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ABSTRACT 

THE EVALUATION OF ACUTE:CHRONIC WORKLOAD RATIOS FOR 

INTEGRATION INTO THE INJURY MITIGATION STRATEGY OF A SPORT 

ORGANIZATION 

Matthew K. Daunis 

March 18, 2024 

The use of the acute:chronic workload ratio (ACWR) is a strategy presented as a 

means of mitigating the injury risk athletes are exposed to from their regular participation 

in sport. However, the current literature is inconclusive towards its effectiveness at 

actually mitigating injuries. The purpose of this dissertation was to determine if ACWR 

should be integrated into an injury mitigation strategy of a sport organization and, if so, 

what input, computation, and injury-related methodologies should be used with it. 

Retrospective injury data and velocity-based distances from training and 

competition demands from collegiate women’s field hockey athletes were used to 

investigate the significance of ACWR methodologies within the context of ACWR 

computation, injury likelihood profiling, and injury mitigation strategy (IMS) 

performance. Factors included injury definition and lag period, input, averaging and 

coupling method, and acute and chronic time frame. Levels within each factor were based 

on methods from the literature. A case study was also presented investigating the 

accuracy, sensitivity, and specificity of all configurations using a threshold optimized for 

peak accuracy. A selected configuration was then used to evaluate the performance of an 
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IMS using varied thresholds, the injury likelihood profile, and flagged injuries relative to 

a seasonal timeline and injury type. 

Within each application, the effects of a given factor should not be interpreted 

without considering its interactions with other factors and factor levels. The impact of 

each factor fell within a hierarchical order where considerations for injury criterion 

factors were more important than input and considerations for input were more important 

than factors within the ACWR computation model. The injury likelihood profile, 

performance curves, and flagged injuries should be used to evaluate the development of 

the ACWR criteria. 

This dissertation concluded the use of ACWR provides information that supports 

injury mitigation decisions and efforts. However, the utility of ACWR depends on how it 

is applied, and there is not a universal configuration for its implementation. Further 

research should be directed at backtesting and optimizing injury mitigation strategies to 

maximize their practical impact. 
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CHAPTER 1 

INTRODUCTION 

A prominent problem of a sport organization promoting the health and well-being 

of its athletes is mitigating the injury risk athletes are exposed to from their regular 

participation in sport. A potential solution for that problem is to progressively develop an 

injury mitigation strategy and utilizing the acute:chronic workload ratio (ACWR) may be 

a tactic to support that strategy. Sport practitioners can use the ratio to quantify the 

physical demand of sport-related activities, link that demand to injuries, and then re-

structure or progress sport development so athletes become more resilient to those 

injuries. Because sport-related injuries are a multifactorial problem, ACWR can be 

integrated into a multifactorial solution. However, the current research encompassing 

ACWR is inconclusive towards how effective it is at mitigating injuries. The purpose of 

this dissertation was to determine if ACWR should be integrated into an injury mitigation 

strategy and, if so, what input, computation, and injury-related methodologies should be 

used with it. 

When evaluating whether ACWR should be part of an injury mitigation strategy, 

knowledge is needed with respect to how injuries occur, how to link sport demand to 

injuries, and how to quantify sport demands. This chapter describes factors influencing 

sport injury aetiology, discusses the quantification of volume and intensity in sport using
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global positioning systems (GPS) and reviews the utility and computation of ACWR’s. 

This chapter also summarizes how the following chapters will investigate if ACWR’s 

should be used to mitigate injuries from sport participation. 

 

Sport Injury Aetiology 

 Kalkhoven et al. proposed a generalized framework for athletic injury aetiology 

that emphasized the interplay between tissue loading and tolerance and considered the 

impact of various factors on tissue resilience and failure (Kalkhoven, Watsford, and 

Impellizzeri 2020). Bones, ligaments, tendons, and skeletal muscles were the bodily 

tissues included within the framework, and the primary factors leading to injuries 

consisted of individual physiology, tissue mechanical properties, and applied external 

forces. 

Physiology determines the mechanical properties of tissues and the physical 

performance attributes of an athlete, which contribute to the forces an athlete is exposed 

to and the capacity of their tissues to tolerate the load. Factors influencing the physiology 

of an individual include modifiable and non-modifiable intrinsic factors and extrinsic 

factors. Intrinsic factors occur within an individual while extrinsic factors are external, 

and modifiable factors can be changed while non-modifiable cannot. Modifiable, intrinsic 

factors include muscle structure, tendon structure, bone mineral content, body 

composition, and others. Non-modifiable, intrinsic factors include age, genetics, 

anatomy, menstruation, and others. Extrinsic factors include workload, training method, 

nutrition, medication, and others. Though many factors contribute to injuries, workload 
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will be the primary focus for developing the relationship between acute:chronic workload 

ratios and injuries. 

Mechanical properties, such as ultimate strength and stiffness, govern how a 

tissue responds to an applied load, and some tissues can acutely adapt to the loads they 

are exposed to while others require chronic adaptation. Strength of a tissue refers to its 

capacity to withstand an applied load, while stiffness describes the relationship between 

an applied force and the deformation of a tissue. Stiffness also represents the ratio of 

stress to strain within the elastic region of deformation (Hooke’s Law); though specific 

tissues can have different behaviors than others (Baumgart 2000; Rodgers and Cavanagh 

1984). When an athlete engages in a sport-related activity, the workload they accumulate 

induces stresses and strains on their tissues, and the impact of those stresses and strains 

are accommodated by tissue strength and stiffness. 

Tissues can undergo loading from external forces that vary in magnitude, 

direction, and frequency, and the interaction between external forces and strength 

contribute to the load tolerance of a tissue. The loading pattern of a given force can vary 

from discrete to continuous to cyclical with high to low magnitudes, and the resulting 

damage becomes dependent on the loading pattern and number of cycles. The external 

forces experienced by an athlete are specific to the demands of training and competition, 

and those demands can be generally represented by the volume, intensity, and frequency 

of workloads. 

The combination of individual physiology, tissue mechanical properties, and 

applied external force induce stresses and strains on the respective tissue that can lead to 

microdamage and macrodamage. Microdamage occurs when a tissue experiences 
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mechanical fatigue in response to cyclic or repetitive loading, and it is characterized by 

the accumulation of tissue damage and the progressive diminishment of stiffness and 

strength (Edwards 2018). The resulting physiological response to microdamage changes 

the mechanical properties of the tissue through acute and chronic adaptations that make 

the tissue more resilient to future exposures of similar loads. If further microdamage 

occurs before an adaptation can make a tissue more resilient, an overuse or chronic injury 

occurs. Macrodamage results in an acute injury when there is a failure in the structure of 

a tissue. Failure occurs when the strength of a structure or material is exceeded by 

excessive stress and strain caused by either the application of a singular high-magnitude 

stress or alternatively repeated applications of load at some percentage of a material’s 

ultimate strength (Peterson 1950). Though tissue loading and tolerance may be the direct 

mechanisms of an injury, indirect factors that impair the function of a tissue could also 

contribute to an injury. 

 

GPS Application to Sport 

 Training and competition workloads contribute to tissue loading, and the adverse 

interactions of that loading with an individual’s physiology and tissue material properties 

can lead to injuries. In outdoor team sports, training and competition workloads can be 

quantified using a global navigation satellite system (GNSS), such as a global positioning 

system (GPS). A GPS satellite transmits a radio signal containing its position and the 

time the signal was sent, and a GPS receiver receives the signal at some final time. The 

receiver determines the time it took for the signal to travel from the satellite to the 

receiver and then calculates the distance from the satellite to the receiver by multiplying 
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the travel time by the speed of the signal (speed of light). When the distances of the 

receiver from at least three satellites are known, the receiver can determine its latitudinal 

and longitudinal position using trilateration. After the receiver identifies two positions, 

the distance the receiver has traveled is determined by the fundamental equations and 

error corrections of a company’s proprietary processes. Techniques have been developed 

to improve the accuracy of GPS data with some systems providing positioning within 

inches or centimeters of the actual object, and movement demands measured with 10 Hz 

GPS devices have been shown to have greater validity and inter-unit reliability than 1, 5, 

and 15 Hz devices (Johnston et al. 2014). 

The GNSS within Optimeye (Catapult Sports, X4) and Vector (Catapult Sports, 

S7) devices and their proprietary data processing has been externally accessed to provide 

valid measures of position, distance, and velocity as well as inter-unit reliability. Linear 

and multi-directional movements were performed in a small space and determined to be 

comparable to metrics from a Vicon motion capture system. Within training 

environments, maximum velocities were comparable to those measured by a Stalker ATS 

II radar system while total distances were comparable to measured distances from a tape 

measure. Distance and position were also accessed at varying locations inside a stadium 

that could be affected by the structure of the stadium. Furthermore, Optimeye and Vector 

devices receive satellite signals at 10 Hz, and the velocity-based metrics are processed at 

the 10 Hz level. 

Velocity-based distances of a session represent the accumulation of the respective 

distance within active periods and rotations, established by the sport practitioner live or 

retroactively, across an activity. Total distance is the accumulated distance from a 
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session. A velocity-based distance is the distance accumulated above or below a velocity 

or within a velocity band. The velocity bands used by the University of Louisville 

Athletics Sport Science department for female athletes are: less than 0.10 m/s for velocity 

band 1, 0.10 to less than 1.70 m/s for velocity band 2, 1.70 to less than 3.00 m/s for 

velocity band 3, 3.00 to less than 4.00 m/s for velocity band 4, 4.00 to less than 5.00 m/s 

for velocity band 5, 5.00 to less than 6.00 m/s for velocity band 6, 6.00 to less than 7.00 

m/s for velocity band 7, 7.00 m/s and greater for velocity band 8. The velocity bands can 

be sequentially added together to create 36 different velocity-based distances. The 

literature currently investigates the use of velocity-based distances as inputs to ACWR, 

such as low, moderate, and high intensity running distances; low speed, moderate speed, 

high speed, and very high speed distances; and various other distances. 

 

Acute:Chronic Workload Ratios and Model Configuration 

The acute:chronic workload ratio (ACWR) is an index of an athlete’s current 

workload from training and competition relative to what the athlete is prepared for 

(Gabbett 2016) and has been used to associate workloads athletes are exposed to from 

sport participation to the injuries resulting from that participation (Soligard et al. 2016). 

ACWR was originally introduced as training-stress balance and was calculated by 

dividing acute workload (AW) by chronic workload (CW), where AW and CW were the 

averages of total balls bowled in cricket over the previous week and four weeks, 

respectively (Hulin et al. 2013). However, the literature has since shown many inputs and 

configurations being used to determine ACWR with cautioned recommendations 

regarding which methodologies are effective for mitigating injuries from sport 
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participation (Andrade et al. 2020; Griffin et al. 2020). When considering ACWR as part 

of an injury mitigation strategy, averaging method, coupling method, and time frames for 

the acute and chronic workloads should be evaluated with respect to a given input. 

The moving average method is separately applied to the numerator and 

denominator of the ACWR and has been implemented as a rolling average (RA) or 

exponentially weighted moving average (EWMA) on a daily or weekly basis (Andrade et 

al. 2020; Griffin et al. 2020). RA’s apply equal weights to each load while EWMA’s 

apply non-linear decreasing weights to each load as the time from which that load 

occurred increases from a given day (Williams et al. 2016). RA ACWR is determined by 

dividing the average workload of the acute time frame by the average workload of the 

chronic time frame. EWMA has been suggested to be a better model than RA because it 

accounts for the decaying nature of fitness and fatigue effects over time and the non-

linearity of injury occurrence and workload (Williams et al. 2016), where acute responses 

and chronic adaptations in bodily tissues affect cellular disturbances during subsequent 

training sessions (Hawley 2002). EWMA ACWR is determined by dividing the acute 

workload EWMA by the chronic workload EWMA. EWMA for the respective workload 

is calculated using 

 𝐸𝑊𝑀𝐴𝑡𝑜𝑑𝑎𝑦 = 𝐿𝑜𝑎𝑑𝑡𝑜𝑑𝑎𝑦 × 𝜆𝑎 + ((1 − 𝜆𝑎) × 𝐸𝑊𝑀𝐴𝑦𝑒𝑠𝑡𝑒𝑟𝑑𝑎𝑦) (1) 

where 𝜆𝑎 is the degree of decay. The degree of decay is calculated using 

 𝜆𝑎 = 2/(𝑁 + 1) (2) 

where 𝑁 is the time decay constant, which is the acute or chronic time frame for the 

respective EWMA. 
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Coupling method affects the loads used within the chronic workload. When 

ACWR is coupled, the loads used within the acute workload are also included in the 

chronic workload. When a coupled ACWR numerator and denominator have the same 

loads, the ratio of total acute and chronic loads will not exceed one. As a result, the 

theoretical limit of a coupled ACWR will be determined by the ratio of the chronic and 

acute time frame. When using 1-week acute and 4-week chronic time frames, ACWR 

will not exceed four (Windt and Gabbett 2019). This can practically occur at the onset of 

training or following an extended period of no training. Furthermore, a coupled ACWR 

may be subjected to biased inferences from a spurious correlation (Lolli et al. 2019), 

where a correlation exists between two variables irrespective of any true physiological 

association between those variables (Pearson 1897; Tu and Gilthorpe 2007). When 

ACWR is not coupled, the chronic workload excludes the loads used within the acute 

workload allowing for the ratio of total acute and chronic loads to exceed one, and 

ACWR is only limited by the data used within the calculation. 

 Physiologically, acute responses to training are the cellular alterations that occur 

following a single session and chronic adaptations are the modifications in cells that 

persist for extended periods of time (Booth and Thomason 1991). Consequently, acute 

time frames of 3-14 days and chronic time frames of 2-8 weeks have been used within 

ACWR computations to quantify the physical demand associated with acute and chronic 

responses to training (Griffin et al. 2020; Andrade et al. 2020). It has also been suggested 

that acute and chronic time frame selection may be specific to the periodized demands or 

training structures of a sport (Griffin et al. 2020; Andrade et al. 2020; Carey et al. 2017).  
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Chapter 2 Overview 

 Many ACWR inputs and computational configurations have been investigated in 

the literature, but it is unclear which combination(s) should be used to effectively 

mitigate injuries. Though studies have investigated the main effects of some computation 

factors, the methodologies of those studies held all other factors except one constant and 

did not include interaction effects. Consequently, Chapter 2 was used to vet ACWR 

methodologies in the literature, and the results were compared to corresponding effects 

on injury likelihood and peak accuracy of an injury mitigation strategy in Chapters 3 and 

4, respectively. 

Acute:chronic workload ratios require an input and computation configuration. 

The inputs used to determine ACWR consisted of velocity-based distances from GNSS 

signal receiving devices. The computation configuration included an averaging method, 

coupling method, acute time frame, and chronic time frame. The averaging method 

contained rolling average and exponentially weight moving average factor levels, while 

the coupling method contained coupled and not coupled factor levels. The acute and 

chronic time frames ranged from 3-14 days and 2-8 weeks, respectively. 

The purpose of Chapter 2 was to determine the main and interaction effects of 

input and computation factors and factor levels on ACWR. Factors with significant 

effects were further investigated to determine which factor levels within the respective 

factor had differing effects and how the differing effects affected ACWR. 

 



 

 10 

Chapter 3 Overview 

 Injury likelihood is commonly associated with ACWR within the literature and 

used to make decisions regarding the management of training and competition workloads 

in sport environments. In order to provide support for the use of ACWR in a practical 

injury mitigation strategy, the ACWR and additional injury likelihood methodologies 

need to be evaluated together. 

An injury likelihood profile introduces effects from injury definitions, injury lag 

periods, binning processes, and curve fitting functions in addition to ACWR inputs and 

computation configurations. A general and specific injury definition was included in 

Chapter 3 as well as a range of injury lag periods from no lag to 28 days. A binning 

optimization approach was used, which is not currently featured in the injury likelihood 

literature, and a spline function was created for each profile using a standard procedure. 

Acute:chronic workload ratios and the corresponding inputs, averaging methods, 

coupling methods, acute time frames, and chronic time frames from Chapter 2 were 

included in this chapter. 

The purpose of Chapter 3 was to determine the effects of input and computation 

factors and factor levels on injury likelihood. Factors with significant effects were further 

investigated to determine which factor levels within the respective factor had differing 

effects and how the differing effects affected injury likelihood. The factors and factor 

levels that affect ACWR in Chapter 2 may no longer be significant to injury likelihood 

due to the additional methodologies for determining it. 
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Chapter 4 Overview 

 Accuracy is a tool used in clinical research to assess how well a given 

intervention correctly identifies a true event. When developing an injury mitigation 

strategy, performance parameters such as accuracy may be more practical than injury 

likelihood because it is based on actual outcomes rather than the probability of an 

outcome caused by sport participation. Though some ACWR studies have briefly 

mentioned performance parameters such as sensitivity and specificity, no studies were 

identified that have investigated the effects of methodological decisions on accuracy. 

Methodologies that have a significant increasing effect on accuracy would be preferred 

over others. 

Similar to injury likelihood, the accuracy of an injury mitigation strategy is based 

on configurations consisting of ACWR input, averaging method, coupling method, and 

acute and chronic time frames in addition to injury definition and injury lag periods. 

Chapter 4 presents an approach to evaluating methodological configurations by varying 

an ACWR threshold to maximize the accuracy of each configuration relative to an injury 

criterion. 

The purpose of Chapter 4 was to determine the effects of input and computation 

factors and factor levels on the accuracy of an injury mitigation strategy. Factors with 

significant effects were further investigated to determine which factor levels within the 

respective factor had differing effects and whether differing effects increased, decreased, 

or had no effect on accuracy. The factors and factor levels that affect ACWR in Chapter 2 

may no longer be significant to accuracy due to the additional methodologies for 

determining it. Furthermore, the factors and factor levels that affect injury likelihood in 
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Chapter 3 may have different effects than those on accuracy even though the same 

methodological factors are used. 

 

Chapter 5 Overview 

 Due to the vast matrix of ACWR configurations possible from the literature, there 

may still be several potential configurations for an IMS after factor levels that are not 

statistically different are reduced. Those configurations could be further evaluated by 

backtesting strategies and optimizing the variable parameters within the strategies. 

Though backtesting is beyond the scope of this dissertation, this chapter explores 

opportunities for integrating backtesting and optimization into the development of injury 

mitigation strategies. 

 The purpose of Chapter 5 was to present a retrospective case study that 

investigated various aspects of an ACWR-based injury mitigation strategy. Those aspects 

include the sensitivity and specificity of all methodological configurations optimized for 

peak accuracy in addition to the injury likelihood profile and accuracy, sensitivity, and 

specificity of a strategy relative to an ACWR threshold for a selected configuration. The 

flagged and missed injury instances relative to the timeline of the competitive season and 

the types of injuries that occur are also discussed. 
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CHAPTER 2 

EFFECTS OF VELOCITY-BASED INPUTS AND COMPUTATION METHODS ON 

ACUTE:CHRONIC WORKLOAD RATIOS IN WOMEN’S COLLEGIATE FIELD 

HOCKEY 

Background and Significance 

The acute:chronic workload ratio (ACWR) is a tool presented within the literature 

as a means of quantifying an athlete’s current workload from training and competition 

relative to what the athlete is prepared for (Gabbett 2016) and has been used to associate 

the workloads athletes are exposed to from sport participation to the injuries resulting 

from that participation (Soligard et al. 2016). However, the literature has shown many 

model inputs and computational configurations being used to determine ACWR with 

cautioned recommendations regarding which methodologies yield ACWR values that 

better inform the development of injury mitigating strategies (Andrade et al. 2020; 

Griffin et al. 2020). 

 Global positioning system (GPS) based measures are the most common external 

training metrics that have been used as ACWR inputs (Andrade et al. 2020). Those 

metrics have consisted of total distance; low-, moderate-, and high-intensity running; 

low-, moderate-, high-, and very high-speed distances; sprint distance; and others with 

many of the same metrics using inconsistent velocity bands or thresholds between 

studies. The literature currently shows ACWR is associated with injury risk when used
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with measures of external training load (Griffin et al. 2020); however, it does not 

conclusively support or reject the use of any specific velocity-based distance (VBD) as 

the input to ACWR. Furthermore, no studies were identified that have investigated the 

interaction effects of the input with the coupling and averaging methods or acute and 

chronic time frames of the computational model on ACWR values. 

 Murray et al. investigated differences in ACWR calculation and injury risk 

between models using rolling average (RA) and exponentially weight moving average 

(EWMA) methods (Nicholas B. Murray et al. 2016). The study included six inputs, five 

of which were VBDs, from Australian Football and computed coupled ACWRs with 7- 

and 28-day acute and chronic time frames, respectively. The results showed the averaging 

methods were significantly different when using a one-way analysis of variance, and 

ACWRs from the EWMA model were lower than those from the RA model for moderate 

to very high ACWR ranges when using a logistic regression analysis. However, input and 

averaging method differences were only discussed in isolation and in relation to between-

model variances within sections of injury likelihood curves, and their interactions were 

not included. While the objective of the study was to determine if differences existed 

between RA and EWMA models, interaction effects with other components on ACWR 

were not considered. 

 Gabbett et al. investigated ACWRs with coupled and not coupled methods 

(Gabbett et al. 2019). ACWRs were computed with 1-week and 4-week acute and chronic 

time frames, respectively. The study did not include a VBD for the input and did not 

specify the averaging method used. However, coupled and uncoupled ACWRs were 

shown to have a quadratic relationship with a R2 value of 0.9973. The study did not 
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assess the effect of coupling method on ACWR, but it suggested either method could be 

used if the ACWRs were interpreted based on criteria specific to the method. While the 

purpose of the study was to examine the association between coupled and uncoupled 

ACWRs and injury risk, the study did not consider interaction effects with other 

components on ACWR. 

 Carey et al. investigated ACWRs with different acute and chronic time frames 

(Carey et al. 2017). The study computed 56 ACWRs for six inputs, three of which were 

VBDs, using RA and coupled methods. Acute time frames were 2, 3, 4, 5, 6, 7, 8, and 9 

days. Chronic time frames were 14, 18, 21, 24, 28, 32, and 35 days. The study concluded 

ACWRs computed using moderate-intensity running with a 3- or 6-day acute time frame 

with a 21- or 28-day chronic time frame were most associated with injury risk with 

respect to the data used, and it suggested the selection of acute and chronic time frames 

may be related to the training and competition schedule. While the aim of the study was 

to investigate effects on injury likelihood, the effects of acute and chronic time frames on 

ACWR were not investigated. The methods of the study also fixed the averaging and 

coupling method with a proposed daily ACWR formula and subsequently did not include 

their interaction effects with other components. 

 

Specific Aims 

 Due to the inconclusive results regarding how best to calculate ACWR (Andrade 

et al. 2020) and adapt models to specific applications (Sampson, Fullagar, and Murray 

2017); components should be evaluated within the contextual needs of a sport 

organization prior to their integration into an IMS. The purpose of this study was to 
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investigate the effects of input, averaging method, coupling method, acute time frame, 

and chronic time frame on ACWR. The results establish a component hierarchy, which 

indicates component redundancies, that informs methodological decisions regarding the 

practical application of ACWR and subsequent analyses, such as injury likelihood and 

the accuracy, sensitivity, and specificity of an IMS. 

The specific aims of this chapter were: 

1. Determine if input (i.e., velocity-based distances) had a main effect or interaction 

effect with averaging method, coupling method, acute time frame, and/or chronic 

time frame on ACWR. 

• Hypothesis: The null hypothesis was input did not have a main effect on 

ACWR, and the alternate hypothesis was input had a main effect. 

• Hypothesis: The null hypothesis was input did not have an interaction 

effect on ACWR, and the alternate hypothesis was input had an interaction 

effect. 

• Key Question: If a null hypothesis was rejected, which input levels had a 

not different effect on ACWR? 

• Key Question: If a null hypothesis was rejected and the levels were 

different, what was the effect of the different input levels on ACWR? 

2. Determine if averaging method (i.e., RA and EWMA) had a main effect or 

interaction effect with input, coupling method, acute time frame, and/or chronic 

time frame on ACWR. 
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• Hypothesis: The null hypothesis was averaging method did not have a 

main effect on ACWR, and the alternate hypothesis was averaging method 

had a main effect. 

• Hypothesis: The null hypothesis was averaging method did not have an 

interaction effect on ACWR, and the alternate hypothesis was averaging 

method had an interaction effect. 

• Key Question: If a null hypothesis was rejected, which levels within 

averaging method had a not different effect on ACWR? 

• Key Question: If a null hypothesis was rejected and the levels were 

different, what was the effect of the different averaging method levels on 

ACWR? 

3. Determine if coupling method (i.e., coupled and not coupled) had a main effect or 

interaction effect with input, averaging method, acute time frame, and/or chronic 

time frame on ACWR. 

• Hypothesis: The null hypothesis was coupling method did not have a main 

effect on ACWR, and the alternate hypothesis was coupling method had a 

main effect. 

• Hypothesis: The null hypothesis was coupling method did not have an 

interaction effect on ACWR, and the alternate hypothesis was coupling 

method had an interaction effect. 

• Key Question: If a null hypothesis was rejected, which levels within 

coupling method had a not different effect on ACWR? 
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• Key Question: If a null hypothesis was rejected and the levels were 

different, what was the effect of the different coupling method levels on 

ACWR? 

4. Determine if acute time frame (i.e., 3-14 days) had a main effect or interaction 

effect with input, averaging method, coupling method, and/or chronic time frame 

effect on ACWR. 

• Hypothesis: The null hypothesis was acute time frame did not have a main 

effect on ACWR, and the alternate hypothesis was acute time frame had a 

main effect. 

• Hypothesis: The null hypothesis was acute time frame did not have an 

interaction effect on ACWR, and the alternate hypothesis was acute time 

frame had an interaction effect. 

• Key Question: If a null hypothesis was rejected, which levels within acute 

time frame had a not different effect on ACWR? 

• Key Question: If a null hypothesis was rejected and the levels were 

different, what was the effect of the different acute time frame levels on 

ACWR? 

5. Determine if chronic time frame (i.e., 2-8 weeks) had a main effect or interaction 

effect with input, averaging method, coupling method, and/or acute time frame on 

ACWR. 

• Hypothesis: The null hypothesis was chronic time frame did not have a 

main effect on ACWR, and the alternate hypothesis was chronic time 

frame had a main effect. 
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• Hypothesis: The null hypothesis was chronic time frame did not have an 

interaction effect on ACWR, and the alternate hypothesis was chronic time 

frame had an interaction effect. 

• Key Question: If a null hypothesis was rejected, which levels within 

chronic time frame had a not different effect on ACWR? 

• Key Question: If a null hypothesis was rejected and the levels were 

different, what was the effect of the different chronic time frame levels on 

ACWR? 

 

Methodology 

 This study was approved by the University of Louisville Internal Review Board. 

Written informed consent was obtained from each participant, when possible. Written 

informed consent was waived by the review board when its acquisition was not 

practically obtainable (i.e. subjects were no longer affiliated with the respective 

organization). 

Subjects 

 Female student-athletes on the University of Louisville field hockey team during 

the 2017-18 to 2022-23 pre-seasons, in-seasons, and post-seasons were invited to 

participate as subjects. There were 55 subjects included in this study. 

Data Collection 

 Retrospective VBDs from all training and competition activities of each subject 

during their respective pre-seasons, in-seasons, and post-seasons were included. Data 

from the 2020-21 season was excluded due to events associated with COVID-19. 
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Optimeye devices (Catapult Sports, Melbourne, Australia) were used during the 2017-18 

to 2019-20 seasons, and Vector devices (Catapult Sports, Melbourne, Australia) were 

used during the 2021-22 and 2022-23 seasons. Session metrics were quantified using the 

OpenField Console (Catapult Sports, Melbourne, Australia) and represented the 

accumulation of a respective metric within active periods and rotations, established by a 

sport practitioner live or retroactively, across the activity. The session metrics consisted 

of the distances accumulated within eight separate velocity bands. The absolute velocity 

bands used by University of Louisville Athletics for female athletes were: less than 0.10 

m/s for velocity band 1, 0.10 to less than 1.70 m/s for velocity band 2, 1.70 to less than 

3.00 m/s for velocity band 3, 3.00 to less than 4.00 m/s for velocity band 4, 4.00 to less 

than 5.00 m/s for velocity band 5, 5.00 to less than 6.00 m/s for velocity band 6, 6.00 to 

less than 7.00 m/s for velocity band 7, 7.00 m/s and greater for velocity band 8. 

Data Processing 

Acute:chronic workload ratios were determined for each input from each subject 

within each session using RA and EWMA methods with coupled and not coupled 

approaches using acute time frames of 3, 5, 7, 10, and 14 days and chronic time frames of 

14, 21, 28, 35, 42, 49, and 56 days. Acute:chronic workload ratios were calculated using 

 𝐴𝐶𝑊𝑅 =
𝑊𝑎

𝑊𝑐
 (3) 

where 𝑊𝑎 was the acute workload and 𝑊𝑐 was the chronic workload (Hulin et al. 2013). 

Inputs consisted of thirty-six VBDs determined by sequentially adding together the 

distances accumulated within each velocity band (e.g., distance from velocity band 1, 

distance from velocity bands 2-5, distance from velocity bands 1-8, etc.). Acute and 

chronic workloads were calculated for the EWMA method using 
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 𝐸𝑊𝑀𝐴𝑠 = [𝐿𝑠 𝐿𝑠−1 𝐿𝑠−2 ⋯ 𝐿𝑠−𝑖] ∙

[
 
 
 
 

𝑊𝑠

𝑊𝑠−1

𝑊𝑠−2

⋮
𝑊𝑠−𝑖 ]

 
 
 
 

 (4) 

where 𝐿 was the load of the session with respect to session 𝑠, 𝑖 was an index ranging 

from 0 to 𝑁-1, 𝑁 was the respective acute or chronic time frame, and 𝑊 was the 

weighting factor for the corresponding load. Each weighting factor was calculated using 

 𝑊𝑠−𝑖 = 𝜆(1 − 𝜆)𝑖 (5) 

where 𝜆 was the degree of decay from Equation (2. Acute and chronic workloads were 

calculated for the RA method using 

 𝑅𝐴𝑠 = [𝐿𝑠 𝐿𝑠−1 𝐿𝑠−2 ⋯ 𝐿𝑠−𝑖] ∙

[
 
 
 
 
1
1
1
⋮
1]
 
 
 
 

∙
1

𝑁
 . (6) 

For RA or EWMA cases where the chronic workload was not coupled with the acute 

workload, the loads within the chronic workload that were associated with the acute 

workload were replaced with zeros and 𝑁 within the chronic workload was the difference 

between the respective chronic and acute time frame. The acute and chronic workloads 

presented the product of 1x𝑁 and 𝑁x1 matrices that resulted in scalar values, which 

indicated the ACWR of one subject for a given session. 

At the beginning of each season, ACWRs where the number of sessions was less 

than the number of days in the chronic time frame were excluded due to the initialization 

phase of ACWR computations. Any ACWR configuration where the number of sessions 

within the acute time frame was greater than or equal to the number of sessions within the 

chronic time frame (e.g., configurations with a 14-day acute and chronic time frame) 
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were also excluded. Based on the data processing steps, there were 128 unique ACWR 

computation configurations used with each input resulting in 4608 total ACWR groups. 

Outliers within each group were identified using the interquartile range method and 

removed. 

The remaining ACWRs within each group were interpolated to values between 

0% and 100% of their respective range due to absolute ACWRs potentially impacting the 

means and dispersions within an analysis of variance (ANOVA). For example, coupled 

ACWRs with a 7-day acute time frame and 21-day chronic time frame could theoretically 

range from 0 to 3, while coupled ACWRs with a 3-day acute time frame and 42-day 

chronic time frame could theoretically range from 0 to 14. Consequently, different effects 

could be observed between absolute and relative ACWRs, but the differences would not 

have any practical significance when the absolute and relative ACWRs from the same 

configuration are evaluated with equivalent criteria. 

Statistical Analysis 

 The use of a desktop computer, rather than a supercomputing mainframe, 

necessitated the statistical analysis to be conducted in a two-stage approach using Minitab 

12.4.1 (Minitab, LLC, State College, Pennsylvania). For the first stage, a general linear 

mixed model (GLMM) ANOVA was used to identify main effects of each factor (i.e., 

model input, averaging method, coupling method, acute time frame, and chronic time 

frame) on ACWR. Model input had thirty-six VBD levels. Averaging method had two 

levels of RA and EWMA. Coupling method had two levels of coupled and not coupled. 

Acute time frame had five levels of 3, 5, 7, 10, and 14 days. Chronic time frame had 

seven levels of 14, 21, 28, 35, 42, 49, and 56 days. Subject was included as a blocking 
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factor to control for inherent inter-subject variability. The response variable was ACWR 

expressed as a percentage of the respective group distribution, and only main effects were 

included in the model. Factors with a p-value less than 0.05 were considered to be 

statistically significant and included in the Tukey test, which was used to identify levels 

within each factor that were not statistically different. After the Tukey test was 

performed, levels within each factor that were not statistically different as other levels 

were removed from the dataset for the second GLMM ANOVA. For the second stage, a 

GLMM ANOVA was used to determine the interaction effects between factors on 

ACWR. All interactions between factors with a statistically significant main effect were 

included in the model. Interaction effects with a p-value less than 0.05 were considered to 

be statistically significant. Factorial plots were then generated for significant two-factor 

interactions to assess whether their impact on ACWR depended on the level of one of the 

factors. 

 

Results  

Main Effects and Tukey Test 

 Input, averaging method, coupling method, acute time frame, and chronic time 

frame each had a statistically significant main effect on ACWR (p-values  0.001). The 

null hypothesis associated with the main effect of each factor was rejected, and the 

alternate hypothesis was accepted. All five factors were included in the subsequent Tukey 

test. The Tukey test results for input, averaging method, coupling method, acute time 

frame, and chronic time frame following the main effects analysis are shown in Tables 1-

5, respectively. 
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Table 1. Tukey test results for input in association with ACWR. 

Input n Mean (%) Grouping 

VBD bands 1-4 572416 49.458 A                     

VBD bands 1-6 572627 49.431 A B                   

VBD bands 2-4 572367 49.427 A B                   

VBD bands 2-5 572441 49.414 A B                   

VBD bands 2-3 571860 49.404 A B                   

VBD bands 2-8 572553 49.399 A B                   

VBD bands 1-5 572492 49.398 A B                   

VBD bands 1-8 572607 49.394 A B                   

VBD bands 2-7 572653 49.391 A B                   

VBD bands 1-3 571912 49.390 A B                   

VBD bands 2-6 572580 49.386 A B C                 

VBD bands 1-7 572699 49.386 A B C                 

VBD band 4 574376 49.383 A B C                 

VBD bands 3-4 572795 49.379 A B C                 

VBD band 2 573615 49.372 A B C                 

VBD bands 3-7 573343 49.359 A B C D               

VBD bands 3-8 573236 49.358 A B C D               

VBD bands 3-5 573168 49.356 A B C D               

VBD bands 3-6 573295 49.339 A B C D E             

VBD bands 1-2 573636 49.324   B C D E             

VBD bands 4-5 574847 49.318   B C D E             

VBD band 3 571407 49.306   B C D E             

VBD bands 4-6 574756 49.256     C D E             

VBD bands 4-8 574752 49.238       D E             

VBD bands 4-7 574887 49.220         E             

VBD band 1 572464 49.065           F           

VBD band 5 572351 48.954           F           

VBD bands 5-6 571847 48.717             G         

VBD bands 5-7 572217 48.619             G         

VBD bands 5-8 572123 48.611             G         

VBD band 6 568961 46.509               H       

VBD bands 6-7 569810 46.027                 I     

VBD bands 6-8 569837 46.012                 I     

VBD band 7 557327 35.390                   J   

VBD bands 7-8 557203 35.360                   J   

VBD band 8 317824 18.494                     K 

Means that do not share a letter were significantly different. 
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Table 2. Tukey test results for averaging method in association with ACWR. 

Averaging Method n Mean (%) Grouping 

RA 10158467 47.495 A   

EWMA 10170817 47.274   B 

Means that do not share a letter were significantly different. 

 

Table 3. Tukey test results for coupling method in association with ACWR. 

Coupling Method n Mean (%) Grouping 

Coupled 10211750 47.943 A   

Not coupled 10117534 46.826   B 

Means that do not share a letter were significantly different. 

 

Table 4. Tukey test results for acute time frame in association with ACWR. 

Acute Time Frame (days) n Mean (%) Grouping 

14 2881176 48.456 A         

10 3693835 48.051   B       

7 4551907 47.749     C     

5 4593338 47.140       D   

3 4609028 45.527         E 

Means that do not share a letter were significantly different. 

 

Table 5. Tukey test results for chronic time frame in association with ACWR. 

Chronic Time Frame (days) n Mean (%) Grouping 

21 3233263 47.561 A         

14 2640879 47.510   B       

28 3643853 47.484   B       

35 3270887 47.394     C     

42 2900689 47.327       D   

56 2126754 47.233         E 

49 2512959 47.184         E 

Means that do not share a letter were significantly different. 

Seven of the thirty-six inputs were statistically different, and the levels were reduced to 

the VBDs from velocity bands 3-6, band 5, bands 5-8, band 6, bands 6-8, bands 7-8, and 

band 8. Five of the seven chronic time frames were statistically different, and the levels 

were reduced to 21, 28, 35, 42, and 49 days. All the levels within averaging method, 
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coupling method, and acute time frame were statistically different; and none of the levels 

within those factors were removed for the interaction effects analysis. 

 Model input generally decreased ACWRs as the VBDs included fewer velocity 

bands or were associated with higher velocities. Greater ACWRs were produced when 

using the RA method compared to EWMA as well as when the acute and chronic 

workload were coupled compared to not coupled. There was an increasing effect on 

ACWR as the duration of the acute time frame increased and a decreasing effect on 

ACWR as the duration of the chronic time frame increased. 

Interaction Effects and Factorial Plots 

 Input, averaging method, coupling method, acute time frame, and chronic time 

frame each had a statistically significant 2-, 3-, and 4-factor interaction effect on ACWR 

(p-values  0.001). Therefore, the null hypothesis associated with the interaction effect of 

each factor was rejected, and the alternate hypothesis was accepted. 

 The factorial plots in Figures 1 and 2 show interactions where the effect of one 

factor was determined to be independent of the level within another factor, while the 

factorial plots in Figures 3-5 show interactions where the effect of one factor was 

determined to be dependent of the level within another factor. The dependencies between 

interacting factors are shown in Table 6. 
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Figure 1. Two-factor factorial plot for the interaction effect between acute time frame and 

averaging method on mean ACWR. 
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Figure 2. Two-factor factorial plot for the interaction effect between chronic time frame 

and averaging method on mean ACWR. 
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Figure 3. Two-factor factorial plot for the interaction effect between acute time frame and 

coupling method on mean ACWR. 
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Figure 4. Two-factor factorial plot for the interaction effect between acute time frame and 

input on mean ACWR. 
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Figure 5. Two-factor factorial plot for the interaction effect between chronic time frame 

and coupling method on mean ACWR. 
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Table 6. The dependency of factor levels within two-factor interactions for the interaction 

effect of given factors on mean ACWR. Factor dependencies were independent (I), 

dependent (D), or unable to be determined by Minitab (X). 

Input
Averaging 

Method

Coupling 

Method

Acute Time 

Frame

Chronic 

Time Frame

Input - I D D D

Averaging 

Method
I - I I I

Coupling 

Method
D I - D D

Acute Time 

Frame
D I D - X

Chronic 

Time Frame
D I D X -

 

Input and coupling method were each dependent on the level within all other factors 

except averaging method. Acute and chronic time frame were each dependent on the 

level within input and coupling method. Averaging method was independent of the level 

within all other factors. The factorial plot for the effect between acute and chronic time 

frame on ACWR was indeterminable by Minitab. 

 

Discussion 

Main and Interaction Effects 

 Current recommendations in the literature demonstrate selecting ACWR 

methodologies while considering components in isolation from others. When evaluating 

the components within this study in isolation, the statistically significant differences 

between the reduced levels would likely not have any practical significance, and the 

results would suggest simply including ACWR in an application, regardless of the 

methods used, would be sufficient for practitioners when ACWRs between different 
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configurations are interpreted with equivalent criteria. However, when considering the 

interactions between ACWR components, there are compounding effects that could have 

a practical significance. For example, the differences between mean ACWRs within 

coupling method and chronic time frame were 1.12% and 0.38%, respectively. From 

Figure 5, mean ACWR could vary by more than 5% depending on the specific 

combination of those two factors used, and the interactions between three, four, and five 

factors are likely to further compound the differences between ACWRs. Consequently, 

the methodological differences between studies in the literature may be contributing to 

the inconclusive implications associated with ACWR because those studies do not 

consider the impact of all factors interacting together. 

ACWR Component Interactions and Hierarchy 

 The computation of ACWR includes a complex interaction between the required 

components. Coupling method has been recognized to impact the chronic workload by 

including or excluding input data associated with the acute workload (Lolli et al. 2019). 

When ACWR methods are not coupled, the amount of input data removed is dictated by 

the duration of the acute time frame, and the acute time frame may be influenced by an 

optimal ratio with the chronic time frame (Delecroix et al. 2018; Fanchini et al. 2018; 

McCall, Dupont, and Ekstrand 2018). Furthermore, when methods include EWMA 

averaging with acute and chronic workloads that are not coupled, the effects of the higher 

weights linked to the removed input data are also removed. When the RA averaging 

method is used, uncoupling does not impact weighting due to the method consisting of 

constant weights. When the interactions between all components are considered, it is 

unclear which components have a greater impact on ACWR values than others. 
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 The results of this study suggest the methodologies associated with ACWR at a 

computational level should be developed in a hierarchical order: 1) model input, 2) acute 

time frame, 3) coupling method, 4) chronic time frame, and 5) averaging method. The 

input selected contributed to more ACWR variation than other components and 

influenced the effects of acute time frame, coupling method, and chronic time frame. Of 

the components dependent on input, acute time frame contributed to more ACWR 

variation than coupling method, and coupling method contributed to more ACWR 

variation than chronic time frame. Averaging method had the smallest impact on ACWR 

variation and was independent of the other components. 

 In addition to the effects between ACWR groups being caused by the 

methodologies used to compute their values, differing datasets may also produce different 

results. However, the analytical processes used in this study can be replicated by 

practitioners to guide the development of an ACWR-based IMS within the context of 

their own environment. 

Limitations 

 The statistical differences between inputs may be influenced by the use of 

absolute velocity bands, the ranges associated with those velocity bands, and only 

considering velocity to discriminate between distances. Depending on the subject, 

distances accumulated within higher bands may be influenced by the subject’s physical 

limitations, which may be mitigated by the use of relative or alternative absolute velocity 

bands. Velocity bands have been defined using various analytical and physiological 

approaches, but a standard method has yet to be established (Gualtieri et al. 2023). 
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Furthermore, establishing distances based on direction, velocity, and acceleration may 

result in more levels that are statistically different at lower velocities. 

 The dependencies and thus the hierarchy of ACWR components were affected by 

the subjective interpretation of the two-factor factorial plots. Dependencies could be 

established by obtaining and comparing interpretations from additional sources. 

Hierarchies may alternatively be established using data science techniques; though, the 

technique must be able to assess multiple levels within the various factors. 

 

Conclusions 

 When determining ACWR methodologies, a configuration should not be selected 

without considering the interactions between its components. Practitioners should reduce 

methodologies from the literature and establish a hierarchy that guides the development 

of an ACWR-based injury mitigation strategy based on the needs of their specific 

environment. Alternately, the determination of model input should be prioritized over the 

components within the ACWR model. Then, models should be developed by selecting 

the methods for acute time frame, coupling method, chronic time frame, and then 

averaging method. At some point within the development progression, the specific level 

used for a component may not provide a practical benefit over other levels. 
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CHAPTER 3 

EFFECTS OF ACUTE:CHRONIC WORKLOAD RATIO METHODOLOGIES ON 

INJURY LIKELIHOOD IN WOMEN’S COLLEGIATE FIELD HOCKEY 

Background and Significance 

 Many studies in the literature investigate the acute:chronic workload ratio 

(ACWR) with injury likelihood to develop strategies for mitigating the injury risk 

associated with sport-related activities. A strategy demonstrated by the literature is to 

plan and monitor workloads within an ACWR range associated with lower injury risk. 

The ACWR range is established by an injury likelihood profile, and practitioners are 

encouraged to adapt their methods to the competition schedule and periodization of a 

sport or athlete (Andrade et al. 2020). This strategy requires an injury definition and 

injury lag period in addition to the methodologies required to compute ACWR (i.e., 

input, averaging method, coupling method, acute time frame, and chronic time frame). It 

is unclear how the methodological variations, within and between components, affect the 

utility of the strategy, where the methodological variation may impact the profile, thus 

the ACWR values used to plan and manage workloads. 

 Several different injury definitions and lag periods have been utilized within the 

ACWR literature (Griffin et al. 2020; Andrade et al. 2020). Some definitions include all 

instances reported by athletes to medical staff while others consider mixed criteria, such 

as non-contact, lower body, and time-loss injuries. Time-loss injuries further
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discriminate between full, modified, and missed participation within training sessions 

and/or matches. The injury lag period represents the time frame following an ACWR 

value where an athlete is predisposed to higher injury risk, and spikes in training and 

competition loads have been shown to expose an athlete to higher injury risk for up to 3-4 

weeks following a spike (Stares et al. 2018). Injury lag period seems to have an effect on 

injury risk and can be adapted to address the specificities of a sport and injury type 

(Carey et al. 2017; Orchard et al. 2015). 

 The effects of methodological components on ACWR were previously 

investigated in Chapter 2. The results showed that interactions between ACWR 

components had compounding effects that would impact how ACWR is used and 

suggested injury mitigation strategies using ACWR should be developed in a hierarchical 

order. Because injury likelihood profiles are based on the relationship between ACWR 

and injury likelihood, where injury likelihood is also determined using ACWR, the 

effects of the various methods used may propagate into values that establish the profile; 

causing it to shift or change shape. Consequently, the propagating effects may prevent 

general ACWR ranges associated with low injury risk that are found in the literature from 

being applied by a sport organization. 

 

Specific Aims 

 Understanding the effects of components required to evaluate injury likelihood 

will direct a sport organization to which factors have practical utility for mitigating 

injuries. The effects of injury definition and injury lag periods may have a greater impact 

on injury likelihood than ACWR and its respective methods. Simply including ACWR, 
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irrespective of the input and computational methods, within an injury mitigation strategy 

may be sufficient. Conversely, a strategy may require tailored ACWR methodologies to 

be effective. The purpose of this study was to investigate the main and interaction effects 

of injury definition, injury lag period, input, averaging method, coupling method, acute 

time frame, and chronic time frame on injury likelihood. The results provide insight 

towards the significance of each component relative to other components when 

developing an injury mitigation strategy using injury likelihood. 

 The specific aims of this chapter were: 

1. Determine if input (i.e., velocity-based distances) had a main effect or interaction 

effect with averaging method, coupling method, acute time frame, chronic time 

frame, injury definition, and/or injury lag period on injury likelihood. 

• Hypothesis: The null hypothesis was input did not have a main effect on 

injury likelihood, and the alternate hypothesis was input had a main effect. 

• Hypothesis: The null hypothesis was input did not have an interaction 

effect on injury likelihood, and the alternate hypothesis was input had an 

interaction effect. 

• Key Question: If a null hypothesis was rejected, which input levels had a 

not different effect on injury likelihood? 

• Key Question: If a null hypothesis was rejected and the levels were 

different, what was the effect of the different input levels on injury 

likelihood? 

2. Determine if averaging method (i.e., rolling and exponentially weighted moving 

average) had a main effect or interaction effect with input, coupling method, acute 
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time frame, chronic time frame, injury definition, and/or injury lag period on 

injury likelihood. 

• Hypothesis: The null hypothesis was averaging method did not have a 

main effect on injury likelihood, and the alternate hypothesis was 

averaging method had a main effect. 

• Hypothesis: The null hypothesis was averaging method did not have an 

interaction effect on injury likelihood, and the alternate hypothesis was 

averaging method had an interaction effect. 

• Key Question: If a null hypothesis was rejected, which levels within 

averaging method had a not different effect on injury likelihood? 

• Key Question: If a null hypothesis was rejected and the levels were 

different, what was the effect of the different averaging method levels on 

injury likelihood? 

3. Determine if coupling method (i.e., coupled and not coupled) had a main effect or 

interaction effect with input, averaging method, acute time frame, chronic time 

frame, injury definition, and/or injury lag period on injury likelihood. 

• Hypothesis: The null hypothesis was coupling method did not have a main 

effect on injury likelihood, and the alternate hypothesis was coupling 

method had a main effect. 

• Hypothesis: The null hypothesis was coupling method did not have an 

interaction effect on injury likelihood, and the alternate hypothesis was 

coupling method had an interaction effect. 
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• Key Question: If a null hypothesis was rejected, which levels within 

coupling method had a not different effect on injury likelihood? 

• Key Question: If a null hypothesis was rejected and the levels were 

different, what was the effect of the different coupling method levels on 

injury likelihood? 

4. Determine if acute time frame (i.e., 3-14 days) had a main effect or interaction 

effect with input, averaging method, coupling method, chronic time frame, injury 

definition, and/or injury lag period on injury likelihood. 

• Hypothesis: The null hypothesis was acute time frame did not have a main 

effect on injury likelihood, and the alternate hypothesis was acute time 

frame had a main effect. 

• Hypothesis: The null hypothesis was acute time frame did not have an 

interaction effect on injury likelihood, and the alternate hypothesis was 

acute time frame had an interaction effect. 

• Key Question: If a null hypothesis was rejected, which levels within acute 

time frame had a not different effect on injury likelihood? 

• Key Question: If a null hypothesis was rejected and the levels were 

different, what was the effect of the different acute time frame levels on 

injury likelihood? 

5. Determine if chronic time frame (i.e., 21-49 days) had a main effect or interaction 

effect with input, averaging method, coupling method, acute time frame, injury 

definition, and/or injury lag period on injury likelihood. 
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• Hypothesis: The null hypothesis was chronic time frame did not have a 

main effect on injury likelihood, and the alternate hypothesis was chronic 

time frame had a main effect. 

• Hypothesis: The null hypothesis was chronic time frame did not have an 

interaction effect on injury likelihood, and the alternate hypothesis was 

chronic time frame had an interaction effect. 

• Key Question: If a null hypothesis was rejected, which levels within 

chronic time frame had a not different effect on injury likelihood? 

• Key Question: If a null hypothesis was rejected and the levels were 

different, what was the effect of the different chronic time frame levels on 

injury likelihood? 

6. Determine if injury definition (i.e., general and specific) had a main effect or 

interaction effect with input, averaging method, coupling method, acute time 

frame, chronic time frame, and/or injury lag period on injury likelihood. 

• Hypothesis: The null hypothesis was injury definition did not have a main 

effect on injury likelihood, and the alternate hypothesis was injury 

definition had a main effect. 

• Hypothesis: The null hypothesis was injury definition did not have an 

interaction effect on injury likelihood, and the alternate hypothesis was 

injury definition had an interaction effect. 

• Key Question: If a null hypothesis was rejected, which injury definition 

levels had a not different effect on injury likelihood? 
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• Key Question: If a null hypothesis was rejected and the levels were 

different, what was the effect of the different injury definition levels on 

injury likelihood? 

7. Determine if injury lag period (i.e., 0-28 days) had a main effect or interaction 

effect with input, averaging method, coupling method, acute time frame, chronic 

time frame, and/or injury definition on injury likelihood. 

• Hypothesis: The null hypothesis was injury lag period did not have a main 

effect on injury likelihood, and the alternate hypothesis was injury lag 

period had a main effect. 

• Hypothesis: The null hypothesis was injury lag period did not have an 

interaction effect on injury likelihood, and the alternate hypothesis was 

injury lag period had an interaction effect. 

• Key Question: If a null hypothesis was rejected, which injury lag period 

levels had a not different effect on injury likelihood? 

• Key Question: If a null hypothesis was rejected and the levels were 

different, what was the effect of the different injury lag period levels on 

injury likelihood? 

8. Compare the effects of input, averaging method, coupling method, acute time 

frame, and chronic time frame and their respective levels between ACWR and 

injury likelihood. 

• Key Question: Were the input factor and factor level effects consistent 

between ACWR and injury likelihood analyses? 
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• Key Question: Were the averaging method factor and factor level effects 

consistent between ACWR and injury likelihood analyses? 

• Key Question: Were the coupling method factor and factor level effects 

consistent between ACWR and injury likelihood analyses? 

• Key Question: Were the acute time frame factor and factor level effects 

consistent between ACWR and injury likelihood analyses? 

• Key Question: Were the chronic time frame factor and factor level effects 

consistent between ACWR and injury likelihood analyses? 

 

Methodology 

 This study was approved by the University of Louisville Internal Review Board. 

Written informed consent was obtained from each participant, when possible. Written 

informed consent was waived by the review board when its acquisition was not 

practically obtainable (i.e. subjects were no longer affiliated with the respective 

organization). 

Subjects 

Female student-athletes on the University of Louisville field hockey team during 

the 2017-18 to 2022-23 pre-seasons, in-seasons, and post-seasons were invited to 

participate as subjects. There were 55 subjects included in this study. 

Data Collection 

 ACWRs computed in Chapter 2 that had factors and factor levels with statistically 

significant and different effects on ACWR were used. Configurations with significant and 

different effects included velocity-based distances (VBDs) from velocity bands 3-6, band 
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5, bands 5-8, band 6, bands 6-8, bands 7-8, and band 8; rolling average (RA) and 

exponentially weight moving average (EWMA) averaging methods; coupled and not 

coupled coupling methods; acute time frames of 3, 5, 7, 10, and 14 days; and chronic 

time frames of 21, 28, 35, 42, and 49 days. Each ACWR was expressed as a value 

between 0 and 100% of the respective group range, and outliers within each group were 

removed using the interquartile range method. There were 672 ACWR groups included. 

 Sport-related injury data recorded by the team athletic trainer was also used. 

Injury data collected during the 2018-19 to 2022-23 pre- to post-seasons was included. 

However, data from the 2020-21 season was excluded due to events associated with 

COVID-19. There were 158 injury instances included. 

Data Processing 

 For each ACWR group, the likelihood of injury associated with an ACWR was 

determined using an injury likelihood profile. Injury likelihood profiles were developed 

using ACWRs from the respective input, computational, and injury criterion 

configuration in addition to a standardized binning process and interpolation method. 

 The injury criterion determined if an ACWR was associated with an injury based 

on an injury definition and lag period. If the definition was satisfied within the lag period 

following the ACWR exposure, the ACWR was associated with an injury. If the 

definition was not satisfied within the lag period following the ACWR exposure, the 

ACWR was not associated with an injury. Two injury definitions were used based on 

practical outcomes: 1) the athletic trainer recorded a subject experienced a sport-related 

muscle, tendon, ligament, or bone injury in the lower body or torso; 2) the athletic trainer 

recorded a subject experienced a sport-related muscle, tendon, ligament, or bone injury in 
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the lower body or torso, and the subject missed a training or competition session. Injury 

lag period durations consisted of 0, 3, 7, 10, 14, 21, and 28 days following an ACWR 

exposure. 

 The binning process was the initial step for establishing knots that were used to 

create a spline interpolation function for the injury likelihood profile. Each ACWR within 

the respective input and computational configuration was binned, where the splits 

between bins were determined using an optimal binning algorithm with a binary target 

from the OptBinning 0.17.3 Python package (Navas-Palencia 2022). Within the 

algorithm, ACWR was the discretized variable while the injury criterion with an injured 

or not injured outcome expressed as a 1 or 0, respectively, was the binary target variable. 

Within each bin, injury likelihood was the number of ACWR exposures associated with 

an injury relative to all ACWR exposures. The injury likelihood of and ACWR mid-point 

within each bin established the knot associated with the bin, and the knots from all bins 

were used to generate a cubic spline function that modeled the injury likelihood profile. 

The cubic spline interpolation function was created using the scipy 1.11.1 Python 

package. Due to there being two injury definitions and seven injury lag periods, fourteen 

profiles were created for each of the ACWR groups; resulting in 9408 injury likelihood 

groups. 

Statistical Analysis 

 The use of a desktop computer, rather than a supercomputing mainframe, 

necessitated the statistical analysis to be conducted in a two-stage approach using Minitab 

12.4.1 (Minitab, LLC, State College, Pennsylvania). For the first stage, a general linear 

mixed model (GLMM) ANOVA was used to identify main effects of each factor (i.e., 
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input, averaging method, coupling method, acute time frame, chronic time frame, injury 

definition, and injury lag period) on injury likelihood. Input had seven VBD levels 

consisting of distances from velocity bands 3-6, band 5, bands 5-8, band 6, bands 6-8, 

bands 7-8, and band 8. Averaging method had two levels of RA and EWMA. Coupling 

method had two levels of coupled and not coupled. Acute time frame had five levels of 3, 

5, 7, 10, and 14 days. Chronic time frame had five levels of 21, 28, 35, 42, and 49 days. 

Injury definition had two factor levels of general and specific definitions. Injury lag 

period had seven factor levels of 0, 3, 7, 10, 14, 21, and 28 days. Subject was included as 

a blocking factor to control for inherent inter-subject variability. Injury likelihood was the 

response variable, and only main effects were included in the model. Factors with a p-

value less than 0.05 were considered to be statistically significant and included in the 

Tukey test, which was used to identify levels within each factor that were not statistically 

different. After the Tukey test was performed, levels within each factor that were not 

statistically different as other levels were removed from the dataset for the second 

GLMM ANOVA. For the second stage, a GLMM ANOVA was used to determine the 

interaction effects between factors on injury likelihood. Interactions between factors with 

a statistically significant main effect were included in the model, and the number of 

interacting factors was limited to three factors by Minitab. Interaction effects with a p-

value less than 0.05 were considered to be statistically significant. Factorial plots were 

then generated for significant two-factor interactions to assess whether their impact on 

injury likelihood depended on the level of one of the factors. 
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Results 

Main Effects and Tukey Test 

 Input, averaging method, coupling method, acute time frame, chronic time frame, 

injury definition, and injury lag period each had a statistically significant main effect on 

injury likelihood (p-values  0.001). Therefore, the null hypothesis associated with the 

main effect of each factor was rejected, and the alternate hypothesis was accepted. All 

seven factors were included in the subsequent Tukey test. 

The Tukey test results for input, averaging method, coupling method, acute time 

frame, and chronic time frame following the main effects analysis are shown in Tables 7-

13, respectively. 

Table 7. Tukey test results for input in association with injury likelihood. 

Input n Mean (%) Grouping 

VBD bands 7-8 4700430 9.556 A         

VBD band 6 4799046 9.412   B       

VBD bands 6-8 4810092 9.379   B       

VBD band 5 4835376 9.328   B C     

VBD bands 5-8 4831778 9.262     C     

VBD bands 3-6 4859372 9.112       D   

VBD band 8 2603006 6.554         E 

Means that do not share a letter were significantly different. 

 

Table 8. Tukey test results for averaging method in association with injury likelihood. 

Averaging Method n Mean (%) Grouping 

RA 15696800 9.021 A   

EWMA 15742300 8.866   B 

Means that do not share a letter were significantly different. 
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Table 9. Tukey test results for coupling method in association with injury likelihood. 

Coupling Method n Mean (%) Grouping 

Coupled 15905442 8.987 A   

Not coupled 15533658 8.900   B 

Means that do not share a letter were significantly different. 

 

Table 10. Tukey test results for acute time frame in association with injury likelihood. 

Acute Time Frame (days) n Mean (%) Grouping 

5 6635874 9.281 A         

7 6616470 9.100   B       

14 4970028 8.960     C     

3 6612900 8.741       D   

10 6603828 8.635         E 

Means that do not share a letter were significantly different. 

 

Table 11. Tukey test results for chronic time frame in association with injury likelihood. 

Chronic Time Frame (days) n Mean (%) Grouping 

28 7356328 9.332 A         

21 6498254 9.191   B       

35 6622714 8.831     C     

49 5100172 8.734       D   

42 5861632 8.629         E 

Means that do not share a letter were significantly different. 

 

Table 12. Tukey test results for injury definition in association with injury likelihood. 

Definition n Mean (%) Grouping 

General 15719550 17.067 A   

Specific 15719550 0.820   B 

Means that do not share a letter were significantly different. 
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Table 13. Tukey test results for injury lag period in association with injury likelihood. 

Lag Period (days) n Mean (%) Grouping 

28 4491300 18.625 A             

21 4491300 15.157   B           

14 4491300 11.147     C         

10 4491300 8.158       D       

7 4491300 6.251         E     

3 4491300 2.900           F   

0 4491300 0.366             G 

Means that do not share a letter were significantly different. 

Four of the seven inputs were statistically different, and the levels were reduced to the 

VBDs from bands 7-8, band 5, bands 3-6, and band 8. All the levels within averaging 

method, coupling method, acute time frame, chronic time frame, injury definition, and 

injury lag period were statistically different; and none of the levels within those factors 

were removed for the interaction effects analysis. 

 Greater injury likelihoods occurred when using the RA method compared to 

EWMA, coupled workloads compared to not coupled, and the general definition 

compared to the specific definition. As the duration of the chronic time frame increased, 

injury likelihood generally decreased. There was an increasing effect on injury likelihood 

as injury lag period increased. The effect of changes in VBDs and acute time frames on 

injury likelihood was inconclusive. 

Interaction Effects and Factorial Plots 

 Input, averaging method, coupling method, acute time frame, chronic time frame, 

injury definition, and injury lag period each had a statistically significant 2- and 3-factor 

interaction effect on injury likelihood (p-value  0.001). Therefore, the null hypothesis 

associated with the interaction effect of each factor was rejected, and the alternate 

hypothesis was accepted. 
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 The factorial plots in Figures 6 and 7 show interactions where the effect of one 

factor was determined to be independent of the level within another factor, while the 

factorial plots in Figures 8 and 9 show interactions where the effect of one factor was 

determined to be dependent of the level within another factor. The dependencies between 

interacting factors are shown in Table 14. 

 

Figure 6. Two-factor factorial plot for the interaction effect between coupling method and 

injury definition on mean injury likelihood. 
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Figure 7. Two-factor factorial plot for the interaction effect between averaging method 

and injury lag period on mean injury likelihood. 
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Figure 8. Two-factor factorial plot for the interaction effect between acute time frame and 

coupling method on mean injury likelihood. 
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Figure 9. Two-factor factorial plot for the interaction effect between injury definition and 

injury lag period on mean injury likelihood. 
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Table 14. The dependency of factor levels within two-factor interactions for the interaction effect of given factors on mean injury 

likelihood. Factor dependencies were independent (I), dependent (D), insignificant (N), or unable to be determined by Minitab (X). 

Input
Averaging 

Method

Coupling 

Method

Acute Time 

Frame

Chronic 

Time Frame

Injury 

Definition

Injury Lag 

Period

Input - D D D D D I

Averaging 

Method
D - D D D N I

Coupling 

Method
D D - D D I I

Acute Time 

Frame
D D D - X I I

Chronic 

Time Frame
D D D X - I I

Injury 

Definition
D N I I I - D

Injury Lag 

Period
I I I I I D -
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Input and averaging method were each independent of the level within injury lag period 

and dependent on the level within all other factors; though, the interaction between 

averaging method and injury definition was not statistically significant. Coupling method, 

acute time frame, and chronic time frame were each independent of the level within 

injury definition and lag period and dependent on the level within all other factors; 

however, the factorial plot for the effect between acute and chronic time frame on injury 

likelihood was indeterminable by Minitab. Injury definition was dependent on the level 

within injury lag period and input and independent of the level with all other factors, 

except averaging method as previously mentioned. Injury lag period was dependent on 

the level within injury definition and independent of the level with all other factors. 

 

Discussion 

Main and Interaction Effects 

 The current literature demonstrates selecting the ACWR and injury 

methodologies required for conducting an injury likelihood analysis without considering 

how the methodologies interact with each other. Chapter 2 showed that when considering 

ACWR input and computation components in isolation, there were statistically 

significant differences between various levels that would likely not make any practical 

difference, but there were compounding effects that could have a practical significance 

when ACWR components interact. In this study, injury methodologies were added to 

those required for ACWR computations. Subsequently, the statistically significant 

differences within injury definition and injury lag period would likely have practical 

significance, while the differences within ACWR input and computation components 
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would likely not. Therefore, when considering injury likelihood components in isolation, 

practitioners would need to make decisions regarding which injury definition and lag 

period to use, but any VBD input and ACWR model would be sufficient when the values 

between different configurations are interpreted with equivalent criteria. However, 

similar to ACWR computation, when considering the interactions between injury 

likelihood components, there are compounding effects between components that could 

have a practical significance. Consequently, practitioners should not select ACWR and 

injury methodologies for injury likelihood analyses in isolation and should develop their 

strategies by progressing through a component hierarchy that establishes the impact of 

each component based on their interactions with other components. 

 The methodological differences between studies in the literature may be 

contributing to the inconclusive implications associated with injury analyses using injury 

likelihood and ACWR because those studies do not consider the impact of all 

components interacting together. In addition to the effects between injury likelihood 

groups being caused by the methodologies used to compute their values, differing 

datasets may also produce different results. The analytical processes used in this study 

can be replicated by practitioners to guide the development of an injury likelihood 

analysis within the context of their own environment.  

Component Hierarchy 

 The results of this study suggest the methodologies associated with injury 

likelihood using ACWR should be developed in a hierarchical order: 1) injury definition, 

2) injury lag period, 3) input, 4) chronic time frame, 5) acute time frame, 6) averaging 

method, and 7) coupling method. Injury definition and lag period contributed to more 
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injury likelihood variation than the other components, and the effect of each depended on 

the level of the other. However, injury definition caused greater differences in injury 

likelihood within its levels than injury lag period and influenced the effect of input. Input 

caused a smaller variation in injury likelihood than injury definition and lag period but a 

larger variation than all other components. Input also influenced the effect of acute time 

frame, chronic time frame, averaging method, and coupling method. Acute and chronic 

time frames had similar contributions to injury likelihood variation and larger 

contributions than averaging and coupling method. The time frames also had similar 

differences in injury likelihood within their levels, and the effect of both time frames 

depended on the level of the other. Averaging and coupling methods had similar 

contributions to injury likelihood variation, which was smaller than all other factors. The 

effect of both methods also depended on the level of the other. Generally, the components 

used within the injury criterion were more important than all other components, and input 

was more important than the components used within the ACWR model. However, the 

combined effect of all four computational components may be greater than input alone. 

Injury Criterion Interactions 

 Though interactions between injury criterion and ACWR components were 

significant, the only dependency between them was injury definition and input, which 

may suggest a mechanistic relationship between them. However, as a definition expands 

in features and becomes more specific to a scenario, the number of injuries available for 

an analysis would either decrease or stay the same, which may statistically limit the 

feasibility of a mechanistically driven analysis. Considering the component hierarchy, 

processes for determining the most beneficial injury definition relative to a sport 
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organization’s goals, objectives, and data should be developed, and inputs 

mechanistically or statistically suited to the definition should be included. 

 Within the injury criterion, the definition also had a dependency with the lag 

period. When a definition was satisfied within a lag period, all ACWRs up until the time 

of the injury were linked to that injury. Consequently, as definitions include more injuries 

and lag periods increase, more ACWRs will be associated with injuries; supporting injury 

analyses may be statistically driven to some degree. Further research is needed to 

investigate criteria used with injury lag periods, and any specific mechanisms driving the 

criteria should align with the injury definition. 

Effects on Injury Likelihood vs ACWR 

 The input, averaging method, coupling method, acute time frame, and chronic 

time frame were common components between ACWR and injury likelihood, where their 

methodological effects on ACWR were investigated in Chapter 2. Each component had 

significant main and interaction effects on the respective response variables, and input 

was the only component where the levels were further reduced in the likelihood analysis. 

Input also had a greater impact on the variation of the response variable than the factors 

associated with the computational model. Variation in the response from each component 

was generally smaller in the likelihood analysis, though most variations had small 

magnitudes in both analyses and the corresponding effects compounded as different 

components interacted. Furthermore, averaging method within the ACWR analysis was 

the only instance where a component was independent of levels within other components, 

but it was dependent on all ACWR components within the likelihood analysis. The 

differences between the studies may be influenced by reducing the dataset between 
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studies and between main and interaction analyses within each study to accommodate 

hardware limitations. 

Binning and Interpolation 

 Previous studies have binned ACWR’s into discrete categories using standard 

deviations, z-scores, percentiles, constant increments, arbitrary bins, and others where 

studies using similar methods also had a varying number of categories (Andrade et al. 

2020). These methods demonstrate fitting data to arbitrary models where injury 

likelihood is modelled as a series of constant piecewise functions, and their use has been 

shown to cause a higher risk of type-I and type-II error (Carey et al. 2018). Continuous 

methods better model the nonlinear relationship between ACWR and injury likelihood 

than discrete models, and restricted cubic splines are continuous models that can fit local 

features within data better than fractional polynomials (Carey et al. 2018). However, 

cubic splines still require a method for determining knots used to construct the model. 

The binning optimization algorithm used in this study objectively created knots for the 

cubic spline function within each group by generating the number of bins and width of 

each bin while considering the binary characteristic of the injury criterion. The 

combination of binning optimization and cubic spline interpolation fit the injury 

likelihood profile to the data specific to each group, but the process may benefit from 

alternative criterions or additional constraints. 

Limitations 

 As mentioned in Chapter 2, the statistical differences between inputs may be 

influenced by the use of absolute velocity bands, the ranges associated with those 

velocity bands, and only considering velocity to discriminate between distances. The 
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dependencies and thus the hierarchy of injury likelihood components were also affected 

by the subjective interpretation of the two-factor factorial plots. 

 The data associated with the ACWR methods included in this study were based 

on the reduced methods from the ACWR analysis in Chapter 2. The effects were assumed 

to be constant for injury likelihood due to the memory required to include data generated 

for all configurations in the statistical analysis exceeding the available memory of a 

desktop computer. Additionally, the recording of injuries by an athletic trainer was 

subjected to inter- and intra-rater reliability from three athletic trainers over the time 

period of this study. Injury recordings may have also been impacted by the timing in 

which an injury was reported by a subject. Furthermore, this study only investigated 

effects based on the injury likelihood magnitudes. Due to injury likelihood being 

determined from a profile, various configurations may exhibit similar magnitudes but 

different patterns between profiles that may further impact the development of injury 

likelihood methodologies. 

Conclusions 

 Interactions between injury likelihood methodologies using ACWR contribute to 

the inconclusive implications associated with ACWR in the literature. When considering 

injury likelihood using ACWR, methodologies associated with a given component should 

not be determined without considering its interactions with other components. 

Practitioners should reduce methodologies from the literature and establish a hierarchy 

that guides the development of their IMS based on the needs of their specific 

environment. Alternately, the determination of injury definition and lag period should be 

prioritized over the input, and input should be prioritized over the components within the 



 

 61 

ACWR model. Then, the ACWR model should be developed by selecting the methods 

for chronic time frame, acute time frame, averaging method, and then coupling method. 

At some point within the development progression, the specific level selected within a 

component may not provide a practical benefit over other options. 
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CHAPTER 4 

EFFECTS OF ACUTE:CHRONIC WORKLOAD RATIO METHODOLOGIES ON 

THE PEAK ACCURACY OF AN INJURY MITIGATION STRATEGY IN WOMEN’S 

COLLEGIATE FIELD HOCKEY 

Background and Significance 

 Strategies for using acute:chronic workload ratios (ACWRs) to mitigate sport-

related injuries have primarily been driven by associating ACWRs with levels of injury 

risk (Griffin et al. 2020; Andrade et al. 2020). However, the literature has criticized the 

practical significance of this approach. A study reported increased injury risks at higher 

ACWRs even though the absolute risk was only approximately 4% and the difference in 

risk between moderate and high ACWRs was approximately 3% (N. B. Murray et al. 

2016). Furthermore, studies have reported ACWR models have poor or no predictive 

ability due to results with higher incidences of false-positive predictions than true-

positive (Fanchini et al. 2018; McCall, Dupont, and Ekstrand 2018). The results of 

Chapters 2 and 3 showed methodological decisions can significantly impact ACWR and 

injury likelihood, and the practical implementation of an ACWR strategy may be based 

on the specific methodologies used. Consequently, when developing and evaluating an 

injury mitigation strategy (IMS) using ACWR, the performance of the strategy should be 

considered.
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 No studies were identified that have developed an IMS by optimizing outcomes 

within a contingency table or investigating the effects of methodological decisions on the 

performance of a strategy, such as sensitivity, specificity, or accuracy. Sensitivity refers 

to the probability of an IMS identifying an athlete being injured given an athlete was 

injured, and specificity refers to the probability of an IMS identifying an athlete not being 

injured given an athlete was not injured. A strategy with high sensitivity would identify 

more injury incidences than a strategy with low sensitivity. However, a strategy with high 

sensitivity may also have low specificity, which could negatively impact the practical 

implementation of the strategy. Delecroix et al. noted the criteria they used with ACWR 

did not have high sensitivity or specificity (Delecroix et al. 2018), while Fanchini et al. 

reported sensitivities from 12.5-43.1% and specificities from 65.3-85.3% between six 

different ACWR configurations (Fanchini et al. 2018). In order to balance sensitivity and 

specificity, the accuracy of an IMS can be maximized by varying the ACWR criteria used 

within it; thus, maximizing the probability of identifying a true event. 

 

Specific Aims 

 The purpose of this study was to investigate the main and interaction effects of 

injury definition, injury lag period, input, averaging method, coupling method, acute time 

frame, and chronic time frame on the peak accuracy of an ACWR-based IMS. Because 

mitigating injuries is the priority, the results inform the development of an IMS by 

identifying methodologies with significant effects on accuracy. 

 The specific aims of this chapter were: 
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1. Determine if input (i.e., velocity-based distances) had a main effect or interaction 

effect with averaging method, coupling method, acute time frame, chronic time 

frame, injury definition, and/or injury lag period on the peak accuracy of an IMS. 

• Hypothesis: The null hypothesis was input did not have a main effect on 

peak accuracy, and the alternate hypothesis was input had a main effect. 

• Hypothesis: The null hypothesis was input did not have an interaction 

effect on peak accuracy, and the alternate hypothesis was input had an 

interaction effect. 

• Key Question: If a null hypothesis was rejected, which input levels had a 

not different effect on peak accuracy? 

• Key Question: If a null hypothesis was rejected and the levels were 

different, what was the effect of the different input levels on peak 

accuracy? 

2. Determine if averaging method (i.e., rolling and exponentially weighted moving 

average) had a main effect or interaction effect with input, coupling method, acute 

time frame, chronic time frame, injury definition, and/or injury lag period on the 

peak accuracy of an IMS. 

• Hypothesis: The null hypothesis was averaging method did not have a 

main effect on peak accuracy, and the alternate hypothesis was averaging 

method had a main effect. 

• Hypothesis: The null hypothesis was averaging method did not have an 

interaction effect on peak accuracy, and the alternate hypothesis was 

averaging method had an interaction effect. 



 

 65 

• Key Question: If a null hypothesis was rejected, which levels within 

averaging method had a not different effect on peak accuracy? 

• Key Question: If a null hypothesis was rejected and the levels were 

different, what was the effect of the different averaging method levels on 

peak accuracy? 

3. Determine if coupling method (i.e., coupled and not coupled) had a main effect or 

interaction effect with input, averaging method, acute time frame, chronic time 

frame, injury definition, and/or injury lag period on the peak accuracy of an IMS. 

• Hypothesis: The null hypothesis was coupling method did not have a main 

effect on peak accuracy, and the alternate hypothesis was coupling 

method had a main effect. 

• Hypothesis: The null hypothesis was coupling method did not have an 

interaction effect on peak accuracy, and the alternate hypothesis was 

coupling method had an interaction effect. 

• Key Question: If a null hypothesis was rejected, which levels within 

coupling method had a not different effect on peak accuracy? 

• Key Question: If a null hypothesis was rejected and the levels were 

different, what was the effect of the different coupling method levels on 

peak accuracy? 

4. Determine if acute time frame (i.e., 3-14 days) had a main effect or interaction 

effect with input, averaging method, coupling method, chronic time frame, injury 

definition, and/or injury lag period on the peak accuracy of an IMS. 
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• Hypothesis: The null hypothesis was acute time frame did not have a main 

effect on peak accuracy, and the alternate hypothesis was acute time 

frame had a main effect. 

• Hypothesis: The null hypothesis was acute time frame did not have an 

interaction effect on peak accuracy, and the alternate hypothesis was 

acute time frame had an interaction effect. 

• Key Question: If a null hypothesis was rejected, which levels within acute 

time frame had a not different effect on peak accuracy? 

• Key Question: If a null hypothesis was rejected and the levels were 

different, what was the effect of the different acute time frame levels on 

peak accuracy? 

5. Determine if chronic time frame (i.e., 3-7 weeks) had a main effect or interaction 

effect with input, averaging method, coupling method, acute time frame, injury 

definition, and/or injury lag period on the peak accuracy of an IMS. 

• Hypothesis: The null hypothesis was chronic time frame did not have a 

main effect on peak accuracy, and the alternate hypothesis was chronic 

time frame had a main effect. 

• Hypothesis: The null hypothesis was chronic time frame did not have an 

interaction effect on peak accuracy, and the alternate hypothesis was 

chronic time frame had an interaction effect. 

• Key Question: If a null hypothesis was rejected, which levels within 

chronic time frame had a not different effect on peak accuracy? 
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• Key Question: If a null hypothesis was rejected and the levels were 

different, what was the effect of the different chronic time frame levels on 

peak accuracy? 

6. Determine if injury definition (i.e., general and specific) had a main effect or 

interaction effect with input, averaging method, coupling method, acute time 

frame, chronic time frame, and/or injury lag period on the peak accuracy of an 

IMS. 

• Hypothesis: The null hypothesis was injury definition did not have a main 

effect on peak accuracy, and the alternate hypothesis was injury definition 

had a main effect. 

• Hypothesis: The null hypothesis was injury definition did not have an 

interaction effect on peak accuracy, and the alternate hypothesis was 

injury definition had an interaction effect. 

• Key Question: If a null hypothesis was rejected, which injury definition 

levels had a not different effect on peak accuracy? 

• Key Question: If a null hypothesis was rejected and the levels were 

different, what was the effect of the different injury definition levels on 

peak accuracy? 

7. Determine if injury lag period (i.e., 0-28 days) had a main effect or interaction 

effect with input, averaging method, coupling method, acute time frame, chronic 

time frame, and/or injury definition on the peak accuracy of an IMS. 
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• Hypothesis: The null hypothesis was injury lag period did not have a main 

effect on peak accuracy, and the alternate hypothesis was injury lag 

period had a main effect. 

• Hypothesis: The null hypothesis was injury lag period did not have an 

interaction effect on peak accuracy, and the alternate hypothesis was 

injury lag period had an interaction effect. 

• Key Question: If a null hypothesis was rejected, which injury lag period 

levels had a not different effect on peak accuracy? 

• Key Question: If a null hypothesis was rejected and the levels were 

different, what was the effect of the different injury lag period levels on 

peak accuracy? 

8. Compare the effects of input, averaging method, coupling method, acute time 

frame, and chronic time frame factors and their respective factor levels between 

ACWR and the peak accuracy of an IMS. 

• Key Question: Were the input factor and factor level effects consistent 

between ACWR and peak accuracy analyses? 

• Key Question: Were the averaging method factor and factor level effects 

consistent between ACWR and peak accuracy analyses? 

• Key Question: Were the coupling method factor and factor level effects 

consistent between ACWR and peak accuracy analyses? 

• Key Question: Were the acute time frame factor and factor level effects 

consistent between ACWR and peak accuracy analyses? 
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• Key Question: Were the chronic time frame factor and factor level effects 

consistent between ACWR and peak accuracy analyses? 

9. Compare the effects of input, averaging method, coupling method, acute time 

frame, chronic time frame, injury definition, and injury lag period factors and 

their respective factor levels between injury likelihood and the peak accuracy of 

an IMS. 

• Key Question: Were the input factor and factor level effects consistent 

between injury likelihood and peak accuracy analyses? 

• Key Question: Were the averaging method factor and factor level effects 

consistent between injury likelihood and peak accuracy analyses? 

• Key Question: Were the coupling method factor and factor level effects 

consistent between injury likelihood and peak accuracy analyses? 

• Key Question: Were the acute time frame factor and factor level effects 

consistent between injury likelihood and peak accuracy analyses? 

• Key Question: Were the chronic time frame factor and factor level effects 

consistent between injury likelihood and peak accuracy analyses? 

• Key Question: Were the injury definition factor and factor level effects 

consistent between injury likelihood and peak accuracy analyses? 

• Key Question: Were the injury lag period factor and factor level effects 

consistent between injury likelihood and peak accuracy analyses? 
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Methodology 

 This study was approved by the University of Louisville Internal Review Board. 

Written informed consent was obtained from each participant, when possible. Written 

informed consent was waived by the review board when its acquisition was not 

practically obtainable (i.e. subjects were no longer affiliated with the respective 

organization). 

Subjects 

Female student-athletes on the University of Louisville field hockey team during 

the 2017-18 to 2022-23 pre-seasons, in-seasons, and post-seasons were invited to 

participate as subjects. There were 55 subjects included in this study. 

Data Collection 

 ACWRs computed in Chapter 2 that had factors and factor levels with statistically 

significant and different effects on ACWR were used. Configurations with significant and 

different effects included velocity-based distances (VBDs) from velocity bands 3-6, band 

5, bands 5-8, band 6, bands 6-8, bands 7-8, and band 8; rolling average (RA) and 

exponentially weighted moving average (EWMA) averaging methods; coupled and not 

coupled coupling methods; acute time frames of 3, 5, 7, 10, and 14 days; and chronic 

time frames of 21, 28, 35, 42, and 49 days. Each ACWR was expressed as a value 

between 0 and 100% of the respective group range, and outliers within each group were 

removed using the interquartile range method. 

 Injury criterions established in Chapter 3 were also used. The injury criterion 

determined if an ACWR was associated with an injury based on an injury definition and 

injury lag period. If the injury definition was satisfied within the injury lag period 
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following an ACWR exposure, the ACWR was associated with an injury. If the injury 

definition was not satisfied within the injury lag period following an ACWR exposure, 

the ACWR was not associated with an injury. Injury data collected during the 2018-19 to 

2022-23 pre-seasons, in-seasons, and post-seasons was included; though, data from the 

2020-21 season was excluded due to events associated with COVID-19. There were 158 

injury instances included. Two injury definitions were used based on practical outcomes: 

1) the athletic trainer recorded a subject was exposed to a sport-related muscle, tendon, 

ligament, or bone injury in the lower body or torso; 2) the athletic trainer recorded a 

subject was exposed to a sport-related muscle, tendon, ligament, or bone injury in the 

lower body or torso, and the subject missed a training or competition session. Injury lag 

period consisted of time frames of 0, 3, 7, 10, 14, 21, and 28 days following an ACWR 

exposure. 

Data Processing 

 The peak accuracy of an injury mitigation strategy was determined for each 

configuration of input, averaging method, coupling method, acute time frame, chronic 

time frame, injury definition, and injury lag period factor levels. Accuracy was calculated 

using 

 𝐴 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 (7) 

where 𝑇𝑃, 𝑇𝑁, 𝐹𝑃, and 𝐹𝑁 were the number of true positive, true negative, false positive, 

and false negative events, respectively. The number of true positive, true negative, false 

positive, and false negative events was determined using an injury criterion and ACWR-

based risk acceptance threshold. A true positive event occurred when ACWR was above 

the acceptance threshold and the injury criterion was satisfied. A false positive event 
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occurred when ACWR was above the acceptance threshold and the injury criterion was 

not satisfied. A false negative event occurred when ACWR was below the acceptance 

threshold and the injury criterion was satisfied. A true negative event occurred when 

ACWR was below the acceptance threshold and the injury criterion was not satisfied. The 

injury criterion was satisfied when an injury definition was met within an injury lag 

period. The injury risk acceptance threshold was varied and used to iteratively maximize 

the accuracy of the configuration. Within the first iteration, accuracy was computed at 11 

thresholds stepping from 0% to 100% of the respective ACWR distribution. The 

threshold steps directly below and above the maximum accuracy of the current iteration 

set the boundary conditions for the next iteration, which used 21 threshold steps. If there 

was not a threshold step above the maximum accuracy, the threshold steps directly below 

and at the maximum accuracy set the boundary conditions for the next iteration, which 

used 11 threshold steps. Seven iterations were used to determine the peak accuracy of the 

respective IMS, and the iteration steps progressed from 10% to 0.00001% with a 10% 

step reduction each iteration. 

Statistical Analysis 

The use of a desktop computer, rather than a supercomputing mainframe, 

necessitated the statistical analysis to be conducted in a two-stage approach using Minitab 

12.4.1 (Minitab, LLC, State College, Pennsylvania). For the first stage, a general linear 

mixed model (GLMM) ANOVA was used to identify main effects of each factor (i.e., 

input, averaging method, coupling method, acute time frame, chronic time frame, injury 

definition, and injury lag period) on peak accuracy of an IMS. Input had seven VBD 

levels consisting of distances from velocity bands 3-6, band 5, bands 5-8, band 6, bands 
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6-8, bands 7-8, and band 8. Averaging method had two levels of RA and EWMA. 

Coupling method had two levels of coupled and not coupled. Acute time frame had five 

levels of 3, 5, 7, 10, and 14 days. Chronic time frame had five levels of 21, 28, 35, 42, 

and 49 days. Injury definition had two factor levels of general and specific definitions. 

Injury lag period had seven factor levels of 0, 3, 7, 10, 14, 21, and 28 days. Peak accuracy 

of an IMS was the response variable, and only main effects were included in the model. 

Factors with a p-value less than 0.05 were considered to be statistically significant and 

included in the Tukey test, which was used to identify levels within each factor that were 

not statistically different. After the Tukey test was performed, levels within each factor 

that were statistically not different from other levels were removed from the dataset for 

the second GLMM ANOVA. For the second stage, a GLMM ANOVA was used to 

determine the interaction effects between factors on peak accuracy of an IMS. All 

interactions between factors with a statistically significant main effect were included in 

the model. Interaction effects with a p-value less than 0.05 were considered to be 

statistically significant. Factorial plots were then generated for significant two-factor 

interactions to assess whether their impact on peak accuracy depended on the level of one 

of the factors. 

 

Results 

Main Effects and Tukey Test 

 Input, averaging method, coupling method, acute time frame, chronic time frame, 

injury definition, and injury lag period each had a statistically significant main effect on 

peak accuracy (p-values  0.001). Therefore, the null hypothesis associated with the main 
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effect of each factor was rejected, and the alternate hypothesis was accepted. All seven 

factors were included in the subsequent Tukey test. The Tukey test results for input, 

averaging method, coupling method, acute time frame, and chronic time frame following 

the main effects analysis are shown in Tables 15-21. 

Table 15. Tukey test results for input in association with peak accuracy. 

Input n Mean Grouping 

VBD band 6 1344 92.179 A   

VBD bands 6-8 1344 92.160 A   

VBD bands 3-6 1344 92.152 A   

VBD bands 5-8 1344 92.119 A   

VBD band 5 1344 92.102 A   

VBD bands 7-8 1344 92.090 A   

VBD band 8 1344 90.715   B 

Means that do not share a letter were significantly different. 

 

Table 16. Tukey test results for averaging method in association with peak accuracy. 

Averaging Method n Mean (%) Grouping 

EWMA 4704 92.130 A   

RA 4704 91.732   B 

Means that do not share a letter were significantly different. 

 

Table 17. Tukey test results for coupling method in association with peak accuracy. 

Coupling Method n Mean (%) Grouping 

Not coupled 4704 92.128 A   

Coupled 4704 91.734   B 

Means that do not share a letter were significantly different. 

 

Table 18. Tukey test results for acute time frame in association with peak accuracy. 

Acute Time Frame (days) n Mean (%) Grouping 

3 1960 92.308 A     

5 1960 92.084 A B   

7 1960 91.938   B   

10 1960 91.787   B C 

14 1568 91.539     C 

Means that do not share a letter were significantly different. 
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Table 19. Tukey test results for chronic time frame in association with peak accuracy. 

Chronic Time Frame (days) n Mean (%) Grouping 

42 1960 92.357 A   
49 1960 92.248 A   
35 1960 92.124 A   
28 1960 91.746  B  
21 1568 91.181   C 

Means that do not share a letter were significantly different. 

 

Table 20. Tukey test results for injury definition in association with peak accuracy. 

Definition n Mean (%) Grouping 

Specific 4704 98.273 A   

General 4704 85.589   B 

Means that do not share a letter were significantly different. 

 

Table 21. Tukey test results for injury lag period in association with peak accuracy. 

Lag Period (days) n Mean (%) Grouping 

0 1344 98.731 A             

3 1344 96.429   B           

7 1344 93.657     C         

10 1344 92.036       D       

14 1344 90.029         E     

21 1344 87.260           F   

28 1344 85.376             G 

Means that do not share a letter were significantly different. 

Two of the seven inputs were statistically different, and the levels were reduced to the 

VBDs from bands 5-8 and band 8. Two of the five acute time frames were statistically 

different, and the levels were reduced to 3 and 10 days. Three of the five chronic time 

frames were statistically different, and the levels were reduced to 21, 28, and 35 days. All 

the levels within averaging method, coupling method, injury definition, and injury lag 

period were statistically different; and none of the levels within those factors were 

removed for the interaction effects analysis. 
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 The effect of changes in VBDs on peak accuracy was inconclusive. Greater peak 

accuracies occurred when using the EWMA method compared to RA, not coupled 

workloads compared to coupled, and the specific definition compared to the general 

definition. There was a decreasing effect on peak accuracy as the duration of the acute 

time frame and injury lag period increased. There was an increasing effect on peak 

accuracy as the duration of the chronic time frame increased. 

Interaction Effects and Factorial Plots 

Input, averaging method, coupling method, acute time frame, chronic time frame, 

injury definition, and injury lag period each had a statistically significant 2-, 3-, 4-, 5-, 

and 6-factor interaction effect on peak accuracy (p-value  0.001). Therefore, the null 

hypothesis associated with the interaction effect of each factor was rejected, and the 

alternate hypothesis was accepted. 

The factorial plots in Figures 10 and 11 show interactions where the effect of one 

factor was determined to be independent of the level within another factor, while the 

factorial plots in Figures 12 and 13 show interactions where the effect of one factor was 

determined to be dependent of the level within another factor. The dependencies between 

interacting factors are shown in Table 22. 
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Figure 10. Two-factor factorial plot for the interaction effect between averaging method 

and injury definition on mean peak accuracy. 
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Figure 11. Two-factor factorial plot for the interaction effect between chronic time frame 

and injury lag period on mean peak accuracy. 
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Figure 12. Two-factor factorial plot for the interaction effect between chronic time frame 

and input on mean peak accuracy. 
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Figure 13. Two-factor factorial plot for the interaction effect between injury definition 

and injury lag period on mean peak accuracy. 
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Table 22. The dependency of factor levels within two-factor interactions for the interaction effect of given factors on mean peak 

accuracy. Factor dependencies were independent (I), dependent (D), insignificant (N), or unable to be determined by Minitab (X). 

  Input 
Averaging 

Method 

Coupling 

Method 

Acute Time 

Frame 

Chronic 

Time Frame 

Injury 

Definition 

Injury Lag 

Period 

Input - D D D D I I 

Averaging 

Method 
D - D D D I I 

Coupling 

Method 
D D - D D I I 

Acute Time 

Frame 
D D D - D I N 

Chronic 

Time Frame 
D D D D - I I 

Injury 

Definition 
I I I I I - D 

Injury Lag 

Period 
I I I N I D - 
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Input, averaging method, coupling method, acute time frame, and chronic time frame 

were each independent of the level within injury definition and lag period and dependent 

on the level within all other factors; though, the interaction between acute time frame and 

injury lag period was not statistically significant. Injury definition was dependent on the 

level within injury lag period and independent of the level within all other factors. Injury 

lag period was dependent on the level within injury definition and independent of the 

level within all other factors, except acute time frame as previously mentioned. 

 

Discussion 

Main and Interaction Effects 

 Chapters 2 and 3 investigated methodological effects on ACWR’s computation 

and application to injury likelihood, respectively. Both applications showed that when 

establishing each component within injury and ACWR methodologies in isolation, there 

were statistically significant differences between the respective levels that would likely 

not make any practical difference, but there were compounding effects that could have a 

practical significance when components interacted with each other. This study evaluated 

injury and ACWR methodologies within an accuracy-based application with similar 

results. When selecting methodologies in isolation, the statistically significant differences 

within injury definition and injury lag period would likely have practical significance, 

while the differences within ACWR input and computation components would likely not. 

Therefore, when considering components for the peak accuracy of an IMS in isolation, 

practitioners would need to make decisions regarding which injury definition and lag 

period to use, but any VBD input and ACWR model would be sufficient when the 
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ACWR values between different configurations are interpreted with equivalent criteria. 

However, similar to ACWR computation and injury likelihood, when considering the 

interactions between peak accuracy components, there are compounding effects between 

components that could have a practical significance. Consequently, practitioners should 

not select ACWR and injury methodologies for a peak accuracy analysis in isolation and 

should develop their strategies by progressing through a component hierarchy that 

establishes the impact of each component based on their interactions with other 

components. 

Component Hierarchy 

 The results of this study suggest the methodologies associated with peak accuracy 

of an IMS using ACWR should be developed in a hierarchical order: 1) injury definition, 

2) injury lag period, 3) input, 4) chronic time frame, 5) acute time frame, and 6) 

averaging and coupling method. Injury definition and lag period contributed to more 

variation in peak accuracy than other components, and the effect of both components 

depended on the level of the other. However, injury definition had greater differences in 

peak accuracy between its levels than injury lag period. Input caused less variation in 

peak accuracy than injury definition and lag period, while it caused more variation than 

all other components, and the effects of input influenced all ACWR model components. 

Acute and chronic time frames had similar differences in peak accuracy between their 

levels, but chronic time frame caused larger variation in peak accuracy than acute time 

frame. Averaging and coupling method caused the smallest variation in peak accuracy 

and had similar differences between their levels. Similar to hierarchies for the 

determination of ACWR and injury likelihood in Chapters 2 and 3, the methods used to 
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establish an injury criterion were more important than all other components and input 

was more important than the components within the ACWR model. However, the 

combined effect of all four computation factors may be greater than input alone. 

Performance-based Strategy Criterions 

 In addition to the interactions within the injury criterion and the ACWR 

computation, the strategy required a criterion for how ACWR was used with each 

configuration to identify true positive, true negative, false positive, and false negative 

outcomes. This study focused on peak accuracy performance where outcomes were 

influenced by an ACWR value being above a threshold. However, the ACWR criteria for 

a specific configuration likely depends on the methodology and data used. The ACWR 

literature currently associates injury likelihood with a U- or J-shaped profile (Andrade et 

al. 2020; Griffin et al. 2020), and the region within that profile where an organization’s 

data falls could dictate whether an ACWR criteria should be above or below a threshold, 

within a range, or governed by an alternate criteria. Statistical assessments may also 

inform how many ACWR instances should be required to satisfy the criteria prior to an 

event outcome being identified. Then, specific strategies can be optimized for accuracy or 

some other performance parameter, such as sensitivity or specificity, based on the needs 

of an organization and the practicality of forecasting training and competitions loads to 

satisfy the criteria. 

 The strategy implemented in this study produced peak accuracies that ranged 

from 59-99% and were associated with ACWR thresholds that ranged from 57-99% of 

the respective distribution. A potential concern would be whether or not training and 

competition loads could practically be programmed to maintain ACWR values with high 
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accuracy due to the criteria that would need to be met. Forecasting algorithms could 

project training and competition loads that support the development needs of a team or 

individuals across different phases of a macrocycle while determining if the criteria 

established by an IMS could be practically met. If the criteria could not be met, the 

strategy could be tuned to create the highest submaximal accuracy possible. However, the 

hierarchy of components should be investigated with submaximal accuracies to assess the 

consistency of their effects. 

Effects on Peak Accuracy vs ACWR 

 Input, averaging method, coupling method, acute time frame, and chronic time 

frame were common components between ACWR and peak accuracy, where their 

methodological effects on ACWR were investigated in Chapter 2. Each component had 

significant main and interaction effects on the response variables; and input, acute time 

frame, and chronic time frame levels were further reduced in the peak accuracy analysis. 

The influence of input, coupling method, and acute time frame on the variation of peak 

accuracy was smaller compared to their impact in the ACWR analysis, while the 

influence of averaging method and chronic time frame was larger. Furthermore, in both 

analyses, input had a greater hierarchy than the components associated with the 

computational model. Averaging method within the ACWR analysis was the only 

instance where a factor was independent of levels within other factors, but it had 

dependencies on all ACWR factors within the peak accuracy analysis. The dependencies 

of all other factors were consistent between both analyses. Consequently, both analyses 

support developing ACWR-based injury mitigation strategies by prioritizing the input of 

the strategy over the components within the ACWR model. 
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Effects on Peak Accuracy vs Injury Likelihood 

 Input, averaging method, coupling method, acute time frame, chronic time frame 

injury definition, and injury lag period were common components between injury 

likelihood and peak accuracy, where their methodological effects on injury likelihood 

were investigated in Chapter 3, and each component had significant main and interaction 

effects on the response variables. Between both analyses, input was the only component 

with levels that were further reduced following the ACWR analysis in Chapter 2, but the 

levels were reduced more for peak accuracy than injury likelihood. Acute and chronic 

time frames also had levels further reduced, but only for peak accuracy. The influence of 

input, definition, and lag period on the variation of peak accuracy was smaller compared 

to their impact in the injury likelihood analysis, while the influence of averaging method, 

coupling method, acute time frame, and chronic time frame was larger. The levels within 

input and injury definition depended on each other within the likelihood analysis, but 

they were independent within the peak accuracy analysis. The dependencies of all other 

factors were consistent between both analyses. Also, in both analyses, the components 

associated with the injury criterion had a greater hierarchy than input, and input had a 

greater hierarchy than the components associated with the computational model. 

Consequently, both analyses support developing ACWR-based injury mitigation 

strategies by prioritizing the components within the injury criterion over the input and 

prioritizing the input over the components within the ACWR model. 

Limitations 

 As mentioned in Chapter 2, the statistical differences between inputs may be 

influenced by the use of absolute velocity bands, the ranges associated with those 
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velocity bands, and only considering velocity to discriminate between distances. The 

dependencies and thus the hierarchy of IMS peak accuracy components were also 

affected by the subjective interpretation of the two-factor factorial plots. 

 As mentioned in Chapter 3, the data associated with the ACWR methods included 

in this study were based on the reduced methods from the ACWR analysis in Chapter 2. 

The effects were assumed to be constant for IMS peak accuracy. Additionally, the 

recording of injuries by an athletic trainer was subjected to inter- and intra-rater 

reliability from three athletic trainers over the time period of this study. Injury recordings 

may have also been impacted by the timing in which an injury was reported by a subject. 

 

Conclusions 

 Interactions between peak accuracy methodologies using ACWR contribute to the 

inconclusive implications associated with ACWR in the literature. When considering the 

peak accuracy of an IMS using ACWR, methodologies associated with a given 

component should not be determined without considering its interactions with other 

components. Practitioners should reduce methodologies from the literature and establish 

a hierarchy that guides the development of their IMS based on the needs of their specific 

environment. Alternately, the determination of injury definition and lag period should be 

prioritized over the input, and input should be prioritized over the components within the 

ACWR model. Then, the ACWR model should be developed by selecting the methods 

for chronic time frame, acute time frame, and then averaging and coupling method. At 

some point within the development progression, the specific level selected within a 

component may not provide a practical benefit over other options.
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CHAPTER 5 

RETROSPECTIVE CASE STUDY INVESTIGATING A PERFORMANCE-BASED 

INJURY MITIGATION STRATEGY USING ACUTE:CHRONIC WORKLOAD 

RATIOS 

Background and Significance 

  The literature presents many injury criterion, model inputs, and computational 

configurations used to investigate injury mitigation strategies with acute:chronic 

workload ratios (ACWRs) (Andrade et al. 2020; Griffin et al. 2020). It cautions the 

application of ACWRs for injury mitigation due to inconclusive recommendations 

regarding which methodologies yield ACWR values that better inform the development 

of injury mitigating strategies. The literature has shown significant associations between 

ACWR ranges and injuries (Andrade et al. 2020; Griffin et al. 2020); however, some 

studies have demonstrated those associations have high relative risk with low absolute 

risk and poor injury prediction capabilities (Hulin et al. 2013; Delecroix et al. 2018; 

Fanchini et al. 2018; McCall, Dupont, and Ekstrand 2018; N. B. Murray et al. 2016). 

Chapters 2-4 showed injury definition, injury lag period, input, averaging method, 

coupling method, acute time frame, and chronic time frame had significant interaction 

effects on the response variable across multiple applications and suggested 

methodologies should be determined in a hierarchical order. However, data processing
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procedures may also affect how an injury mitigation strategy (IMS) is developed due to 

differences in data between studies. 

 When developing an IMS using ACWR, Chapters 2-4 support progressing 

through a general framework and analytically converging on the best strategy for a given 

dataset. After the injury criterion, quantifiable load, and computational model are 

determined and the various factors and factor levels that are not statistically different are 

reduced, several potential configurations for an IMS may remain. Those configurations 

could be further evaluated by backtesting and optimizing the variable parameters within 

the strategies. Backtesting has been extensively researched in financial risk applications. 

The general premise of backtesting involves assessing the hypothetical historical 

performance of a suggested strategy or evaluating risk models using historically 

forecasted and realized metrics (Christoffersen 2008). When developing an IMS, it can be 

developed and backtested using previous injuries. Though the IMS may not have 

prevented previous injuries from occurring, the investigation can provide insight into how 

the strategy could contribute to future mitigation efforts, such as the occurrence of 

injuries relative to the timeline of a competitive season or the types of injuries that occur. 

 In conjunction with backtesting, sensitivity and specificity of an IMS may provide 

insight into if and how a strategy should be implemented by a sport organization. 

Sensitivity indicates how well an IMS identifies an athlete being injured given they were 

injured, while specificity indicates how well an IMS identifies an athlete not being 

injured given they were not injured. A strategy with high sensitivity would identify more 

injured incidences than a strategy with low sensitivity and may help determine whether to 

proactively plan training and competition workloads to satisfy a supported criterion. A 
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strategy with high specificity would identify more non-injured incidences than a strategy 

with low specificity and may help determine whether to reactively monitor and initiate 

recovery interventions following training and competition. However, in addition to the 

injury definition and lag period, input, averaging and coupling method, and acute and 

chronic time frame; the sensitivity and specificity associated with a strategy is directly 

impacted by the methods used to evaluate ACWR and injury criteria. 

 

Specific Aims 

 The purpose of this study was to evaluate the accuracy, sensitivity, and specificity 

of various IMS configurations; and investigate the performance and application of a 

selected IMS relative to changes in the ACWR threshold. Applications were considered 

within the context of flagged and missed injuries within the seasonal timeline and by 

injury type. 

 The specific aims of this chapter were: 

1. Evaluate the accuracy, sensitivity, and specificity of injury mitigation strategies 

optimized for peak accuracy. 

• Key Question: Which methodological configurations had high accuracy 

and sensitivity? 

• Key Question: If there were configurations with high accuracy and 

sensitivity, what was the specificity associated with those configurations? 

2. Discuss the occurrence of flagged  and missed injuries relative to the timeline of 

each season. 
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• Key Question: Were there any points within a season where more injuries 

were missed than flagged? 

• Key Question: Were there any points within the timeline where a similar 

number of injuries were missed and flagged? 

• Key Question: Were there any points within a season where fewer injuries 

were missed than flagged? 

3. Discuss the occurrence of flagged and missed injuries relative to injury type.  

• Key Question: Due to the injury criterion used, were any missed injuries a 

concern? 

• Key Question: Which injury types had more missed occurrences than 

flagged? 

 

Methodology 

This study was approved by the University of Louisville Internal Review Board. 

Written informed consent was obtained from each participant, when possible. Written 

informed consent was waived by the review board when its acquisition was not 

practically obtainable (i.e. subjects were no longer affiliated with the respective 

organization). 

Subjects 

Female student-athletes on the University of Louisville field hockey team during 

the 2017-18 to 2022-23 pre-seasons, in-seasons, and post-seasons were invited to 

participate as subjects. There were 55 subjects included in the study. 
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Data Collection 

 From Chapter 2, all computed ACWRs were included. The configurations 

consisted of 36 velocity-based distances (e.g., distance from velocity band 1, distance 

from velocity bands 2-5, distance from velocity bands 1-8, etc.); rolling average (RA) and 

exponentially weighted moving average (EWMA) averaging methods; coupled and not 

coupled coupling methods; acute time frames of 3, 5, 7, 10, and 14 days; and chronic 

time frames of 14, 21, 28, 35, 42, 49, and 56 days. Each ACWR was expressed as a value 

between 0 and 100% of the respective group range, and outliers within each group were 

removed using the interquartile range method. From Chapter 3, sport-related injury data 

was included. All injuries were recorded by the team athletic trainer during the 2018-19 

to 2022-23 pre-seasons, in-seasons, and post-seasons; however, data from the 2020-21 

season was excluded due to events associated with COVID-19. There were 158 injury 

instances included. The injury likelihood profile of the selected IMS configuration was 

also included. 

Data Processing 

 Injury criterions determined if an ACWR was associated with an injury based on 

an injury definition and injury lag period. If the injury definition was satisfied within the 

injury lag period following an ACWR exposure, the ACWR was associated with an 

injury. If the injury definition was not satisfied within the injury lag period following an 

ACWR exposure, the ACWR was not associated with an injury. Two injury definitions 

were used based on practical outcomes: 1) the athletic trainer recorded a subject was 

exposed to a sport-related muscle, tendon, ligament, or bone injury in the lower body or 

torso; 2) the athletic trainer recorded a subject was exposed to a sport-related muscle, 
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tendon, ligament, or bone injury in the lower body or torso, and the subject missed a 

training or competition session. Injury lag period consisted of time frames of 0, 3, 7, 10, 

14, 21, and 28 days following an ACWR exposure. 

 The false negative, false positive, true negative, and true positive outcomes 

associated with the injury mitigation strategy for all configurations were used to 

determine the sensitivity and specificity of the strategy, where the outcomes were based 

on the ACWR threshold at peak accuracy. Peak accuracy was determined using the 

processes from Chapter 4. A true positive event occurred when ACWR was above the 

threshold and the injury criterion was satisfied. A false positive event occurred when 

ACWR was above the threshold and the injury criterion was not satisfied. A false 

negative event occurred when ACWR was below the threshold and the injury criterion 

was satisfied. A true negative event occurred when ACWR was below the threshold and 

the injury criterion was not satisfied. Sensitivity was calculated using 

 𝑆 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  (8) 

where 𝑇𝑃 and 𝐹𝑁 were the number of true positive and false negative events, respectively. 

The specificity of each configuration was calculated using 

 𝑃 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
  (9) 

where 𝑇𝑁 and 𝐹𝑃 were the number of true negative and false positive events, respectively. 

 Configuration A was selected for the investigation of an individual strategy and 

consisted of the distance accumulated at velocities greater than 4 m/s, exponentially 

weighted moving averaging, coupled acute and chronic workloads, 7-day acute time 

frame, 28-day chronic time frame, general injury definition, and 10-day injury lag period. 
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Configuration A included common methodologies used in the literature (Andrade et al. 

2020; Griffin et al. 2020). The performance of Configuration A was based on the 

accuracy, sensitivity, and specificity of the associated IMS, where the ACWR threshold 

was varied from 0-100% of the ACWR distribution at 5% intervals. The IMS accuracy at 

each threshold was calculated using Equation (7). Injuries were flagged by the IMS when 

at least one true positive event was within the injury lag period prior to each injury for 

thresholds of 25% (low), 50% (moderate), and 75% (high) of the ACWR distribution, and 

injuries were missed when there were no true positive events within the injury lag period. 

Injuries that occurred within the initialization phase of ACWR (i.e., the first 28 days of 

training) were excluded. 

 

Performance of IMS Configurations 

 The specificity and sensitivity, accuracy and sensitivity, and accuracy and 

specificity of 64,512 injury mitigation strategy configurations optimized for peak 

accuracy are shown in Figures 14-16, respectively. 
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Figure 14. IMS specificity and sensitivity of 64,512 configurations optimized for peak 

accuracy. 

 

Figure 15. IMS accuracy and sensitivity of 64,512 configurations optimized for peak 

accuracy. 
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Figure 16. IMS accuracy and specificity of 64,512 configurations optimized for peak 

accuracy. 

When using velocity-based distances within IMSs optimized for peak accuracy, the 

performance of the strategies generally exhibited high accuracy, low sensitivity, and high 

specificity. There was not an individual or group of configurations with high accuracy 

and high sensitivity, which may limit the current methodologies from being used to 

forecast training loads using ACWR criteria to mitigate injuries. However, due to the 

presence of configurations with high accuracy and high specificity, current 

methodologies could be used to reactively monitor and initiate recovery interventions. 

 The number of ACWR exposures may overpower the number of injuries resulting 

in instances where peak accuracy had few true positive instances. The number of 

exposures could be reduced by adapting the injury definition to consider additional 

components such as player position, development level, or role within the team. 

However, efforts to reduce the number of exposures may also reduce the number of 

injuries. Strategies may also benefit from optimizing accuracy within a submaximal range 
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or an alternative ACWR threshold method, such as below a threshold or inside or outside 

of a band. 

Investigation of Selected IMS Configuration 

 Figure 17 shows the accuracy, sensitivity, and specificity of Configuration A with 

a varied ACWR threshold. 

 

Figure 17. Accuracy, sensitivity, and specificity of an injury mitigation strategy with a 

varied ACWR threshold. 

For Configuration A, each performance curve presented a sigmoid shape. When the 

ACWR threshold was initiated at 0%, all injuries were above the threshold where 

specificity, accuracy, and sensitivity were 0%, 14%, and 100%, respectively. Accuracy 

and specificity curves increased as the ACWR threshold increased, while sensitivity 

decreased. Greater changes in the curves generally occurred in the middle 30-70% of the 

ACWR threshold, which indicated most of the injuries were associated with ACWRs in 

that region. When the ACWR threshold reached 100%, all injuries were below the 

threshold where specificity, accuracy, and sensitivity were 100%, 86%, and 0%, 

respectively. Fanchini et al. and McCall et al. both showed similar low sensitivity and 
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high specificity performance for strategies using session rate of perceived exertion as the 

input and ACWR thresholds based on an 85th percentile (Fanchini et al. 2018; McCall, 

Dupont, and Ekstrand 2018). Due the vast amount of IMS configurations possible, the 

performance curves of a given strategy should inform the ACWR threshold to optimize 

the strategy’s impact or help determine whether the IMS should be used. 

 Figure 18 shows the injury likelihood profile of Configuration A. 

 

Figure 18. Injury likelihood profile for Configurations A. 

The injury likelihood profile for Configuration A exponentially increased to a peak at 

approximately 50% of the ACWR spectrum followed by an exponential decrease. The 

likelihood of injury throughout the profile was within 10-30%. Studies have suggested 

injury likelihood and ACWR have a U-shaped relationship (Colby et al. 2017; Jaspers et 

al. 2018; Malone et al. 2017); however, the profile in Figure 18 suggests profiles do not 

universally have a U-shaped relationship. No studies were identified that have 

investigated the changes in an injury likelihood profile following interventions with an 
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ACWR-based IMS. It is possible the likelihood of injury may have had a U-shaped 

profile at one point but has since changed due to sport and performance development of 

the respective subjects. Consequently, an IMS should be developed using methods more 

specific to the relationship presented by the data, such as above or below an ACWR 

threshold or within or outside of an ACWR band, and those methodologies should be 

guided by the injury likelihood profile and IMS performance. 

 Injuries flagged and missed by Configuration A based on low, moderate, and high 

ACWR thresholds relative to injury category and season timeline are shown in Tables 23 

and 24, respectively. 
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Table 23. Injuries flagged and missed by Configuration A by season timeline. 

Time Period n 

25% ACWR Threshold 50% ACWR Threshold 75% ACWR Threshold 

Flagged Missed 
Flagged 

(%) 
Flagged Missed 

Flagged 

(%) 
Flagged Missed 

Flagged 

(%) 

Early September 14 13 1 93% 11 3 79% 3 11 21% 

Late September 17 17 0 100% 17 0 100% 5 12 29% 

Early October 20 20 0 100% 19 1 95% 10 10 50% 

Late October 23 23 0 100% 22 1 96% 13 10 57% 

Early November 12 12 0 100% 12 0 100% 5 7 42% 

 

Table 24. Injuries flagged and missed by Configuration A by injury category. 

Injury Category n 

25% ACWR Threshold 50% ACWR Threshold 75% ACWR Threshold 

Flagged Missed 
Flagged 

(%) 
Flagged Missed 

Flagged 

(%) 
Flagged Missed 

Flagged 

(%) 

All Injuries 86 85 1 99% 81 5 94% 36 50 42% 

Strains 5 5 0 100% 5 0 100% 3 2 60% 

Sprains 7 7 0 100% 7 0 100% 1 6 14% 

Quadriceps 9 8 1 89% 8 1 89% 6 3 67% 

Hamstring 13 13 0 100% 12 1 92% 4 9 31% 

Glute 5 5 0 100% 5 0 100% 2 3 40% 

Lower Back 5 5 0 100% 5 0 100% 3 2 60% 

Hip 5 5 0 100% 5 0 100% 2 3 40% 

Knee 8 8 0 100% 8 0 100% 3 5 38% 

Ankle 8 8 0 100% 8 0 100% 3 5 38% 
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Relative to a seasonal timeline, the number of injuries within a time period increased as 

the timeline progressed and then decreased in early November, which corresponded with 

postseason activities. The number of missed injuries was affected by the threshold used, 

where at a high threshold there were relatively more injuries missed earlier in the timeline 

and more injuries flagged later in the timeline. Relative to each threshold, there were time 

periods with a similar number of flagged and missed injuries, such as in early and late 

September or early and late October for a high threshold. When considering the 

periodization of injury mitigation strategies, these grouped periods could identify time 

frames in which to focus certain mitigation efforts in addition to ACWR. Relative to 

injury categories, more injuries were generally missed than flagged at a high threshold. 

When considering specific categories, more sprain, hamstring, glute, knee, hip, and ankle 

injuries were also missed than flagged. Sprain and hamstring injuries had the most missed 

instances and may benefit from a tailored ACWR approach or alternative strategy that 

targets those specific injuries. 

 Approximately 45% of the recorded injuries occurred within the first 28 days of 

training and were not included due to the ACWR initialization phase. Both applications 

demonstrated an interaction between the injury lag period and the ACWR threshold, 

where the lag period and threshold could be optimized to maximize the impact of the 

strategy. More injuries were flagged relative to the injury category and seasonal timeline 

when the threshold was lower, and more injuries were missed as the threshold increased; 

however, the increase was not linear and did not correspond with the sensitivity of the 

IMS at the moderate and high ACWR threshold. A low threshold with longer lag period 

would likely flag more injuries than a high threshold with a short lag period due to more 
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opportunities for an ACWR value to be above the threshold. However, practical 

considerations should be given to the loads needed to effectively develop athletes for 

competition. The interaction between lag period and threshold also demonstrated high 

ACWR values were the only mechanism detectable by the strategy. Alternative strategies 

would be needed to identify other mechanisms within and outside of the injury lag 

period, such as those leading to chronic injuries that may be impacted by loads outside of 

the lag period. 

 

Conclusions 

 Despite the variations in ACWR and injury criterion methodologies, the 

performance of each configuration generally had high accuracy and specificity with low 

sensitivity when using an ACWR threshold optimized for peak accuracy. The 

methodologies included in this study are better suited for reactively monitoring and 

taking injury mitigation actions over proactively forecasting training and competition 

loads. However, further research is required to better understand how ACWR and injury 

criteria impact the effectiveness of an IMS. The injury likelihood profile, performance 

curves, and flagged injuries should be used to evaluate the type of criteria as well as the 

ACWR values associated with each criteria type. The optimization process for an IMS 

should consider thresholds associated with a submaximal accuracy in addition to the 

duration of the injury lag period. 
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CHAPTER 6 

CONCLUSIONS 

 The purpose of this dissertation was to determine if ACWR should be integrated 

into an injury mitigation strategy (IMS) and, if so, what input, computation, and injury-

related methodologies should be used with it. This dissertation concluded the inclusion of 

ACWR would provide information that could support injury mitigation decisions and 

efforts. However, the utility of ACWR depends on how it is applied, and there is not a 

universal configuration for its implementation. The methodologies selected for ACWR 

(i.e., injury definition, injury lag period, input, averaging method, coupling method, acute 

time frame, and chronic time frame) are significantly impacted by their interactions with 

the other methodologies selected, but the analytical results presented components for 

injury mitigation strategies, outlined in Figure 19, that can be developed in a hierarchical 

order.
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Figure 19. General framework for the development of injury mitigation strategies. 

The injury definitions and lag periods within the injury criterions had a more significant 

impact on the response variables within this dissertation than the GPS-based distances 

used to quantify training and competition loads. The input used with the ACWR models 

had a more significant impact than the averaging and coupling methods and acute and 

chronic time frames of the ACWR model. The development of injury mitigation 

strategies should initially investigate the injury criterion only and subsequently progress 

by integrating quantifiable loads and then models, while assessing the benefit and 

practicality of potential interventions at each stage. The progression also allows for the 

research and development of applicable data processing and analyzing methodologies. 

When analyses support further investigation of multiple options within a methodological 

component, all potential configurations can be backtested and variable parameters can be 

optimized to generate the best strategy that supports the needs of an organization. 
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Injury Criterion 

 The injury definition should be guided by the goals and objectives of a sport 

organization, and future research should investigate the processes for developing injury 

definitions relative to the needs of an organization. The definition used establishes the 

number of injuries available for an analysis based on features associated with an injury or 

group of injuries and influences whether a strategy should be mechanistically or 

statistically driven. Injury features should be purposefully grouped together until there is 

an adequate number of injuries for the subsequent analytical methods, and a statistical 

approach could be taken when there are not enough injuries for a mechanistic approach. 

Features could be based on characteristics that describe specific injuries, athletes, 

contexts, and other aspects related to specific needs. In addition to the time-loss aspects 

in the literature, injury characteristics could be described by tissue type, biomechanical 

movements, local to global areas, and others. Athlete characteristics could include 

position, role, performance profiles, and others. Contextual characteristics could consist 

of activity type, periodization phases, and others.  

 The injury lag period should be related to the underlying injury mechanisms of 

the injury definition, when possible. However, it may be more practical to determine the 

lag period by minimizing its duration relative to a desired outcome within an 

optimization process. The specific ACWR strategy criteria, number of injuries included, 

and input and computational component effects also contribute to the outcomes of an 

IMS and should be considered when evaluating the lag period. 
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Quantifiable Load and Computational Model 

 The input used within an IMS should also be related to the underlying injury 

mechanisms of the injury definition, when possible. The input and model components 

had consistent dependencies on each other between different applications, so the 

methodologies selected after the definition and related inputs should be evaluated 

together. Due the plethora of options within the methods required to develop an IMS, all 

options within each component should be analytically reduced by identifying and 

removing those that have an effect that is not different from others on the response 

variable of interest. When the remaining options interact within a given configuration, the 

configurations may further be reduced by analyzing and removing those that have an 

effect that is not different from others; though, alternative analytical techniques may be 

required to converge on fewer configurations. Subsequently, all remaining or selected 

IMS configurations should then be backtested and optimized to determine the best 

strategy to implement. Further research is needed for the appropriate criteria of pursuing 

backtesting and optimization in injury applications. However, considerations should be 

given to the magnitudes and patterns within different approaches, such as thresholds, 

bands, accumulated differences, etc., and those approaches should be guided by 

characteristics of the strategy, such as injury likelihood profiles, performance curves, and 

flagged injuries. 
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