ2(θ

∗, h∗)(h− h∗)∥ = o(ϵn).

∥Γ2(θ, h
∗)(h− h∗)− Γ2(θ

∗, h∗)(h− h∗)∥

≤

∥∥∥∥∥∥∥E
exp(−A2

2

) − exp
(

(A−X⊤β∗)2

2σ∗2

)
(A−X⊤β∗)X

σ∗

exp
(

(A−X⊤β∗)2

2σ∗2

)(
1− (A−X⊤β∗)2

σ∗2

)


⊤

(ξ − ξ∗)ZZ⊤


∥∥∥∥∥∥∥ ∥θ − θ∗∥

+

∥∥∥∥E [ δ

G∗2(T )
[(G∗ −G)(T )]wp(A;X, ξ

∗)ZZ⊤
]∥∥∥∥ ∥θ − θ∗∥

= O(ϵ2n),

where the last equality follows from h ∈ Hϵn and Condition (C1). Therefore, condition

(2.3) is satisfied.

To verify the condition (2.6), by Theorem 1 in Lo and Singh (1986) and Con-

dition (C3),

Mn(θ
∗, h∗) + Γ2(θ

∗, h∗)(ĥ− h∗)

=n−1

n∑
i=1

m(Di,θ
∗, h∗) + n−1

n∑
i=1

η(Ai,Xi) + n−1

n∑
i=1

ψ(T̃i, δi) +Op(n
−3/4 log3/4 n),

76



where

η(Ai,Xi) = E

[
Z(Ỹ − Z⊤θ∗)

[
∂

∂ξ
wp(A;X, ξ)

]⊤]
I(ξ∗)−1

n∑
i=1

∂
∂ξ
fA(Ai;Xi, ξ

∗)

fA(Ai;Xi, ξ
∗)
(2.27)

ψ(T̃i, δi) =

∫
T ×A×X

ϕ(t; T̃i, δi)

G∗(t)
wp(a;x, ξ

∗)z(log t− z⊤θ∗)dFT,A,X(t, a,x), (2.28)

ϕ(t, T̃i, δi) =G∗(t)

∫ min(T̃i,t)

0

fC(s)ds

G∗2(s)(1− FT (s))
ds+

1
{
T̃i ≤ t, δi = 0

}
(1− FT (T̃i))G∗(T̃i)

,

and I(ξ∗) = σ∗−2

 XX⊤ 0

0 2

 ,

As m(Di,θ
∗, h∗) + η(Ai,Xi) +ψ(T̃i, δi) are independent random variables with mean

zero and finite variance. Let V denote the covariance matrix of (m(Di,θ
∗, h∗) +

η(Ai,Xi)+ψ(T̃i, δi)). by the central limit theorem,
√
n
(
Mn(θ

∗, h∗) + Γ2(θ
∗, h∗)(ĥ− h∗)

)
→

N(0,V). Thus, condition (2.6) is satisfied. By Theorem 2 in CLK,

√
n(
√

θ̂ − θ∗) →d N(0, (E[ZZ⊤])−1V(E[ZZ⊤])−1.

This completes the proof of Theorem 1.2.2. □
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