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ABSTRACT

NOVEL DESIGNS OF SOFT TACTILE SENSOR AND ROBOT FINGER 

MANIPULATOR BASED ON OPTICAL FIBERS

Seokyoung Han

March 19, 2024

Robotic manipulation is one of the main types of automated labor that humans 

want to achieve in order to free ourselves from mundane and hazardous tasks. The 

range of realizations could be very broad, from massive industrial robots to highly 

advanced medical devices for human healthcare. Given the critical nature of these 

application spaces, they require robust, safe, and most of all versatile designs. In 

that direction, one of the most interesting topics is the anthropomorphic robotic ma-

nipulator. Since it is inspired by human hands’ function and structure, it is able to 

achieve the aforementioned system requirements. However, the perfect realization of 

the human-inspired design will take time, because there is still room for advancement 

in mechanical design, material, control strategy, computation performance, and more. 

Therefore, in this dissertation, we cover a comprehensive overview in the development 

of anthropomorphic robotic hand starting from subcomponents of skin, bones, ten-

dons and nerves, and look into biological inspirations that can be implemented with 

the current state of technology.

Another interesting topic regarding robotic manipulation is the sensing ability of 

robots, which is critical to processing information in situations involving human in-

teraction. Safety is especially vital when it comes to Human-Robot Interaction (HRI). 

Thus, many recent studies prioritize soft materials and highly conformable systems. 

Soft designs with bio-inspired aspects have intrinsic advantages in safety as well as
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robustness. Therefore, integrating both manipulation and sensing within a soft de-

sign is a promising path to safe and capable automated labor.

In this work, we have developed a new type of soft tactile sensor, notably one that

can detect both normal and lateral forces having 0 - 5 N range, 3 Hz sensitivity.

Beyond that sensor development, an adaptive control method is demonstrated that

adjusts the robotic manipulator’s grasping force to counteract slipping forces on the

object being handled in the real-time control manner. In contrast to most soft sensor

research involving resistive or capacitive electronic sensors, here a soft optical fiber is

utilized to measure the force within a soft silicone housing.

Ultimately, we developed a human-inspired robotic finger manipulator incorporating

soft tactile sensing. The finger manipulator is not only sensed, but driven by a soft

optical fiber tendon which is able to detect finger motion and applied force according

to the physical deformation of the tendon fiber. Maximum loading force measured in

this study is 3 N on the tactile tip. The final design of the manipulator has 3-joint, 4-

link structure so that makes human finger-like motion(70◦/70◦/80◦, DIP/PIP/MCP).

Through this novel design of the manipulator and sensor, we have overcome numer-

ous technical hurdles including spatial limitation, cost-efficiency, and complexity of

control, coming one step closer to realizing human-like functional robotic manipula-

tion. Therefore, in each section the main contributions of this work can be itemized

as below.

• Create a new soft tactile sensor design capable of detecting both normal force

and lateral motion, including stick-slip phase.

• Introduce an adaptive grasping control system using the developed soft sen-

sor and standard robotic grasper to prevent slipping. This controller ensures

stability and robustness through analysis and implementation.

• Explore human hand anatomy extensively, focusing on structure and sensing
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features, to inspire the development of robotic hands.

• Propose a human finger-inspired robotic finger design with anthropomorphic

features and an optical fiber tendon.

• Utilize the optical fiber tendon for both force transmission and finger posture

measurement in a single unit.

• Leverage the optical fiber to estimate finger posture and detect contact force

on the fingertip by analyzing its physical deformation.
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CHAPTER I

DEVELOPMENT OF A NOVEL OPTOELECTRONIC

SOFT TACTILE SENSOR

1 Introduction : Human Skin and Soft Sensor

Human hands’ adaptability and dexterity stem from not only the anatomical frame-

work, but also from sensory neural receptors at the skin surface and below [1]. Figure

1 shows the structure of thick (palmar side) skin, which is distinguished by the thick-

ness of the epidermis. The function of skin is not just limited to obtaining tactile

information, but to deforming around objects.

There are three layers of the skin (epidermis, dermis, hypodermis) as shown in Fig-

ure 1. Epidermis itself has low mechanical strength, yet it plays a key role to protect

underlying skin layers from abrasion. Furthermore, due to the unique ridges (fin-

gerprints) on the outer surface of the epidermis, hand manipulation exerts contact

friction that leads to a more stable grip. The dermis is the dominant underlayer

of the skin, and it determines the skin’s overall mechanical properties. Because the

dermis has high elasticity and tensile strength, it serves as an absorber of external

shock along with the hypodermis. Thus, thanks to the physical properties of each

stratum, the skin helps human hands conform to objects during grasping and spring

back to their original shape by absorbing shock and elastically restoring.

Meanwhile, most of the tactile sensory receptors (mechanoreceptors) lie in between

the epidermis and dermis section to accept mechanical deformation of the skin easily,

while staying protected by surrounding layers [2]. Interestingly, many current artifi-

cial skin studies have tried to implement and exploit this human skin stratum [3–6].
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Figure 1. (Left) Illustration of human skin structure and mechanoreceptors for
tactile sensing, (Right) Example of artificial skin

As mentioned earlier, human hands’ dexterity comes from the interplay of frame

structures, actuators, and sensory receptors. Sensor systems for measuring tactile in-

formation have been developed not only to meet demands of robotic hands, but also

for other applications including medical devices and pressure mapping surfaces [6,7].

Table 1 collects recently developed tactile sensors, focusing on those inspired by the

structure of human skin. Most use soft and flexible materials so that they can con-

form to the objects being touched, as well as interact with external inputs within the

force range of human hand manipulation tasks [5, 8–12].

While the inspiration and physical properties of various projects are aligned, Table 1

highlights distinctly different transduction mechanisms, materials, and components.

The majority of soft-type sensors commonly detect changes in electrical signals, such

as alterations in resistance, capacitance, or electrical charge in response to mechanical

deformation [12–14]. These sensors can be seamlessly embedded onto elastomers in

compact sizes, facilitating attachment to surfaces with flexible and stretchable fea-

tures. While electric sensing mechanisms boast high accuracy and sensitivity, they

may be susceptible to a high signal-to-noise ratio (SNR) or interference.

In contrast, optic-based sensing mechanisms are less susceptible to electrical or mag-

2



netic field interference and offer water resistance. Many optical sensors employ flexi-

ble optical fibers, enabling interfacing with soft-type polymers for use as skin sensors.

Although these sensors are cost-effective and easy to fabricate, they may encounter

issues related to optical attenuation due to ageing or analog signal calibration [15].

A more sophisticated version of optical sensors employs a vision-based sensing mech-

anism, exemplified by systems like TacTip [16], GelSight [17], and DIGIT [18]. In

these systems, an image-capturing camera or optic-based vision sensor embedded

within elastomeric material facilitates the detection of objects’ shape and texture.

While such systems were initially bulky, they have undergone continuous refinement

in recent years. Additionally, magnetic sensing mechanisms have garnered attention,

especially with the integration of magnetic particles into polymeric materials to de-

sign soft, thin, skin-type tactile sensors [19].

The main concern of these studies is obtaining normal force, detecting lateral mo-

tion, surface contact information and collecting other signals within the capability of

human skin such as temperature. The skin sensor community assesses and compares

projects on their force resolution, minimum and maximum measurable force, and

tactile sensor element size [20].

Especially, researchers in the ”soft optics” field have developed optoelectronic

techniques for tactile sensing, measuring and detecting light intensity variation pass-

ing through optical lightguides [22–24]. Soft optical sensing modalities have proven a

good match to bio-mimetic, innervated neural-like designs for afferent sensing. These

systems deliver a photon intensity, wavelength [25, 26], or optical time-of-flight [27]

signal for processing tactile inputs. Elastomeric optical fibers and waveguides have

adequate transparency on the 1 m length scale and their intrinsic stretchability meets

the mechanical properties of soft robotic and wearable systems. Their insusceptibility

to electric interference, and their water resistance will aid with designs for environ-

ments having electromagnetic motors and strong magnetic fields that induce noise in
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Name(Year) Mechanism Component Sensitivity Highlight

Shen(2021)

Capacitive
[13]

Ionic hydro-
gel, Fabrics,
Elastomers

1.5kPa−1

Fast response
(18ms), Ma-
terialized
an array of
cutaneous
mechanore-
ceptors

Liu(2021)

Piezo-
electric [14]

PDMS 0.5N
Pressure,

roughness,
sliding detection

Jiang(2021)

Optic [21]
PDMS,
Resin, Opti-
cal microfiber

0.2N

Emulation of
human finger-
print ridges,
Normal and
lateral mo-
tion detection

Bhirangi(2021)

Magnetic
[19]

Polymer,
Magnetic mi-
croparticles

< 0.1N

Compact,
Replaceable,
Compression
and shear
force detec-
tion

Lambeta(2020)

Vision [18]
Elastomer,
plastic

640x480
(image)

High spatial
resolution,
Miniaturiz-
able

Table 1. Recent skin-mimetic sensors use an array of mechanisms to produce tactile
sensor elements.

electronic signals, and aqueous environments that corrode metals.

Given these advantages of the soft optical approach, groups have investigated an

array of stretchable, light-transmitting materials for sensing stretching, bending, and

contact forces [28–34]; recent work in this area was reviewed in [35]. Comparatively
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Table 2. Comparison of soft optical lightguide sensors

Sensor type Dynamic range Bandwidth Highlights Reference

Normal force,
Stick-slip

phase detection

5 N (around
1 N Sensitivity)

3 Hz
Inter-fiber gap geometry
leading to optical inten-
sity changes

This study

Tactile sensor 20 N -
Mechanics of surrounding
structure causing defor-
mation of optical path

[22]

Length sensor Detects
1% changes

30 Hz Time-of-Flight method [27]

Normal force,
Location

2.5 N -
Fiber Bragg Grating in a
soft structure

[26]

Normal force,
Slip detection

10 N (0.2 N
Sensitivity)

1 Hz
Emulating human finger
skin with optical mi-
crofiber

[24]

few have used soft optics specifically to identify lateral forces or contact friction in-

formation. The general problem of slip detection for robotic object manipulation

is reviewed in [36]. Researchers have used tactile sensors to obtain relative contact

positions and directions, which can provide tangential forces when slip occurs, using

resistive [37,38] and optical [9] transduction principles. The latter sensor is in a fam-

ily of open-source TacTip optical imaging sensors [39] that rely on displacement of an

array of internal, optically-contrasting pins on a soft and deformable contact surface.

Other marker-array based schemes for slip and shear detection include imaging of

soft contact pillars [40] or contrasting dots on a contacting elastomeric surface [41].

Motion at the edges of the marker region [41] or throughout the marker array [42]

indicates incipient slip. A marker-free method, Gelsight [43], detects contact defor-

mation by imaging the back side of a thin, side-lit elastomeric membrane touching

objects and has been recently upgraded to detect slip [44]. While they are capable of

high speed and resolution without complex wiring, these imaging methods require a

camera view of internal gripper surfaces and are not compatible with thin robotic or
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wearable sensing skins. Non-imaging approaches include dynamic tracking of wave-

length changes for measuring slip along a dye-patterned waveguide [25], interrupting

a waveguide path with optoelastic contact materials whose transmission properties

change with shear [45], and geometric approaches that use shear-induced deformation

to change the coupling of a waveguide pair, the approach we investigate in this paper.

Since the soft optical sensor proposed in this paper has a simple, versatile, and cost-

effective design, it is expected to outweigh the high resolution and sensitivity of other

sensors for certain applications. Specifications of several similar optical-based sensors

having mm range of scale are organized in Table 2. Therefore, in this work, a skin-like

soft silicone sensor is presented to measure normal forces and assess the stick-slip be-

havior of objects contacting the silicone surface in a classifiable way through a static

state test.

2 Concept of Development

The basic idea of the sensor design comes from classical frictional mechanisms and

Hooke’s law. Figure 2 shows how the soft silicone sensor design is inspired by a

bristle model. Illustrated in Figure 2(a) through Figure 2(d), the friction surface and

its parameters are based on the LuGre friction model [46–48], which represents the

contact interface as flexible bristles that are deformed while lateral force is applied

and an object is sticking on the surface. Since the bristles are flexible, if a soft

material is designed as a finger-sized individual bristle, its deformation is likely to

provide friction information relevant to stick-slip motion based on the structure’s

spring constant, geometry, and damping characteristics. Our finger-sized soft silicone

sensor includes an optical lightguide as innervated fiber. When the silicone ridge is

deformed by a lateral force, it causes an amount of lateral deformation z as shown in

Figure 2(d) and Figure 2(e). In addition, since the bristle has spring behavior, one

edge of the silicone structure is elongated and the other edge is squeezed while the
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force is applied. This spring mechanism contains a soft optical fiber that amplifies

and detects its deformation. The structure is designed with a gap that opens during

deformation, making a clearance δ at the elongating edge as shown in the Figure 2(e).

Because the soft optical fiber is opened by the gap while the force is applied, the light

intensity is changed. Larger lateral displacements cause larger openings, increasing δ

and causing a decrease in transmitted light intensity. In other words, due to the design

based on the bristle friction model, this soft silicone sensor can give interpretable

friction information when lateral force is exerted. This is demonstrated through

static and dynamic experiments using a loading machine and robotic gripper later.

We find that sensors made from different materials produce identifiable patterns that

help discern the stick-slip phase from light intensity transmitted through a unique

inter-fiber gap design. Also, because this sensor has a symmetric structure, it is

capable of bilateral detection, which means it can measure normal pressure and slip

motion changes regardless of their sign. Finally, based on its construction from easy-

to-find and comparatively economical materials, we show that the fabrication process

for this novel design is fast and simple (curing time 30 min and annealing time 20 -

30 min).

3 Fabrication and Mechanical Experiment

In order to implement the main design idea, an opening gap that modulates trans-

mitted intensity in response to lateral forces, we first investigated intensity variation

as a function of the distance between two separated optical fibers. As mentioned

above, because the innervated fibers are closed and opened by the external force, one

should expect that the light intensity can be mapped to a range of gap distances and

thereby detecting lateral forces. In Figure 3(a) to Figure 3(d), one end of the fiber is

connected to a red light-emitting diode (LED) while the other end is connected to a

light intensity meter to measure how its brightness is changed by the external forces.
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Figure 2. Development of soft tactile sensor based on bristle friction model a) Robot
gripper illustration holding an object. b) Expansion view of contact surface between
the object and gripper. c) Bristle model example of contact surface. d) One bris-
tle model with deformation amount z when moving with the relative velocity v. e)
SOLIDWORKS cross-sectional image of silicone sensor design stemmed from the bris-
tle model. The feature in this design is to transform the relative deformation amount
z to δ, which is the displacement between inter-fibers. Through SOLIDWORKS sim-
ulation, it is identified that 1 N normal force with 5 mm lateral motion in x-axis
leads to about 2.2 mm displacement in z-axis during a stick phase. f) Finger-sized
soft silicone sensor.

Also, Figure 3(e) provides the results from a ray optics simulation (COMSOL) and

actual light intensity data through a photodiode receiver. Both simulation and exper-

iment indicate that the light transmittance is diminished by increasing the distance

between fiber faces. To obtain a high initial signal strength (flat part of Figure 3(e)),

the design keeps the initial gap between the aligned 1.75 mm diameter fiber faces at

less than 4mm. During a stick-slip event, transmission is modulated by light loss as

the gap distance increases and the fiber faces become non-parallel.

The final design of the sensor is presented in Figure 4(b) and Figure 4(c). It uses

clear thermoplastic poly-urethane (TPU) 3D printer filament as an optical lightguide

inside of the finger-sized silicone material. As materials’ information is explained

in detail in the experimental section, they are both off-the-shelf products and low-
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Figure 3. Red LED light intensity change with TPU lightguide according to external
forces. a) Output end light intensity of TPU lightguide without external forces(Left
end shows the simulation image of the silicone). b) Output intensity when pressing
the silicone. c) when the silicone is tilted by hand. d) 5V red LED input. e)
Transmittance rate in response to linear distance between two aligned fibers.

cost materials.(Dragon Skin 10 Very Fast, Mold Star 20T) Moreover, the fabrication

process is straightforward because mold parts can be easily 3d-printed, cured, and

annealed relatively fast in several minutes. Due to the simplicity of the design, it

is easy to reproduce, modify and apply. This is demonstrated through the robotic

gripper test showing the sensor is able to be redesigned according to the gripper’s

dimension.

Sensor materials determine the bristles’ physical characteristics such as spring

constant and damping coefficient. Before doing lateral motion experiments, we inves-

tigated the normal force case, which is directly linked to the material’s softness. As

seen in Figure 4(d), the ends of the optical fiber are connected to an IR emitter and

photodiode receiver in order to detect deformation-induced changes in transmitted

light intensity. As the loading machine compresses the silicone vertically on the left

side Figure 5(a), the structure deforms the light intensity through the fiber, which

decreases linearly with applied normal forces across the 1N to 5N range Figure 5(b),

(c). While this linear tendency is shown in both materials (Dragon Skin 10 and Mold

Star 20T), Dragon Skin 10 is chosen for further experiments since it shows wider range
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Figure 4. 3D printing and fabrication process of soft sensor. a) Silicone molding
process. b) Structure design and dimensions. c) Actual size of the sensor. d) Soft
silicone sensor with infrared (IR) emitter and photodiode receiver.

of output and sensitivity with respect to the normal force. Because the intended use

for this sensor is in grasping control, it is important to assess its response speed, es-

pecially because the TPU and silicone materials used in this design have viscoelastic

properties that lead to hysteresis. We investigated the normal force sensor’s response

to periodic loading and unloading in Figure 5(d) through Figure 5(f) at frequencies

up to 3 Hz. The hysteresis phenomenon between loading and unloading process is

shown in Figure 5(e) for 0.5 Hz. While there is hysteresis, the loading and unloading

curves are reproducible and relatively linear.

After investigation of the sensor performance with respect to the normal force, the

main experiment in this work is to verify stick-slip detection. The loading machine

used in this test is the same as the one used in the normal force test. It can do

x-axis (horizontal) movement as well as z-axis (vertical). In this initial work, we

focused only on 1-D slip along the direction of maximum sensor response. Although

detecting slip direction would enable more sophisticated control, 1-D slip detection is

useful for preventing vise-style grippers from dropping objects vertically. Slip motion
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Figure 5. Physical characteristics of silicone sensor in terms of normal force. a)
Loading machine setup with the silicone sensor (simulation figure on the right upper
side). b) Light intensity data of two different materials(Dragon Skin 10, Mold Star
20T) according to static normal force change. c) Intensity in response to the normal
force which shows a linear relation between them. Further tests are conducted with
Dragon Skin 10 material, since it shows more sensitive response along the relatively
wider range of intensity output. d,e) The sensor hysteresis test with 0.5 Hz sine wave
normal loading. It presents relatively uniform intensity data for the loading and
unloading process, with a linear intensity-vs-force relationship in the sub-5N force
range. f) Sensor bandwidth results from 1 Hz to 3 Hz of sine wave.
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Figure 6. Stick-slip phase test. a,b) Soft silicone sensor deformation process while
slipping. Each number on the photographs corresponds to the numbers on the inten-
sity voltage data. This result is obtained from Mold Star 20T. Since it has different
physical characteristics, it has different slope and duration in terms of stick-slip phase.
However, it shows analogous pattern of stick-slip phase due to its mechanical design
regardless of its physical properties. c) Slip performance in terms of normal force and
light intensity according to different initial normal forces.(Dragon Skin 10) d) Slip
motion with different indenters’ shape. While contact surfaces are varied, stick-slip
phase remains as a certain pattern with respect to optical intensity.

is made by pressing the silicone along the z-axis to an initial normal force, then

starting a slow x-axis motion. As the silicone sensor moves along the x-axis, the light

intensity changes as does the normal force data. As the sensor moves through the test

procedure (Figure 6(a)) from step 1 (loading) to step 4 (maximum x-displacement

without slip), the rod indenter is still stuck onto the sensor. After that, slip occurs

and the measured normal force decreases to 0, which is illustrated in the procedure

from step 4 to step 6. Through this experiment, two things can be verified. First,

the sensor gives a recognizable pattern in terms of stick-slip phase regardless of the
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Figure 7. Intensity variation under dynamic stick-slip situation (a robotic gripper
holding a container during loading with pebbles). a) Light intensity changes according
to the weight of the bottle grasped by the robot gripper. The intensity data is
relatively constant (no.1) until the pebbles hit the bottom of the bottle, making
a transient impulse signal (no.2). Then the weight is incrementally increased by
the experimenter. The intensity data shows a gradual decrease while the bottle is
gripped by the sensor without slipping. At a critical weight, slip occurs and the
bottle is rapidly dropped (no.3). Then the signal is restored when the object slips
until the bottom touches the floor (no.4). b) Photos of stick-slip events 1 through
4. The initial weight is 300g. As pebbles are poured into to the bottle, the gripper
experiences increasing lateral force until slip occurs.

type of soft materials(Figure 6(b), (c)) and indenter contact surfaces (Figure 6(d)),

because of its unique bristle design with inter-fiber gap. Also, we observe that these

physical differences lead to varied stick and slip phase duration and slope in the

intensity signal. Second, it is identified that even if different initial normal forces

are applied(Figure 6(c)), the stick-slip phase still can be discerned. Thus, the light

intensity data show these characteristic and reproducible features during a stick-slip

event.

The discussion around Figure 6 focused on characterizing slip motion with uni-

form velocity. We also investigated the sensor’s response to a dynamic situation by

installing it on a robotic gripper. In Figure 7(a), as well as in the lower parts of Figure

6(b), (c), (d) which are plots of transmitted intensity voltage signal vs. time during

stick-slip events, one can identify a ”pre-slip” condition where an object is gripped

13



by the silicone surface, but the intensity data slowly decreases before the object ac-

tually slips from the surface. Therefore, a simple scheme to maintain grasp control in

slipping situations might be to keep the sensor signal uniform once the signal begins

its slow decrease. Based on the idea, a basic compensation test is implemented to

verify grasping adjustment.(Figure 8) The difference between previous and current

feedback intensity data is used for error, with a goal of making the error go to zero.

Since the gripper width adjustment command is the only input to the system when

the signal starts to decrease (for example, between the middle and the right images

in Figure 8(b)), the control scheme prevents the object from slipping.

This design was thin enough to integrate onto an existing robot gripper by sliding

it over the gripper face. Further integration with multi-fingered and conformal grasp-

ing systems will bring demands for miniaturization, multiplexing, and mapping lateral

forces over flexible gripper surfaces. Methods for extracting spatial information from

soft and polymeric waveguide networks are not as mature as those developed for fiber

Bragg gratings. However, several groups have injected spatial data into the optical

signals carried by soft waveguides. These include color filtering using a stretchable

dyed window to determine the location of deformations [25], time-of-flight analysis of

an optical pulse traveling in a branched soft waveguide network [49] to map pressures,

and image processing of signals coming from a waveguide array to classify 3D shapes

of a soft actuator [50].

4 Discussion

In conclusion, this novel bristle-based design gives rise to information on normal forces

and friction-driven lateral forces during a stick-slip event. The physical performance

of the sensor is illustrated through the static state experiment, which shows the linear

relationship between sensor output and pressure force over the 0-5 N range, and the

frequency test, which shows how the sensor can respond with the maximum 3 Hz
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Figure 8. Compensated results based on light intensity feedback data in response to
slipping amounts caused by increasing weights in the bottle. a) The intensity voltage
level is maintained in a small range (0.1 V). Input command is calculated according
to the difference between previous and current feedback intensity data, which is an
error that stays in a small range (0.05 V). b) The gripper adjusts its grasping degree
properly when slipping occurs. It shows anti-slipping by successful grasping as weight
is increased.
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frequency. Moreover, by collecting intensity data from the sensor during uniform

slipping velocity tests, we verified that the soft sensor can provide classified stick-

slip data regardless of its type of material, indenter shape, and initial normal force.

Stick-slip detection without direct normal force measurement or external imaging

recognition is then demonstrated through the robotic gripper experiment, where it is

shown that a basic error compensation method can be applied to control the gripper

separation and prevent slip in a real-time manner. Also, it is verified that the sensor

can be versatile for the gripper application according to its different dimensions.

Therefore, because of the straightforward fabrication method and intuitive mechanical

characteristics, this novel skin-like soft silicone design is a good candidate to measure

frictional information as well as normal force in grasping applications such as wearable

tactile sensors for robotic grippers and human hands.
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CHAPTER II

ANTI-SLIPPING ADAPTIVE GRASPING CONTROL

WITH THE SOFT TACTILE SENSOR

1 Introduction

In robotic manipulation, grasping control is still considered challenging because of

the absence of sufficient feedback, combined with uncertainties from unknown model

parameters and nonlinearities caused by deforming soft objects. If robots are to

emulate human hands, grasping must be adjusted while manipulating random objects,

all without human intervention. For these reasons, it is necessary to modulate the

degree of grasping based on high quality feedback data and using models optimized for

different situations. As mentioned in the previous chapter, since human hand contact

facilitates touching, grasping, and picking based on tactile sensory information, many

previous researches have tried to imitate humans’ soft skin features to make robots

sense contact force information as well. Soft, flexible features enable hands to grasp

delicate objects and conform according to surface roughness. This is the main reason

why most of the recent works choose soft and flexible materials as tactile sensors.

[5,13,17,19,51–56] Optical sensing devices made from elastomers and highly compliant

polymer fibers also have been highlighted recently since they are soft, flexible, and

experience less electromagnetic interference, while their performance is on par with

electronic capacitor or resistor-based e-skins. [22,57] When it comes to slipping, since

the normal force is not sufficient to detect, these soft tactile sensors provide not only

normal force but also lateral force information as tactile data. [24, 38] Especially, in
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our previous work [58], a soft-type optical tactile sensor has been introduced to obtain

not only grasping normal force but also lateral friction information.

Despite the good performance of tactile sensors in providing information about

contact surfaces, there is still a disparity between these sensors and grasping control.

The use of tactile sensor feedback has led to the proposal of strategies such as slip-

ping detection, friction compensation, and minimum force to enable proper control

of grasping degree. [59–61] Since slipping detection and minimum force grasping are

directly related to knowing friction information, especially the friction coefficient, be-

tween object and tactile sensor surfaces, it is considered critical to estimate accurate

friction forces and compensate proper amounts of force according to them. Moreover,

robots need to perform adaptively for new situations. Different objects have different

weights, textures, shapes, and some exert external forces; these features may even

change rapidly during manipulation of active objects. For these reasons, researchers

aim to make the system more robust to unknown parameters and uncertainties. Ad-

vanced control strategies have been presented to make robotic manipulators more

flexible and responsive to new situations. [62,63]

In this study, we demonstrate that the optical intensity variation of the soft tactile

sensor data can be translated into an indication of the amount of slipping deformation.

Furthermore, based on the sensor mechanical design and soft property, it is presented

that the sensor adopts the LuGre friction model, which is able to calculate friction

force. Therefore, it leads to control the slipping states directly unlike the other

works shown that control grasping force through additional normal force feedback or

complex extraction of friction force. [64, 65] Although a gripper system model with

the soft sensor is suggested, still there are uncertainties and inaccuracy caused from

distinction between system parameters of the model and real hardware. Secondly, we

develop a model reference adaptive control(MRAC) [66, 67] system to avoid slipping

with gain adaptation, which can follow reference inputs without requiring accurate
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parameters information of the system.

2 Problem Statement and Modeling

2.1 Problem Statement

To implement anti-slip grasping control, the tactile information is obtained when

there is lateral contact motion. The soft sensor has been created that detects changes

in optical intensity based on its physical deformation. Additional information about

this sensor’s function can be found in [58]. In summary, this sensor gives feedback

data about the external forces causing its deformation. Through experiments, it is

observed that the light intensity tends to change linearly corresponding to the angle

of the soft sensor. Since physical changes in the sensor can be calculated in terms

of geometrical analysis, the angle variation gives a reading of the lateral movement

distance of the sensor surface when an object sticks on it and experiences forces. This

soft sensor is inspired by and connected to the LuGre model [68], which envisions

friction originating from the lateral motion of ”bristles” as lateral force is applied.

This model is considered to reproduce and capture not only static situations but

also dynamic friction effects such as the Stribeck effect [47]. While in many previous

works, the LuGre model has shown good agreement with experimental results, still

parameters estimation of the model has been discussed and control strategies have

suggested overcoming unknown numbers of the system. [48,69] Thus, since the LuGre

model is based on the soft elastic bristle motion, it is assumed the soft sensor in this

work comply with the model as one soft body to estimate friction forces and design

a proper controller for robot grasping. As for the controller in this system, because

objects are random in terms of texture, shape, hardness and other features, we don’t

know their exact friction-relevant information in advance. This implies that the

system includes unknown parameters and needs to estimate the parameters. While

the MRAC requires some prior information of the system to follow ideal internal
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states, it can give a good performance over a certain range of parameters.

2.2 System Modeling

As previously stated, changes in the intensity of light correspond to the level of de-

formation in the soft sensor. When the sensor deforms, it creates a gap in the optical

waveguide, which increases the magnitude of the intensity change. In order to trans-

form the light intensity data to the soft material’s deformation amount, geometrical

and empirical analyses are conducted. As shown in Figure 9, the lateral deformation

amount z can be geometrically modeled so that the function of θ is simply written like

(1). To obtain the empirical relationship between tilt angle and transmitted intensity,

sensor data points are collected by tilting the sensor to one side. As a result, Figure

10 shows linear curve fitting with f(θ) = p1θ + p2, where p1 = −0.03871, p2 = 1.002

having RMSE 0.007148. It is presented that the intensity is inversely proportional to

tilting angle of the sensor between 0 to 10 degree. So, now the lateral deformation

amount z can be acquired from light intensity data.

z =
l

θ
(1− cosθ) (1)

Furthermore, it is assumed that the friction force Fc on the contact between the

sensor and an object follows the LuGre model (2), which includes bristles’ deformation

as a system state:

Fc = σ0z + σ1ż + σ2v (2)

where lateral deformation amount z is measured data and where contact stiffness,

contact damping, and viscosity coefficients are σ0, σ1 and σ2, respectively, and v is a

relative velocity between the object and sensor.

When it comes to a gripper system equipped with the soft sensor, the model can

be described as a mass(m)-spring(k)-damper(c) system like Figure 11. To simplify

the system, it is assumed that the gripper moves with uniform velocity, which is a
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Figure 9. Simplified geometry and actual size of the soft sensor when it is tilted. (a)
Solidworks motion study simulation. When the soft sensor is subjected to the lateral
motion(1 N pressure 5 mm slip), it is deformed.(Colorbar shows 0-6 mm longitudinal
deformation.) (b) Schematic drawing of the soft sensor design from the bristle model.
(c) The actual soft sensor size.

constant. Thus, the normal force Fn can be expressed by addition of a spring term

and a constant (Equation 3). Figure 11, from left to right, is a series of successive

zooms showing the friction as described by the LuGre bristle model. A random object

is subjected to Fn by the robot fingers, which is a function of constant α caused from

the assumption of uniform gripper velocity, spring constant k, and the y-displacement.

The object also experiences the slipping friction force Fc with the friction coefficient

µ. When the object’s gravitational force mg is bigger than the friction force, slipping

occurs with the acceleration v̇ along the z direction. As a result, the equations of

motion can be written as below.

Fn = ky + α

mv̇ = mg − Fc

Fc = µFn

(3)

Before taking into account the state space model, several assumptions need to be

considered for facilitating the controller design. As mentioned earlier, a soft sensor is

supposed that keeps track of the motion of a single large bristle, with the object in
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Figure 10. Linear curve fitting result based on the measured intensity data

a stiction state on top of the bristle. This assumption is feasible because the sensor

is finger-sized and its material has relatively low Shore hardness (10A, DragonSkin10

from Smooth-On Inc., Macungie, PA, USA), which means it offers little resistance to

indentation or torque. Basically, the object moves slowly enough for the optical sensor

to track while it is sticking onto the soft surface. Consequently, this assumption leads

to simplification of the system model. The relative velocity v between the object and

gripper contact surface in Figure 11 can be approximated as the time derivative of

the deformation amount ż. Therefore, the equation (2) takes the form

Fc = σ0z + σ3ż (4)

where σ3 = σ1 + σ2. Then, combining (3) and (4), the system dynamics simply
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Figure 11. Free body diagram of gripper system. The soft sensor is indicated in
blue. On the right side, the bristle mechanism is illustrated, representing the LuGre
model of friction between the sensor and contact surface.

become

ż = −σ0
σ3
z +

µk

σ3
y +

µα

σ3
(5)

3 Control Synthesis and Stability Analysis

3.1 Adaptive Control Design

Since the control objective is to avoid slip while grasping, the time derivative of soft

sensor deformation ż should go to zero. Furthermore, as long as system parameters

are estimated properly, it is expected that grasping normal force is generated to keep

the equilibrium, which is between the friction force and the lateral force. Therefore,

in this section an adaptive controller is designed such that ż → 0.

From the equation of motion in (5), to estimate the unknown terms according to

uncertainties and disturbances, which are assumed unknown constant a, b, and Θ, it

can be rewritten as a state-space representation like below.

ẋ = ax+ b(u−ΘT ) (6)

where the system state x := z, the control input u := y, which is applied to grasping

distance for the gripper system. Then, a and b stand for coefficients of z and y in (5)

respectively. Also, Θ ∈ R1×1 denotes the constant unknown parameter to account for
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α
k

according to (5). This term will be accounted for by choosing the proper adaptive

control law.

Unlike traditional MRAC [70], no external reference command exists in this sys-

tem, because object grasping does not need to follow a reference path, in contrast

to other tasks like a specific trajectory tracking. Instead, to satisfy the control ob-

jective, which is to avoid slip while grasping, an integral term of the error between

the slipping velocity and zero reference input is added. Thus, the MRAC reference

model is presented as

ẋm = amxm + bmxI (7)

with the reference state xm and the additional integral state xI . Since one of the

control objectives is to eliminate slipping, which is to make ż → 0, the integral term

can be presented such that xI with ẋI = r− ẋ where r = 0. Based on the input error

term and feedback data, in order to make the system converge, the control input can

be chosen as follows:

u = k̂xx+ k̂IxI + Θ̂ (8)

where k̂x, k̂I , and Θ̂ are adaptive gains determined in the forthcoming stability anal-

ysis. Then, the closed-loop system dynamics of (6) can be described as below.

ẋ = (a+ bk̂x)x+ bk̂IxI + b∆Θ (9)

where ∆Θ = Θ̂−Θ. Here, the system error e is defined such that

e = x− xm. (10)

To ensure the trajectories of the system states follow the desired trajectories of the

reference model, the following matching condition must be met

am = a+ bkx

bm = bkI

(11)
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where the nominal ideal gain kx and kI can be designed using pole-placement,

LQR, or other modern control methods [70] to make the am < 0 and r − ẋ→ 0.

Then now, the error dynamics can be obtained as follows:

ė = (a+ bk̂x)x+ bk̂IxI + b∆Θ

− amxm − bmxI
(12)

Substituting the reference model, (12) can be simply rewritten as below

ė = ame+ b(∆kxx+ ∆kIxI + ∆Θ) (13)

where ∆kx = k̂x − kx, and ∆kI = k̂I − kI .

To ensure that the error convergence to zero, a positive definite Lyapunov function

is chosen as

V (e,∆kx,∆kI ,∆Θ) =

e2 + bγ−11 ∆k2x + bγ−12 ∆k2I + bγ−13 ∆Θ2

(14)

where γ1 > 0, γ2 > 0, and γ3 > 0.

Thus, (14) can be differentiated as follows:

V̇ (e,∆kx,∆kI ,∆Θ) =

2ėe+ 2b(γ−11 ∆kx
˙̂
kx + γ−12 ∆kI

˙̂
kI + γ−13 ∆Θ

˙̂
Θ).

(15)

Substituting (13) into (15), the differential of Lyapunov function is rewritten as below.

V̇ = 2ame
2 + 2b(∆kx(ex+ γ−11

˙̂
kx)

+ ∆kI(exI + γ−12
˙̂
kI) + ∆Θ(e+ γ−13

˙̂
Θ))

(16)

Choosing
˙̂
kx = −γ1ex

˙̂
kI = −γ2exI
˙̂
Θ = −γ3e

(17)

Then, V̇ (e,∆kx,∆kI ,∆Θ) becomes globally negative semi-definite

V̇ (e,∆kx,∆kI ,∆Θ) = 2ame
2 (18)
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Based on (14) and (18), it is shown that V > 0 and V̇ ≤ 0, and that leads

to bounded e,∆kx,∆kI , and ∆Θ. In order to make sure that the system error e

converges to zero, (16) is differentiated along the trajectory of ė again and presented

as the below equation by substituting (17).

V̈ = 4ameė (19)

Since xI , xm ∈ L∞, it is considered that ė ∈ L∞ and e ∈ L2 resulted from (13) and

(18) So, this leads to V̈ ∈ L∞ from (19). Therefore, using Barbalat’s Lemma [71],

the state error e asymptotically goes to zero as t→∞.

Figure 12. Adaptive control scheme with reference input error integral term

4 Results

4.1 Simulation

Before implementing the MRAC on the real hardware, a simulation is conducted

in MATLAB using the analytical soft sensor model with the parameters listed in

Table 3. The initial state is set to x(0) = 0.001, indicating a 1 mm slip distance at

the gripper’s start. The control objective is to make the time derivative of slipping

distance ẋ converge to zero, so the reference input is set to zero. In addition, the

system should follow the reference model, as determined by stability and parameter
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estimation analysis. As shown in Figure 13, the time derivative of the distance reaches

zero at around 3 seconds, and the system state x tracks the reference model state xm

at the same time.

Table 3. System parameters for simulation

LuGre model parameters
σ0 15 N/m σ3 10 N·s/m

Gripper system parameters
k 14 N/m µ 1.5

Controller parameters

k̂x(0) -0.7619 k̂I(0) 1

Θ̂(0) 0 γ1,2,3 10.5

Figure 13. MRAC simulation result
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4.2 Hardware Experiment

To implement the proposed control scheme, a two-finger robotic gripper (Robotiq

Inc, Canada) was used, and the soft sensor was installed on one side of the gripper,

as shown in Figure 14(a). The control input u was applied to regulate the gripper

distance at a frequency of 6 Hz. The sensor detects changes in light intensity result-

ing from external input and sends a calibrated analog signal to a micro-controller

board, which smooths the signal using a moving average method at a sampling rate

of approximately 200 Hz before transmitting the digitized signal to a PC, as depicted

in Figure 14(c). As the speed of the gripper control signal is slower than the sensor

sampling rate, Python algorithm is developed to synchronize the I/O. The sensor and

gripper are connected using a serial communication interface (RS-232).

Preliminary tests were carried out to observe the occurrence of slipping when

holding a bottle with a non-controlled gripper, where pebbles were gradually added

to increase the object’s weight up to a maximum of 500g. The slipping distance in-

creased until the bottle was dropped in the non-controlled case, as shown in Figure

16. However, the proposed MRAC (shown by the blue curve in Figure 17) demon-

strated that the time derivative of the slipping distance remained near zero (between

±0.2 mm/s) after the initial impact caused by pouring the pebbles. The orange curve

represents the simple feedback compensation method, where the gripping distance is

compensated by the difference between current and previous sensor feedback data

when the static slipping occurs. This compensation method ensures that the grip-

ping distance is adjusted to the slipping displacement generated, as this soft sensor

can detect slipping distance. However, it cannot guarantee that the velocity will

always remain zero as disturbances are added. The yellow curve represents the non-

controlled gripping case, where the object slips, and in approximately 20 seconds,

actual slipping occurred, leading to the object being dropped.
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Figure 14. Hardware implementation setup (a) Soft sensor with robotic two-finger
gripper (2F-85 from Robotiq Inc., Canada). (b) Light intensity analog signal comes
in Adafruit Metro board and gets converted to the main PC through the serial port.
(c) Photo receiver (photodiode) and emitter (950nm infrared) with TPU fiber as a
lightguide. (d) Pouring pebbles into the bottle so that the object weight is increased
little by little.

5 Conclusion

In conclusion, the adaptive grasping control is implemented to avoid the object slip-

ping with a new type of soft sensor based on optical information. Especially, in

simulation, it is shown that the system follows the reference model, which means
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Figure 15. Grasping control test at the same flow of time(19 sec). (a) MRAC (b)
Slipping distance compensation method. (c) Without any control method.

that the system input parameters will be updated to make the system error zero even

if the system parameters are not given correctly. Moreover, the integral term is added

to send the time derivative of the slipping distance to zero thereby immobilizing the

object. In the hardware experiment, by comparing the MRAC with the others, it is

presented that the MRAC is more robust than the others, as the weight keeps being

added, since the velocity stays near zero relatively well. However, since this work

doesn’t cover more various types of objects in terms of shape, texture, etc., future

works could include showing robustness against different grasping objects.
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Figure 16. Slipping distances according to situations
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Figure 17. Time derivative of slipping distances after smoothing
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CHAPTER III

INSPIRATION OF HUMAN FINGER ANATOMY

1 Trends in Anthropomorphic Hand Development

This chapter reviews previous efforts toward biomimetic robotic hands. Because

the interest in robotic hands has been growing steadily for a long time and in-

cludes non-biomimetic approaches, “robotic hands” is too broad of a search term

for this review, which focuses on biomimetics, materials, and integration. Our initial

search methodology used the keywords “biomimetic robotic hand”, “anthropomor-

phic robotic hand”, and “bionic hand” with an “OR” operator, collecting articles for

sorting within the scope of this review. As shown by the gray bars in Fig.18-(1),(2),

the publication rate on these topics has increased across the years. The largest num-

ber of publications is in robotics journals, but articles also appear across multiple

engineering domains and in neuroscience.

Although there were attempts to emulate human hands as iron prosthetics in the early

Roman era [72] and other studies on robotic hands in the 1960s [73], research into

robotic hands with human-like shapes intensified in the 1980s. The most well-known

examples are the Salisbury hand (1982) from Stanford [74] and the Jacobsen hand

(1984) from Utah/MIT [75]. Fig.18-(3) illustrates how those initial studies, shown as

large dots on the upper left of the citation map, influenced subsequent research, with

lines indicating citations between works.

Moreover, Fig.18-(3) displays colors representing each study’s focus. Major focus

areas include design, mechanism, and control.

In the 1980s and 1990s, a sophisticated design framework evolved, based on an
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Figure 18. (1, Top left) Fraction of publication count in top 10 selected research
areas from Web of Science (publications in two or more areas are counted in multiple
wedges). (2, Top right) All 1,517 publications in this analysis, distributed across
years 1971-2023 (Web of Science, WoS). (3, Bottom) Development trend for 60 se-
lected publications including the Salisbury hand and Jacobsen hand (two large dots
at upper left). Publications are organized from left to right by year (1977-2022), and
organized top to bottom by number of citations (also indicaed by dot size), plotted
using Litmaps. Dots are color coded to indicate one or more focus areas.

anatomical point of view. The intention was to make the system more dexter-

ous. [76–79]. In recent years, advances in materials science, sensor technology, and
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artificial intelligence have continued to drive the development of more advanced and

sophisticated robotic hands [80–85]. Today, there are a wide variety of robotic hands

and prosthetic devices that are capable of mimicking the complex movements and

dexterity of the human hand, and these devices are being used in a variety of appli-

cations, from manufacturing and logistics to healthcare and rehabilitation [86].

Despite these significant advancements in design, fabrication, control, and dexter-

ity, there still exists considerable room for improvement. Furthermore, Fig.18-(3)

demonstrates a paucity of research that integrates three or more distinct areas of

focus, indicating that there are untapped opportunities to explore in this multidis-

ciplinary field. This analysis underscores the potential for new breakthroughs and

further acceleration of progress.

2 Overview of Human Hand Anatomy - Biological Inspiration

Alongside development of prosthetic hands and robotic hands, there have been con-

current studies of human hand anatomy, functions, and mechanisms geared toward a

better understanding of how our hands work. This topic is crucial to improvement of

biomimetic artificial hands [87–89]. Therefore, in this section, human hands’ struc-

ture is briefly reviewed in terms of the bone-tendon-muscle framework as well as the

skin. We also cover previous research into understanding human hands’ motion in

both functional and mechanical aspects.

3 Bone-Tendon-Muscle Structure

Each human hand consists of 27 bones: 3 in the thumb, 8 in the wrist and, 16 in

the rest of four fingers. Bones are the physical support for our hands [90]. These

bones are connected with other bones and muscles by tendons. One of the main

anatomical patterns is paired main tendons to open (extensor) or close (flexor) each

finger, with the muscles connected to both extensor and flexor tendons located in the
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Figure 19. (Left)Illustration of human hand bone structure, (Right)Example of a
possible artificial hand component arrangement, inspired by human hands.

Figure 20. (Top)Illustration of tendon-muscle structure of human hand. Partially
reproduced from [90]. (Bottom) Sequential zoom on the ”belly” structure of a skeletal
muscle. Motion generation starts from the molecular unit (bottom left). Motion is
reinforced by multiple units that form larger skeletal muscle units and ultimately
drive the whole hand.

forearm. Interestingly, however, the muscles for side to side finger motions (adduction,

abduction) lie in the palm [91]. By distributing those muscles and tendons in the right
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position with respect to tendons and bones, each finger joint is capable of its full range

of motion.

In order to better mimic human hand motion, there have been mechanical and

clinical investigations to measure tendon excursion and moment arm of finger muscles

since those motions and forces define finger dynamics and explain internal forces and

joint torques [89, 92–94]. It’s not just a matter of pulling on a tendon by distance

X and getting a fingertip displacement of Y, because of the elastic properties of

biological materials. An interesting feature specific to hands is that finger tendons

are a bit more viscoelastic and less elastic compared to other tendons in our body such

as legs, allowing for precise control of movement and passive motion against external

disturbances [95]. On top of that, the synovial sheath covers and guides tendons’

path so that tendons and muscles are able to move smoothly and efficiently with

natural lubricant [96]. Likewise, the bone and tendon of the human hand have specific

physical properties in terms of their location, material, shape, and even texture which

makes for integrated versatile motion. Therefore, it is essential to understand those

mechanical characteristics and mechanisms in human hands and expand the features

to modern biomimetic robotic hands. This subject will be expanded in later sections.

The end of the tendon is connected with the muscle as mentioned before. In Fig. 20,

the skeletal muscle located in the hand and forearm is composed of a bundle of muscle

fibers. The function of the human muscle is obviously making motion. Researchers

have developed sliding filament theory to describe the microscopic mechanism by

which muscles move [97,98]. Sliding filament theory is summarized in the bottom left

of Fig. 20, which illustrates how human muscle contracts and relaxes in molecular

units. Described in a further main section, methods to actuate robotic hands are one

of the major research topics in anthropomorphic robotic hand design.
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3.1 Motion Mechanism

In the pursuit of highly versatile robotic hands, the fundamental question is how to

effectively grasp, manipulate, and interact with objects. Consequently, researchers

often describe the remarkable versatility of the human hand function by classifying

its various prehensile actions [99–101]. However, it is important to note that human

prehension is a complex process that integrates the intricate interplay of the bone-

tendon-muscle structure, the sensory system embedded in the skin, and even cognitive

processing including planning for multiple tasks. Napier points out that power grasp-

ing and precision manipulation are not mutually exclusive [101], implying that not

only can human hands make separate postures for different tasks, but they can also

perform multiple postures at once like in Fig.21. The overall classification system

shows clearly the versatility and range of human hands. Based on this physiological

standpoint, many current researches present posture versatility of artificial hands as

a performance standard similar to the grasping classification in Fig.21 [102–106].

Figure 21. Selected grasping taxonomy from simple and complex daily life motions;
subset of a larger taxonomy presented in [100].
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4 Robotic Hand Functional Realization

The examination of human hand anatomy assumes pivotal significance in advancing

robotic manipulators due to the inherently human-centric design of our daily tasks.

This paradigm extends beyond commonplace implements like kitchen utensils to en-

compass industrial equipment and research instruments. These tools are meticulously

crafted with ergonomic considerations, ensuring compatibility with the average hu-

man hand in terms of size and shape. Ranging from delicate fine-tipped tweezers

to robust hammers and cordless power tools, the diversity of tasks necessitates a

multifaceted approach. While the robot’s adherence to dexterity and versatility is

paramount, safety considerations become equally crucial in handling fragile and heavy

devices, requiring the ability to modulate between soft and strong grips, as well as

subtle and forceful touches.

Moreover, the interconnection of signals from tools with sensory feedback assumes key

importance in manipulation control. These signals, encompassing pressure, temper-

ature, and vision feedback, enable humans to seamlessly interact with their environ-

ment, establishing benchmarks for evaluating the success of manipulation tasks. In

essence, understanding of human hand anatomy not only informs the design of robotic

manipulators but also underscores integrating safety features and sensory feedback

mechanisms to improve their overall effectiveness in many operational contexts.

The ultimate objective is to transfer human labor to robot labor, prevent workplace

injuries, and move beyond human physical limitations. With industries such as food

& beverage, aerospace & defense, and energy & power emphasizing ”smart facto-

ries” where supplies and outputs are tracked throughout the manufacturing process,

a highly sophisticated robotic manipulator could also raise the manufacturing perfor-

mance, for example by sensing increases in assembly forces of injection-molded parts

that indicate a mold is wearing out.

Therefore, inspired by human hands, there have been efforts to endow robotic manip-
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ulators with human-like design, motion and function without completely duplicating

all features of human hands. Different implementations geared toward different ob-

jectives have come out, including factory automation, clinical prosthetics, humanoid

robots, and exploration robots, with various design features emphasized depending

on the system’s purpose [107]. Since cataloging the full diversity of these manipu-

lators is beyond the scope of this article, this section is bounded to review highly

anthropomorphic designs of robotic hands.

Recent developments often focus on new materials to implement state-of-the-art de-

signs. Compared to 1980s-1990s designs, the 2010s-2020s designs are concerned not

only with solid structures but also the softer components of robotic hands. This de-

velopment is made possible by advanced fabrication processes, improved computing

performance and multidisciplinary collaboration [108, 109]. In this section, by inves-

tigating robotic counterparts of human hands from a mechanical point of view, we

show how anthropomorphic hands have been advanced in terms of design, material,

modeling and, control.

5 Main Framework

Analogous to human bones, hard frames in robot hands provide support for other

structures, sensors, and actuators. Such frames are able to perform highly coordinated

movements as well as retain their own shape. Several early stage developments relied

on frames, mainly focusing on simple manipulating functions with only rigid bod-

ies [78,89,110]. In order to make the system adapt to the environment, active control

strategies based on concrete modeling analysis have been investigated [111,112]. Al-

though these previous approaches led to fairly straightforward and intuitive drive and

control methods, in some industries such as those dealing with delicate or fragile mate-

rials, robotic hands need to perform tasks in a conformable, passive manner [113,114].

Accordingly, there is a trend to adopt shapes, sizes, and structures that resemble hu-
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man hands’ yielding the bone, tendon, sheath, ligament, and skin [115–117]. This

trend is shown in Table 4, where the majority of the highly anthropomorphic designs

feature elastomers in one or more components to realize active and passive mecha-

nism mutually.

In applications where precision and accuracy of motion are critical, typically rigid

body materials are more commonly utilized such as metals, hard plastics, strong

fibers or cables. This choice facilitates the analysis of kinematics and dynamics, al-

lowing for the isolation of linear terms while neglecting nonlinear factors like friction,

hysteresis, and viscoelastic features. [118,119]

In contrast to the somewhat human bone-shaped structures, recent investigations

indicate that joint structures in robotic systems tend to be simplified, featuring 1 or

2-axis rotational joints to connect and mobilize individual phalanges. Additionally,

innovative designs incorporating pulleys, either within or external to the hand, have

been proposed. These designs not only guide tendons and reduce friction but also ad-

dress underactuation challenges, occasionally at the expense of sacrificing one degree

of freedom in the finger joint. Notably, some prosthetic hands continue to adhere to

rigid bodies and relatively stiff cable wires for reasons of simplicity in control setups,

cost efficiency, and compactness [119–121].

However, a paradigm shift is observed in biomimetic robotic manipulators and end-

effectors, where a departure from rigid materials is embraced. Leading the way, these

systems explore the use of softer, lighter, and safer materials. This strategic move

towards compliant materials not only promotes biomimicry but also holds promise

for enhanced adaptability and safety in various applications. [122,123] These soft ma-

terials whose motion is coupled to rigid bodies can expand the range of function of

existing robotic hands. Several works have gone even softer, adopting a compliant and

passive framework instead of rigid bones so that the manipulator can have a higher

degree of freedom (DOF) [84,124]. On top of that, some studies in soft robotic hands
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show more flexible sensors-embedded designs or smart-materialized designs, which

are able to control the finger position or stiffness straightforward. [125, 126] But, in

those cases, a certain level of pressure inside the finger is required to maintain its

stiffness corresponding to rigid structures. In addition, understandably, the higher

the DOF, the more complex the control system.

Therefore, many recent researches has shown how to interlace active and passive mo-

tion by selecting rigid and soft materials properly according to its main objectives.

Besides, advanced 3D printing and laser cutting technologies excel sophisticated hu-

man finger design. [123,127]

6 Actuation and Transmission

Once the main framework of the hand is established, it is time to generate motion.

Depending on the objective of the system, the force transmission method, force gen-

eration method, and actuator placement will vary. Table 5 describes the major force

transmission methods and their pros and cons. Some of these transmission categories

are closely integrated with force generation methods (for example, artificial pneu-

matic or polymer muscles that actuate in place), while tendon and linkage based

systems may be driven by a variety of force generators.

As illustrated in the Fig. 22, the prevailing architecture for robotic hand mecha-

nisms, particularly in biomimetic applications, is predominantly tendon-driven. In

the tendon-driven system, tendon cables placed in tightly confined spaces transmit

the force to move the digits at the user’s command. Since the multiple tendons can

be connected directly to each phalange, it is also able to be applied to comparatively

precise position control likewise the linkage-driven types. Due to weight, compliance

and size limitations, however, the linkage-driven mechanism is less popular these

days even though it has easy-to-design and higher motion accuracy features than

other methods.
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Name(Year) Actuation Component DOF Highlight

RBO Hand 3 (2022)

Pneumatic
[124]

Fabrics,
Silicone
rubber,
Plastics

16
high versatility and
dexterity, Pull-out
force 39N

Kim Hand (2021)

Linkage-
driven [118]

Aluminum,
Metal
alloy, Sili-
cone(fingertip)

15

Accurate motion, In-
hand tactile sensor,
Bending pressure
force 34N

The Hannes Hand
(2020)

Tendon-
driven [119]

- 14

Prosthetics, Highly
underactuated mo-
tion, Power grasping
peak force 150N

Hughes Hand (2018)

Passive fin-
ger motion
based on
wrist actu-
ation [128]

3D printed
bones and
ligaments

-
Anthropomorphic
passive finger design

Wu Hand (2017)

Tendon-
driven [85]

3D printing
plastics,
Silicone,
Nylon fiber,

16
Twisted and coiled
polymeric muscle

Xu Hand (2016)

Tendon-
driven [106]

3D printed
bones,
Rubber,
High-
strength
fiber

22+
3D scanned human
hand design

Zhao Hand (2016)

Pneumatic
[126]

Optical
fiber, Ny-
lon fabric,
Silicone
elastomer

-
Optoelectronic sen-
sor for touching and
grasping

Table 4. Recent developments in anthropomorphic robotic hand design by years
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Conversely, the tendon-driven method offers a measure of system compliance owing

to the elastic properties of tendons. While this introduces complexities in control

and imposes limitations on maximum force transmission due to elongation and hys-

teresis, the benefits often outweigh the drawbacks. In recent times, advancements

within the tendon-driven category have seen the integration of soft and robust mate-

rials. Twisted cables, commonly referred to as twisted string actuators (TSA), and

twisted-coiled polymers (TCP) have emerged as innovations combining force gener-

ation and transmission. These materials exhibit superior power or weight efficiency

compared to traditional tendon systems [85,105,129]. Given that this actuation and

transmission system mirrors the muscle and tendon interplay in the human hand,

tendon-driven mechanisms have been explored with alternative power sources, in-

cluding motors and hydraulics/pneumatics [130].

Moreover, recent researches suggests the potential for replacing essential components

such as main bodies, linkages, joints, and even tendons with alternatives employ-

ing pneumatic systems, and shape memory alloy (SMA)/shape memory polymer

(SMP) [131]. These materials serve not only as mediums for force transmission but

also as integral elements of the power source [125,132]. As interest in human-machine

interaction intensifies, there is a growing focus on soft and conformable bodies. These

adaptive structures have the capability to encompass a broad spectrum of forces, rang-

ing from delicate grips to power grasps, while dynamically adjusting to the shape and

stiffness of various objects.

Likewise, each force generation method brings a new control challenge as well as

advantages due to distinct physical properties as mentioned previously. Precise con-

trol of these soft, continuous, high-DOF actuation methods leads to another chal-

lenge: proprioception, or internal detection of the actuators’ state, for closed-loop

control. [133,134] Therefore, in the next section, it is introduced how researchers are

addressing the challenge using embedded sensors.
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Figure 22. Proportion of transmission methods out of 196 research articles dealing
with the development of the anthropomorphic robotic hand. Search keywords exam-
ple : “anthropomorphic” AND “robotic” AND “hand*” AND “tendon*” from WoS

Mechanism Advantage Disadvantage References

Tendon-Driven
Biomimetic motion,
Compliance

Friction, Complicated
control

[77, 81, 85, 106,
119,135,136]

Linkage-Driven
Straightforward de-
sign, Elevating control
accuracy

Limited compliance
and compactness

[118,137–141]

Pneumatic-
Driven

Safe, Soft, Robust in-
teraction

Difficult miniaturiza-
tion and control

[84,124,126,142]

SMA & SMP
Lightweight, High
force

Hysteresis, response
latency

[143–145]

Table 5. Advantage and disadvantage of each force transmission method

7 Modelling and Control

The primary focus of robotic hand modeling and control lies in emulating human hand

unit motions, encompassing the regulation of contact touch force, grasping force, fin-

ger stiffness, response speed, and fingertip positions within constrained workspaces.

Researchers pursuing anthropomorphic robotic hands have made notable strides in

novel frame designs, diverse actuation mechanisms, and skin-type sensor systems,

as previously discussed. However, substantial challenges persist, with each section
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exhibiting significant advancements yet lacking cohesive system integration and the

attainment of seamless motions. Like Fig.23, a biomimetic scheme for motion control

might be intricate as much as the human nervous system.

According to the classic engineering concept, a controller is constructed by starting

with a solid model of the system. Indeed, such attempts have been made to con-

trol robotic hands accurately, with active control concepts added to make the system

more robust [102,146]. Based on a thorough forward and inverse kinematic analysis,

the position and orientation of the system can be successfully controlled. Dynamic

modelling allows researchers to go further, simulating the hand’s behavior under dif-

ferent loading conditions and aiding in the development of control strategies [147].

These modeling processes involve techniques of not only dynamics and kinematics

algorithms based on geometric and numerical optimization, but also data-driven ap-

proaches based on experimental measurements [86,148–150].

Such data-driven approaches are the current trend. As the system gains components

with different physical properties, such as when semi-rigid frameworks are combined

with soft tendons and actuators, the variables multiply and the system becomes

too complex for exact description. Thanks to advanced imaging technologies and

improved computing performance, partial data-driven modeling methods have been

actively researched to make the system more accurate without becoming computa-

tionally intractable [151,152].

On the design side, underactuated designs help researchers reduce the system com-

plexity because they have fewer actuators than DOF [121,153]. And on the controls

side, a concept called ”synergies” has been studied in the context of achieving dex-

terous and efficient movements. [136,154,155] Synergies provide coordinated patterns

of joint movements that allow the hand to perform grasping and manipulation tasks

effectively. Since the underactuated design allows for shared mechanical elements,

and since synergies give a simplified variable of motion, researchers have connected
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Figure 23. Human response control process from skin to muscle. Brain and spinal
cord response time are around 200ms and 30ms respectively. [157] Each possible robot
system counterpart is presented with Italic font.

the two concepts closely to improve robotic hands’ capabilities [84,156].

8 Discussion

Over the past 50 years, advancements in materials science, sensor technology, and

artificial intelligence have propelled the field of biomimetic hands, producing a wide

variety of robotic hands and prosthetic devices. Key advances in the past 10 years

include soft sensors and actuators, machine learning coupled with sensors, and a new

appreciation for the mechanical intelligence of compliant and underactuated mecha-

nisms.

However, despite significant progress, there are still areas that require improvement,

including design, fabrication, control, and practicality. Notably, there remains a

dearth of research on the seamless integration of disparate technologies for the pur-
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pose of effective sensing, processing, and dexterous motion. For instance, as pre-

viously discussed, while significant progress has been made in the development of

anthropomorphic design, tactile skin sensors, and various types of actuation, there

is still a need to explore their intimate and natural connection between those sys-

tems not only mechanically but also computationally in order to advance the field of

robotic manipulators to the next level.

Evolution has shaped our current hand structure, while humans have subsequently

created the diverse environments that we interact with on a daily basis. The need to

manipulate objects in varied settings has necessitated the transfer of this dexterity

to robots, allowing for the delegation of mundane and repetitive tasks.

Ongoing research focuses on understanding the anatomy and functions of the human

hand to guide the development of robotic counterparts. Fueled by emerging materials,

fabrication methods, and computing techniques, one day we may develop manipula-

tors that can mimic or even outperform the complex movements and capabilities of

the human hand.

In conclusion, the journey from human hands to robot hands has been marked by

steady progress, but there is still much room for improvement. By studying and un-

derstanding the human hand’s structure and capabilities, researchers and engineers

can continue advancing robotic hand technology, aiming for even greater dexterity,

functionality, and integration with human users.
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CHAPTER IV

DEVELOPMENT OF ANTHROPOMORPHIC ROBOTIC INDEX

FINGER

Given the insights from the previous chapter, there is merit in developing a robotic

manipulator inspired by the human hand. Such a design offers both versatility and

safety in functionality, while potentially improving efficiency from an engineering

standpoint. However, comprehending and analyzing the mechanism and motion of

the finger to design and control such a manipulator may not be straightforward.

Hence, this chapter undertakes a review of general manipulator kinematics in accor-

dance with the design considerations of the developed system. Incorporating system

constraints enables a more realistic scenario for robot manipulation to be considered.

Through simulation, an example of scenario cases is implemented utilizing a simple

PD controller. Finally, a novel robotic finger design is introduced, detailing materials,

dimensions, and other hardware information. Eventually, in the following chapters,

it is also shown the idea of how the hardware can be utilized and implemented.

1 System Modeling

The forward kinematics of a manipulator represents the mapping Tst : Q → SE(3),

which describes the relationship from joint variables θ ∈ Q to the position and orien-

tation of the end-effector SE(3) = {(p,R) : p ∈ R3, R ∈ SO(3)} in the base frame. In

this project, it is assume that the finger manipulator consists of 4 revolute joints and

4 links. Then, the kinematics can be described based on the product of exponentials
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formula:

Tst(θ) = eξ̂1θ1eξ̂2θ2eξ̂3θ3eξ̂4θ4Tst(0) (20)

where ξi represents the twist corresponding to the ith joint axis in the reference

configuration, which is θ = 0 and can be found as below.

ξ̂ =

ω̂ v

0 0

 , ω̂ =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (21)

where the axis of rotation ω ∈ R3, ‖ω‖ = 1 with v = −ω× q and q ∈ R3 is a point

on the axis.

Now the relationship from the joint space to the workspace can be decided as follows:

gst(θ) =

R(θ) p(θ)

0 1

 (22)

Then, basically the position and orientation of the end-effector can be calculated

as well as the posture of the manipulator from the joint angle input like the Figure 24.

But further consideration is needed because the manipulator is driven by the actua-

tors, which generate torques for the revolute joints. Therefore, the force and torque

should be taken into account so that the dynamics of the manipulator can represent

how the finger moves in response to the actuators. In order to write the equation

of motion, the Lagrangian analysis is used in this derivation. In the meantime, the

kinematics formulation is also utilized to describe the Lagrangian with respect to the

joint angles and joint velocities. However, the full derivation is explained in the Ap-

pendix section so that in this section it is directly brought to the equation of motion

in terms of the joint angles as below.

M(θ)θ̈ + C(θ, θ̇)θ̇ +N(θ, θ̇) = τ (23)

The matrices M , C and, N represent the inertial properties, Coriolis matrix and,

gravity terms of the manipulator, respectively. τ is the vector of joint torques.
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Figure 24. 4-link, 4-joint simple manipulator system based on the kinematics cal-
culation. θ1 = 0, θ2 = 30◦, θ3 = 20◦, θ4 = 10◦. From S(base) frame to T(tool/end-
effector) frame, metacarpal, proximal, middle, distal phalange

Based on this second-order vector differential equation for the motion of the manipu-

lator, one simple example can be considered like the Figure 25. There is a constrained

surface, which the end-effector of manipulator should follow with generalized forces

against this surface. Mathematically, this restriction can be represented with a holo-

nomic constraint as follows:

h(θ, x) = 0

∂h

∂θ︸︷︷︸
J

θ̇ = − ∂h

∂x︸︷︷︸
GT

ẋ (24)

where x ∈ R3 indicates the allowable motions of the manipulator in the 3-D space.

By using the velocity constraint from the equation 24, it is needed to rewrite the

equation of motion of the overall system because the previous equation of motion 23

only presents joints’ motion by actuator torques. Therefore, the relationship between

the joint space and task space should be considered. The full equation derivation is
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Figure 25. Illustration of finger manipulator with the simple surface constraint.

also written in the Appendix chapter. Then, the final dynamics of the system can be

given by

M̃(q)ẍ+ C̃(q, q̇)ẋ+ Ñ(q, q̇) = F (25)

where q = (θ, x) is the generalized system configuration.

One thing that should be noted is how to set the constraint surface. If the surface is

not approachable by the manipulator, it will lead to another problem. Thus, in this

project, one allowable surface is picked from the workspace and we see if it can be

followed by the manipulator through the controller. In the next section, based on the

system model, the simple controller is designed and the simulation implementation

is presented.

2 Simulation Results

Now, it is ready to figure out if the mathematical model can make a proper motion

with controller and constraints. Starting from the simple motion control in the joint

space, in this section, it is shown that the task space position control with the surface

restriction, thereby the system model can be verified.

When it is assumed that the manipulator is actuated by joint torque and it is able
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Figure 26. Approachable workspace of the manipulator system in the 3D. The
minimum and maximum of the each joint angle are [−10◦, 10◦] for θ1 and [0◦, 90◦] for
θ2, θ3 and, θ4.

Figure 27. Approachable workspace of the manipulator system in the XZ plane.
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Figure 28. Approachable workspace of the manipulator system in the YZ plane.

to control the torque, the simplest application that can be considered is joint angle

control. Given the desired trajectory of the joint angle θd, the error can be written

as below.

e = θ − θd (26)

In order to follow the desired trajectory, the control input u should be designed

based on the basic equation of motion 23. In this example, the computed torque

controller is considered which is basically calculate the system input torque based on

the feedback and feedforward terms of the system [157]. Then, the control law can

be designed as in Figure 29 and as follows:

u = θ̈d −Kvė−Kpe

τ = M(θ)u+ C(θ, θ̇)θ̇ +N(θ, θ̇)

(27)

Like Figure 30, the manipulator follows well with the error less than 0.1 degree.

Therefore, the system modeling with the joint configuration is verified through the

simple computed torque controller.
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Figure 29. The block diagram of the computed torque controller

Figure 30. Simulation result of the joint angle error based on the computed torque
controller. The desired trajectory is θ1 = θ4 = 0◦, θ2 = θ3 = [0◦, 10◦].

When it comes to the end-effector’s position control, the modified equation of motion

25 in terms of the generalized configuration q = (θ, x) is already found in the previous

section. In this case, the control input u is redesigned to follow the desired trajectory

xd in the task space with the error e = x − xd. Then, the virtual force F can be

calculated as below.

u = ẍd −Kvė−Kpe

F = M̃(q)u+ C̃(q, q̇)ẋ+ Ñ(q, q̇)

(28)
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The system input torque can be calculated by the virtual force F as follows :

τ = JTG+F + JTfN (29)

where fN is the internal force of the finger. While fN can be utilized for the finger

force control given the desired force fd, in this example it is assumed that fN is zero to

simplify the system. Then, like the Figure 32, the manipulator motion is simulated

with the one example of the surface constraint. It is necessary to find the proper

surface, which includes approachable path of the manipulator tip position in order to

conduct the task like the Figure 31. The error results are also shown in the Figure

33, 34, 35. Therefore, in this section, through system identification and simulation

in the mathematical way, it is shown that the manipulator can be operated to make

a desired motion with respect to the robot torque input.

Figure 31. The block diagram of task space control with the surface constraint

3 Prototype Design

As mentioned earlier, to make versatile and subtle motion of the manipulator, it

is necessary to refer to the human finger structure and mechanism, which are the

most intricate exemplification. While the analytical examination is conducted in the

previous section, the empirical study is mainly concerned in this section and further.

Starting from the concept design like the Figure 36 which is inspired by the human

index finger, it is shown that the robotic finger manipulator consists of 4-link, 4-joint

with the rigid plastic material, flexor, extensor tendons and, the sheath with the soft

and flexible polyurethane and resin material.
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Figure 32. Animation of the task space control following the trajectory on the
allowable surface. The trajectory is z = p1x

2 + p2x + p3 where p1 = −13.7, p2 =
0.003053, p3 = 0.072.

Figure 33. Simulation result of the position tracking in X-axis
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Figure 34. Simulation result of the position tracking in Y-axis

Figure 35. Simulation result of the position tracking in Z-axis
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As the developing stage goes further, the main design structure is maintained except

for some dimensions and the finger tips material. Figure 37 and 38 show the very

first prototype of the finger manipulator, which are human finger-sized. However,

this design doesn’t include proper sheaths or pulleys, which are necessary to guide

the tendons’ path and protect them.

Figure 39, 40 shows a more organized version of design. In order to make a consistent

and reliable path of tendons, the sheath is designed and 3d printed with the flexible

material(Elastic 50A resin, Formlabs Inc.) so that it prevents tendon wear-out from

the rigid edges and is able to interact more safely and softly.

One notable thing in this design is the clear, transparent tendon, which lets the

light travel inside the fiber. In short, this optical fiber is able to be utilized as a

measurement system as well as the tendon structure in this finger. Therefore, the

next chapter explains how the optical fiber is used as the measurement tool as well

as the driver of finger motion.

4 Conclusion

In this chapter, we examined the modeling process for the finger manipulator, which

mirrors the structure of the human index finger with 4 revolute joints and 4 links.

Leveraging kinematics, we successfully portrayed the finger’s position and orientation

within the workspace via simulation, extending our analysis to derive the equation

of motion. With this foundational understanding, we explored how the manipulator

can be controlled in terms of its joint configuration.

Moreover, we addressed the crucial aspect of incorporating object-touching con-

straints, which led to a transformation of the system dynamics into terms of task

configuration, specifically representing the finger tip’s position. This adaptation en-

ables the manipulator to adhere to desired trajectories even within constrained sur-

faces, enhancing its practical utility.
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Figure 36. Initial concept design of the finger manipulator inspired by the human
index finger structure.

Figure 37. First version of the prototype 3D design.

Beyond theoretical exploration, our work progressed to the practical realm with the

introduction of a novel prototype design and material for the finger manipulator.

Drawing inspiration from the intricate structure of the human finger, our selection of
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Figure 38. First version of the prototype printing with temporary finger pulleys
and sheaths.

Figure 39. Second version of the prototype manipulator.

design, dimensions, and range of motion was considered.

Moving forward, the subsequent chapters will spotlight the evolution of our proto-

type, showcasing its capabilities through the second and third iterations. We will

demonstrate how the finger can execute motions and seamlessly integrate with a new

sensor system, thereby advancing the manipulator’s functionality and applicability in

real-world scenarios.
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Figure 40. Third version of the prototype manipulator. This finger comes with the
silicone pad finger tip for amplifying contact force sensing.
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CHAPTER V

INTEGRATION OF POSTURE ESTIMATION

WITH THE ROBOTIC FINGER

1 Motivation

Within the framework of the tendon-driven system, this project strives to effectively

incorporate human finger design in a straightforward manner. The strategic use of

both rigid and soft materials aims to create a synergistic effect. Specifically, we employ

stiff plastic resins for the bone structure, while flexible resins find their place in the

finger pulleys and sheaths. A noteworthy departure from previous researches lies in

our approach to tendons, where we utilize a soft and flexible optical fiber running

from the fingertip to the actuator side. This fiber serves a dual purpose, not only

transmitting force but also offering valuable measurement data. A key distinguishing

feature of our system is the departure from conventional sensing approaches. Whereas

most shape-sensing applications rely on Fiber Bragg Grating (FBG) sensors [158,

159], our system employs a straightforward and compact arrangement of LED and

photodiode sets to capture variations in light power intensity. Although we will delve

into more intricate details later, this innovation promises a novel, cost-effective, and

user-friendly design for implementing a bio-inspired robotic finger system.

2 Kinematics

To facilitate the intricate motion of the finger, a comprehensive understanding of its

kinematics is imperative. Our primary emphasis within this system is on compre-

hending the tendon input-to-joint output mechanism and how optical measurement
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Figure 41. Finger 3D design from SolidWorks. On the left inset, the proximal-
interphalangeal (PIP) joint geometry is illustrated as an example. ri describes each
joint radius to calculate extensor side displacement and ai, bi, φi are adjacent side
lengths and the initial state angle between the two sides to compute the flexor tendon
displacement.

data varies according to its motion. As such, this section describes from the actuator

side to joint angle, which is able to determine the whole pose of the finger since the

full forward kinematics also can be given by the design.

2.1 Actuator-Tendon Relationship

The fiber tendon is continued beyond the optical sensor and light source with a thin

stainless steel cable (0.2 mm diameter) to prevent deformation of the sensor caused

by winding it around pulleys. Through the connector between the stainless cable and

the optical fiber boards, it moves as an one body to transmit the force directly from

the motor to the tendon of finger. Thus, it is assumed that the displacement from the

motor to stainless cable transfers fully to the optical fiber tendons. In the meantime,

the motors used in this system are controllable by angle directly. Since the pulleys are

connected to these motors with radius rm = 8 mm, it is straightforward to compute

the tendon-actuator relationship using the arc length calculation θm = li/rm, where
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li is the tendon displacement which must be released or taken up to open or close the

finger joints.

2.2 Tendon-Joint Space Kinematics and Dynamics

There are two motors to actuate the finger’s flexion and extension motion, which are

closing and opening movement respectively. The extensor tendon (le) is associated

with releasing the fiber along the tendon path assuming that the path follows an arc

shape. As opposed to the extensor, we assume that during pulling motions the flexor

tendon (lf ) acquires the shortest path line based on the cosine law. Each calculation

can be described in terms of the final design dimensions:

le = l0 + (r1θ1 + r2θ2 + r3θ3) (30)

lf = l0 − (
√
a21 + b21 − 2a1b1cos(φ1 − θ1)

+
√
a22 + b22 − 2a2b2cos(φ2 − θ2)

+
√
a23 + b23 − 2a3b3cos(φ3 − θ3))

(31)

where l0 is the initial length of the tendon, θi presents each joint angle, which

are distal-interphalangeal(DIP) θ1, proximal-interphalangeal(PIP) θ2, metacarpopha-

langeal(MCP) θ3 joint in order, and ai, bi, φi, and ri are each phalange’s geometric

dimension as shown in Table 6.

With the given kinematics, this system is unlikely to addresss each joint input sep-

arately due to the inherent nature of underactuated systems. Since the tendon dis-

placement is calculated, the relationship between the tendon force (f) and joint torque

(τ) is given by the law of energy conservation [160]. Let s = l(θ) =

le
lf

 describe the

vector of tendon extension and flexion, then the geometry of tendon and joint angle
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can be modified by the force and torque relationship as follows:

ṡ =
∂l

∂θ
θ̇

τ =
∂l

∂θ

T

f

(32)

where ∂l
∂θ
∈ R2X3. As far as the joint angle is concerned, it can be assumed

that the left side of the torque equation 32 equals zero because of the equilibrium

condition. Then, the θ can be determined according the net force of the tendon.

However, the exact solutions might not be possible due to the nonlinearity of the

Jacobian matrix and the net force calculation. In that case, optimization or other

numerical methods can be considered. Thus, in this project, it is assumed that the

initial tendon force is fixed and without external forces to produce the uniform joint

angle motion. The repeatability of the hardware is shown during the multiple data

training in the implementation section.

i ai(mm) bi(mm) φi(deg) ri(mm)

1 5.80 5.68 107.71 3.40
2 6.62 6.70 97.83 4.20
3 9.44 9.17 100.55 6.90

Table 6. Kinematic dimensions of the prototype design

3 Optical Fiber as a Measurement

As for the optics, the higher the refractive index, the more the light will be confined to

the waveguide at bends and at interfaces. Therefore, it is found that the transparent

polyurethane (MatterHackers, TPU, clear, diameter 1.8mm) is a good option with

its refractive index near 1.5 (air refractive index, 1.0). As the sensor, this optical

fiber of the system transmits the light power from the LED (IF-E91A, peak wave-

length 930nm) source to an amplified photodiode (IF-91B, max sensitivity wavelength

920nm) detector. These components allow one to measure the transmitted light in-

tensity as an analog voltage (0-5V) to analyze the fiber’s physical deformation or
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loading force. For shape sensing, transmission can be described by light loss (dB) as

follows:

L = 10log10(
I

I0
) (33)

where the initial power is I0 and the current power is I. However, because trans-

mission loss is an integrated measurement along the deformed fiber, which undergoes

pressure, stretching, and multipoint bending, the relationship between light loss and

the joint angle vector is complex. A forward model based on bending loss can be

constructed [161], but the inverse problem is likely to have multiple solutions. As

shown in Figure 42, the light transmittance through a single bending joint decreases

with angle. The variation is small because Figure 42 only considers fiber bending ac-

cording to a finger closing motion from 0 to 70 degree on the single MCP joint, while

the other joints are held at 0 and 50 degrees respectively. However, when it comes to

real measurements like those in Figure 43, which account for not only bending but

surface contacts and other deformations, the transmission loss through the optical

fiber sensor is considerable. Given those data, while the light power does decrease

according to the lumped joint bending angle, a one-to-one regression is difficult due

to the system’s other uncertainties such as friction, tendon elongation, viscoelastic

properties of the tendons, and micro-bending. Therefore, even though the idea of

shape sensing stems from the relationship between the bending angle and light loss,

this study finds an aggregated function using a machine learning technique in order

to make a data-based model of the sensor system.

In the meantime, as a tendon, the fiber has some advantages. It is lightweight, is

smooth enough to be guided by sheaths and over pulley-like joints. Since the fiber

is soft and flexible, it conforms easily as the finger joints are bent, but it can still be

firmly attached to the end of the finger. This material is also functional in water and

with electrical or magnetic interference. Thus, it can be utilized as the device of the

force transmission. However, due to the elasticity of the TPU material, some extent

67



Figure 42. Transmittance simulation (COMSOL) giving the ratio between initial
power at the fiber inlet and current power detected at the fiber outlet during MCP
joint angle change.

of elongation is inherent in the fiber. In order to overcome the problems led by this

feature, in the fixed range of tendon force, the system motion is observed without

applied external forces. Since the Young’s modulus (168.52-109.90 MPa, 0-5N) is

obtained by tensile testing, we can estimate how much displacement is involved in

the elongation at a given force. As mentioned earlier, although it is assumed that

the external force is not considered in this system, friction can be considered to

compensate the elongation displacement. Through experiments it is observed that

the 1 N tendon force is associated with generating around 0.35 mm displacement

elongation.
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Figure 43. Measured light intensity loss as a function of total joint angle

4 Implementation

In this section, the technical details of the prototype setup are introduced. The

goal of this experimental testbed is to observe the motion of the finger and evaluate

the feasibility of the sensor through a machine learning calibration process. The

whole process is composed of 1) tendon displacement calculation, 2) creating finger

motion, 3) taking image data from a camera, 4) training the extracted actual angle

data (ground truth) against the light intensity data, and 5) comparing trained and

measured data. This is also illustrated in Figure 44.

Based on equations 30 and 31, the two tendon displacements are computed once the

desired joint angle is decided. By taking image data from Azure Kinect (Microsoft),
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the actual angle can also be extracted. Through neural network training (Matlab),

we show the light intensity data is fitted to the sum of actual bending angle.

4.1 Hardware Setup

Each component of the finger is 3D-printed using Form 3+(Formlabs Inc.) except for

the tendons. The rigid bone structures and joint pins are based on a resin material

(Formlabs Grey Resin) and the sheaths as the finger pulleys and hoods are made with

a flexible clear resin (Formlabs Flexible 50A). The total weight and length are 28 g

and 165 mm respectively, and the three pin joints have maximum range of motion

80/65/90 degree (DIP/PIP/MCP). The design is inspired by the actual human finger

size. The tendons are installed and free to move inside the sheath guided by the top

path of the bone.

As shown in Figure 45 and 46, there are 2 motors (Dynamixel 430, Robotis Inc.),

which communicate with a PC directly, to actuate the flexor and extensor tendons.

Also, LED emitter and photodiode amplifier boards [162] are connected to the Ar-

duino Uno to send the measurement data to the processor. One thing to note here

is that the flexor and extensor tendons are actuated independently even though they

are one body of fiber. Because the light sensing relies on a source and detector in the

same fiber, the fiber tendon passes through the distal bone and is fixed on both sides

to make it controlled separately. In the meantime, additional sensors are needed to

collect training data and validate the results, which consist of a loadcell (HT Sensor

Co. 5kg capacity) to measure the tendon forces and a camera to extract the current

joint angles of the finger.

4.2 Shape Sensing

As mentioned earlier, shape sensing is associated with the total bending angle of the

finger from 3 joints since the fiber makes curvature following their motion. While
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Figure 44. Flowchart of the finger system control. θ̂a, θu are the estimated angle
and the motor actuator input respectively.

there are not enough degrees of freedom to control 3 joints independently with two

tendons, it can be expected that the finger motion will stay uniform under the same

initial tendon force and without disturbances. Therefore, when collecting data for

training, it is important to keep the consistency of the setup, particularly the initial

tendon force. Now, based on the desired configuration, the actual joint angles can

be computed through color recognition algorithm (cv2, pyk4a library in Python),

which captures each point on the links of finger so that each joint angle can be

extracted through a vector dot product calculation. Then, those actual data are

analyzed to get the relationship between the total bending angle and light intensity

loss. The training process is conducted by a neural network algorithm (15 hidden

layers, Bayesian regularization backpropagation) in Matlab as the post-processing.

So, the function output is the total joint angles and inputs are tendon displacement

and intensity ratio (I/I0) between current power and the initial value.

5 Results

Once the basic setup is arranged, the finger is actuated by motor-tendon-joint calcu-

lation. The total angle input increases from 0 degree to 120 degree. Starting from

71



Figure 45. Experimental setup for actuating and sensing of the robotic finger

the small set of data, the output angle can be trained with 3 inputs of flexor, ex-

tensor displacement, and light intensity ratio. The training division setup is 70% of

total data for training, and 30% for the testing. The test performance gives RMSE

(Root Mean Square Error) 1.1705 degrees and the regression correlation number R

is 0.99926. Then, for identifying system repeatability and gathering more data sets,

Figure 47 shows the same motion of the finger in the different testing. While the data

set gets bigger and has a certain range of initial tendon force (1-1.5N), the RMSE

(2.3593 degrees) becomes slightly higher than the previous. The R value is still close

to 1, which is 0.99762 for the total data set. So, based on the last trained regression

function from 3 training sets, another test set data can be verified to see how well

the function estimates the output angle. In Figure 48, although the estimation is not
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Figure 46. Diagram of hardware integration

as close as the training test sets, it still shows that the estimation result follows the

real value in a certain range of error, which has 5.6861 degree RMSE.

6 Discussion

In this project, we developed a novel design of a robotic finger system that draws in-

spiration from the structure of the human finger. This design offers several compelling

advantages. Firstly, our finger is capable of self-estimating its motion, measuring to-

tal joint bending through the use of soft and flexible optical fiber tendons. These

tendons not only facilitate force transmission but also serve as a means of tracking

finger motion. Secondly, our approach relies on readily available off-the-shelf mate-

rials and utilizes only a single sensor fiber to enable total three-joint motion within

a finger. This not only enhances cost-efficiency but also makes the system easily im-

plementable. Thirdly, with an initial calibration process, the finger can be controlled

with minimal processing load, further enhancing its usability.

However, it is essential to acknowledge that while our system design excels in terms

of simplicity and compactness, there is still room for improvement. One aspect is
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Figure 47. Test training data results in specific initial tendon force region of 1-1.5N

that the reliance on pre-trained sensor data based on specific initial configurations

may limit its adaptability. To address this, future work should focus on gathering a

more extensive and diverse dataset to enhance the system’s flexibility. Additionally,

considering that our project primarily operated in a static state without external

forces, future research should prioritize integrating force dynamics to not only mimic

human-like motion but also facilitate interactions with external inputs.

In conclusion, our robotic finger system represents a significant step forward in the

field of robotic manipulation. Its innovative blend of soft and rigid materials, cost-

efficiency, and ease of control make it a promising platform for future applications.

As we continue to refine and expand our research, we aim to bridge the remaining

gaps, ensuring that our system remains adaptable and robust in various scenarios.
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Figure 48. Estimation of the bending angle from the previously trained net function
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CHAPTER VI

INTEGRATION OF TOUCH SENSING

WITH THE ROBOTIC FINGER

1 Motivation

Previous chapters have delved into the analysis of finger motion both mathematically

and empirically. Additionally, manipulator posture has been examined using vision

camera sensors and mapped using neural network techniques based on image data

and optical sensing results.

Given the demonstrated potential of utilizing optical fiber for posture measurement

by observing its bending effect, exploring other forms of physical deformation to gauge

the fiber’s sensing capability within the manipulator becomes pertinent. As empha-

sized earlier, tactile information plays a crucial role in navigating peripheral situa-

tions. Therefore, it is natural to contemplate how integrating optical fiber-embedded

fingers can facilitate touch information observation. Thus, the central idea of this

work revolves around integrating tendon measurement with manipulator motion to

not only overcome spatial limitations but also enhance system control convenience.

This chapter undertakes a geometrical analysis of ray optics under various deform-

ing shapes. Furthermore, it explores how these shapes are influenced by applied

forces depending on the fiber’s physical properties. To assess sensing reliability, a

soft tip-integrated manipulator is utilized, presenting data observations across sev-

eral postures with varying degrees of contact softness. Finally, a simple application

example is demonstrated, showcasing the maintenance of constant contact force.
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2 Geometrical Optics

Due to the innervated optical fiber tendon, the finger manipulator can detect its mo-

tion change that causes physical deformation of the fiber. Although mathematical

and physics backgrounds of light attenuation are already stated in many optics the-

ories [161, 163], it is too complicated to use its exact model in the system. However,

we can estimate its approximate value according to the geometrical variations of the

waveguide through the Finite Element Analysis(FEA) tool. Basically, given some

possible scenarios especially for the developed finger manipulator system, it is able to

see how the light transmittance rate changes depending on the manipulator motion

or applied force.

2.1 Bending Property

In the developed manipulator, the fiber is affected by its motion directly. In that

manner, bending is the most dominant deformation in this system. Generally, light

loss caused by bending effect is increased as the radius of curvature is decreased [161].

Therefore, the results from the simulation in Figure 49 and 50 shows reasonable trans-

mittance rate from input to output. Each bending position is each joint position of

the manipulator. Also the maximum bending angles follow the designed manipulator

dimension, which are 80◦(MCP), 70◦(PIP) and, 70◦(DIP), respectively. Then, we can

easily calculate the bending radius based on the arc length formula as follows:

r =
180lA
πθA

(34)

where lA and θA are the fixed arc length at each joint position and angle degree of

the curvature.
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Figure 49. Bending ray scattering at different local positions in one fiber body.

Figure 50. Light transmittance according to the total bending angle of the fiber.
Maximum angles of MCP, PIP, DIP are 80◦, 70◦ and, 70◦ respectively.

2.2 Elongation

Since the fiber is flexible and somewhat stretchable, the elongation property also can

be considered. Although our manipulator is unlikely to be subjected to excessive

tensile force, it can be estimated how much elongation affects to the light attenuation

78



numerically. Based on the physical tensile testing, it is found that the fiber material

has around 168.5 MPa Young’s Modulus. Furthermore, if we take the Poisson’s

ratio(ν) of Polyurethane material(∼= 0.4) [164], transverse direction strain is able to

be calculated according to the axial strain as well.

ν = −dεtrans
dεaxial

(35)

Figure 52 shows that 2 mm elongation is associated with almost 30% light loss from

the source. The amount 2 mm can be generated from more than 28 N, however, the

manipulator’s tendon force lies under 5 N at most. So, that being said the elongation

is more likely to affect to the light transmittance by less than 15% loss assuming less

than 1 mm elongation.

Figure 51. Illustration of fiber elongation ray transmission.

2.3 Pinching Property

The tendon fiber covers up the finger back side and inner side in this manipulator.

Also, because it is required to have inlet and outlet for receiving and sending light

source, the fiber makes the u-turn at the finger tip position. The reason to examine

the pinching property is to figure out if contact touching on the tip can be discerned.

So, the hard plastic tip of the previous chapter is substituted with a soft silicone

material which includes a small indenter at the fiber-turning position to amplify
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Figure 52. Light transmittance rate vs. elongation length. Initial length of the fiber
is 30 mm. It is assumed that when the tensile force is around 28 N, it is stretched by
around 2 mm based on the mechanical testing results(Young’s Modulus, 168.5 MPa).

physical deformation of the fiber. The fiber path and indenter on the finger tip is

shown in Figure 53, 54. Thus, it is expected that the indenter presses the fiber

when the contact force affects directly to the silicone by suppressing. In that case,

how much displacement would happen under certain range of pressing force can be

presumed through the simulation. Figure 55 presents that 0.01 mm displacement in

z-axis when the loading force on the both side 0.1 N. However, what eventually we

want to identify is how the light attenuation will be with respect to this mechanical

deformation. Thereby simplifying the physical deformation, optical ray tracing is

able to be observed numerically. Like Figure 54, it is assumed that the loading force

is applied on the arrow points and leads to elliptical cross-sectional shape from the

circle. Then the simulation result shows around 10% loss for 0.1 mm change in the
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fiber radius.

Figure 53. Distal silicon pad(DragonSkin, SmoothOn Inc.) tip design for detecting
contact force. The left bottom figure shows cross-sectional view of the distal link.

Figure 54. Illustrations of force loading on the fiber path in the distal tip. The right
figure represents a speculation of fiber shape deformation on infinitesimal length with
transverse loading force.

3 Hardware Implementation

As shown in Figure 60, the test bed consists of three motors (Dynamixel XL430,

Robotis Inc.) for driving the manipulator and linear stage to measure the contact
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Figure 55. Transverse force loading simulation(SolidWorks). The indenter’s diam-
eter is 1 mm and presses the fiber from both sides with 0.1 N.

Figure 56. Pinching on the bending fiber.

force. Two loadcells are located on the backside of the touching surface and con-

nected to the loadcell amplifier. Light sensor components are emitter(LED) and

receiver(Photodiode) board directly connected to the each fiber end to measure the

light traveling in it. Every sensor signal comes to Arduino Uno board. Then, the

arduino board and the motor connnector directly come into the main processor PC

and are synchronized through the serial communication. Based on the setup of the

test bed, in this section, different cases of hardware implementation are shown to

verify sensor reliability.
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Figure 57. It is assumed that the pinching part by transverse loading force generates
elliptical shape of the fiber in the cross-sectional view.

3.1 Sensor Verification

In the previous section, the physical effects of the optical fiber are presented numeri-

cally. The next task is identifying how well those results match with the real hardware

implementation. Starting from the simple pressing example, contact force is applied

directly to the finger tip and the light intensity variation is observed as a function of

loading force.

The curved surface is designed from workspace of the manipulator to make proper

contact points on the surface. The loading force is composed of 2 different axis and

it is normalized taking 2-norm to see the magnitude of the total force. In this case,

it is assumed that there are only 2 directional forces to consider, z and x axis (finger

longitudinal axis and closing motion axis) because the lateral motion of the finger
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is constrained. Then, when the linear stage approaches to the finger tip side, the

contact force increases from the two loadcells since it causes a pressing motion.

During the experiment, although the finger is subjected to the force, it does not affect

the finger motion change. In other words, it is assumed that the force is applied to

the finger tip only without impact on the finger joints. So, like the pinching effect

in the previous section, one is able to see how the contact pressing force influences

the tendon fiber. As shown in Figure 59, the hard surface can be more influential

with less applied force than the soft surface because it has less force-dissipating buffer

components between the contact surfaces. Furthermore, it also presents more steep

slope in the hard surface case with respect to the relationship between the force and

light intensity.

When the bending effect is added up with the tip pressing, the result becomes

slightly different. As one can see in Figures 60, 61 and 62, with more applied force,

there is an approximately proportional light attenuation. In the meantime, in accor-

dance with the joint bending angles, the initial level of the light intensity is discerned.

This result also agrees with the bending loss effect from the simulation results.

Lastly, by observing the loading and unloading on the finger tip the sensitivity of

the tendon measurement can be identified. During each cycle, the displacement of the

moving stage is from 0 to 4 mm starting from barely contacting on the finger. While

the same displacement is applied on the pressing process, the maximum loss level is

slightly different. This discrepancy is caused by soft material’s physical property of

viscoelasticity which leads to hysteresis. Therefore, if the finger tip’s silicone and the

surface contact material is changed, the intensity-vs-force curve is expected to show

different appearance similar to Figure 59.
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3.2 Contact Force Control

Since it is identified that the finger tip press leads to indenting fiber, which directly

affects light travel path and makes intensity variation mostly attenuation, the trans-

mitted intensity may be an input for a control system that maintains a certain contact

force range. So, the simple P controller is implemented to reach the target level of

light attenuation. Figures 64 and 65 show that when each target attenuation is differ-

ent, the resultant force also varies. The higher light loss ratio is set, the more contact

force is caused which is the same results with the pinching effect and simple pressing

experiments.

4 Discussion

In this chapter, the possibility is shown for the fiber sensor to measure physical de-

formation through numerical analysis. Especially, bending, elongation and, pinching

properties are examined as plausible deformation shapes for the fiber in the manipu-

lator developed in this thesis. According to the deformation, the attenuation presents

from 10 % to 40 % loss of the light.

As far as tactile sensing is concerned, the pinching effect is most likely to happen at

the tip of the finger manipulator because of the distal link and the soft tip design.

Thus, the hardware implementation focuses on demonstrating touch sensing perfor-

mance. When the force is applied to the different hardness of the surface, the fiber

sensor is able to detect intensity of the pressure with the dissimilar value of the slope.

The frequency test is also conducted to see sensor reliability by loading and unloading

a certain level of force. Moreover, while the finger is subjected to the pressing force,

the bending can be considered another influence by driving the finger with different

joint angles. Lastly, since it is able to measure light intensity according to the ex-

erted force, maintaining touching force of the finger could be one of the application

examples. Thus retaining contact force is presented by making the system follow the
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set point of the light attenuation based on the fiber sensor feedback.

Most of the experiments in this chapter are concerned with static state and segre-

gated from different effects. So, it is necessary to verify sensor performance in more

complex situations to be utilized in the real world applications. Although we can

acknowledge that the fiber sensor detects the finger motion and the applied force, it

still remains to identify mathematical or numerical mapping between the fiber sensing

feedback and the motion that we want to sense. Therefore, in future works, dynami-

cal situations and finding the intuitive relationship function should be considered to

make the system more practical.
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Figure 58. Testbed setup : The index finger manipulator is demonstrated to show
tactile sensing performance.
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Figure 59. Contact pressing motion on soft(SkinTite, silicone) and hard(PLA)
material surface.

Figure 60. Contact surface experiment with the soft pad on the surface. Different
postures (MCP 0◦, 10◦, 30◦) are tested.

88



Figure 61. Force vs. light transmittance rate in different postures with the soft
material surface.

Figure 62. Analog voltage level according to different postures.
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Figure 63. Loading and unloading cycle in the same posture of the finger with the
different frequencies of 0.04 Hz, 0.1 Hz and, 0.2 Hz.
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Figure 64. Application experiment for maintaining contact force. Each target
attenuation is 10%, 20%, 25%.

Figure 65. Force measurement result according to maintaining the target intensity
level.
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CHAPTER VII

CONCLUSION AND FUTURE WORKS

This dissertation encompasses significant contributions and objectives across 6 chap-

ters.

In Chapter 1, it highlights the development of a novel bristle-based sensor capable

of measuring normal and lateral forces during stick-slip motion. The sensor demon-

strates promising physical performance across different experiments like normal force

exerting, sensitivity, hysteresis tests etc. suggesting its viability for applications in

robot grasping.

Based on the development of sensor in Chapter 1, Chapter 2 introduces an adaptive

grasping control system. The system exhibits robust performance in simulation and

hardware experiments, though there is room for future exploration in handling di-

verse grasping objects.

On the other hand, Chapter 3 shows a broader context, discussing advancements

in biomimetic hands and the ongoing challenges in design, fabrication, and control.

Thereby providing a comprehensive overview of anthropomorphic manipulators, it is

able to lay the groundwork for the future developments. While progress has been

made, there still remains a need for integrated approaches that leverage emerging

technologies to enhance robotic manipulators.

In Chapter 4, we delved into the development of a robotic manipulator emphasizing

the importance of understanding its mechanisms and dynamics. By exploring the

mathematical simulations, the background of the finger manipulator control system

is provided.
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Chapter 5 presents a novel robotic finger system design capable of self-estimating

its joint bending angle based on the optical tendon fibers. While the system offers

simplicity and cost-efficiency, there are opportunities for improvements, particularly

in adaptability and dynamics interactions.

With Chapter 3’s overview, Chapter 4’s foundation, and Chapter 5’s novel design, in

Chapter 6, the potential of the tendon fiber sensor for measuring physical deforma-

tion and tactile sensing is explored further. It shows promising results in different

static situations especially pressing and bending. However, further research is needed

to validate sensor performance in real-world applications and establish intuitive map-

ping between sensor feedback and desired motion.

In conclusion, this work’s findings emphasize the ongoing evolution and potential of

robotic manipulation and tactile sensing. Especially, by utilizing the optical fibers’

sensing technique, it has streamlined system complexity and enhanced design flex-

ibility.While this work presents innovative and straightforward systems, the future

research efforts should focus on addressing remaining challenges, such as adaptabil-

ity, dynamic interactions, and real-world applicability. Specifically, the physical lim-

itations of optical fibers may impact sensing performance due to factors like light

degradation or material fatigue. Additionally, it’s crucial to examine the physical

properties of other components, such as sheaths and bones. On the design front, cer-

tain aspects of human finger anatomy have been sacrificed in the realization of robotic

finger manipulators to simplify the system. Addressing these issues will propel the

field forward and facilitate practical implementations.
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APPENDIX A: DYNAMICS OF FINGER MANIPULATOR

In Chapter 4, the equation of motion for the finger manipulator is used. The deriva-
tion is described in this Appendix based on the kinematics formulation and the La-
grangian [157]. When a general open-chain manipulator is considered with joint
angles θ ∈ Rn, the Lagrangian is formulated

L(θ, θ̇) =
1

2
θ̇TM(θ)θ̇ − V (θ) (36)

where the matrix M(θ) ∈ Rn×n is the manipulator inertia matrix and the total
potential energy is V (θ) =

∑n
i=1mighi with the mass of the ith link and gravitational

constant g. In the meantime, the kinetic energy term can be rewritten as the sum of
ith link’s kinetic energy,

1

2
θ̇TM(θ)θ̇ =

n∑
i=1

Ti(θ, θ̇) (37)

where

Ti(θ, θ̇) =
1

2
(V b

i )TM̄iV
b
i

=
1

2
θ̇TJ bi

T
(θ)M̄iJ

b
i (θ)θ̇.

(38)

M̄i is the generalized inertia matrix of the ith link and the body velocity of the
center of mass is given by V b

i = J bi (θ)θ̇, which is relative to the base frame of the
manipulator. Also, the body Jacobian of the ith link can be described based on the
finger kinematics as below

J bi (θ) = [ξ1 · · · ξi 0 · · · 0], (39)

where
ξj = Ad−1

(eξ̂jθj ···eξ̂iθigi(0))
ξj j ≤ i (40)

when the transformation matrix of the ith link from the base frame is gi(θ) =

eξ̂1θ1 · · · eξ̂iθigi(0). Then we can fully describe the Lagrangian of the manipulator.
Now we can derive the system equation of motion given by substituting into La-
grange’s equations,

d

dt

∂L

∂θ̇i
− ∂L

∂θi
= Υi, (41)

where Υi represents the applied torque with other generalized forces on the ith joint.
Based on equations 36 and 38, we can have

n∑
j=1

(Mij θ̈j + Ṁij θ̇j)− (
1

2

n∑
j,k=1

∂Mkj

∂θi
θ̇kθ̇j −

∂V

∂θi
) = Υi i = 1, · · · , n (42)
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where Mij is the element in the manipulator inertia matrix M(θ). Eventually, the
equation 42 can be rearranged as the form that we are familiar

M(θ)θ̈ + C(θ, θ̇)θ̇ +N(θ, θ̇) = τ (43)

where

Mi(θ) =
n∑
j=1

Mij

Cij(θ, θ̇) =
1

2

n∑
k=1

(
∂Mij

∂θk
+
∂Mik

∂θj
− ∂Mkj

∂θi
)θ̇k

Ni(θ, θ̇) =
∂V

∂θi
(θ).

(44)

The equation 43 and 44represents the finger manipulator dynamics with respect to
the joint configuration. Like Figure 25, when it is considered to manipulate an object
we can derive the new system dynamics by combining finger manipulator and object
dynamics. Since we already explained the equation of motion, to avoid confusion the
notation for the finger manipulator dynamics is able to be slightly changed.

Mf (θ)θ̈ + Cf (θ, θ̇)θ̇ +Nf (θ, θ̇) = τ (45)

Also, the equation of motion for the object is given by

Mo(x)ẍ+ Co(x, ẋ)ẋ+No(x, ẋ) = 0. (46)

In the meantime, the finger and object can be connected by the constraint like equa-
tion 24 in Chapter 4. Then, we can rewrite the overall system dynamics through
the Lagrange-d’Alembert equation. When the composite system configuration is
q = (θ, x), the new Lagrangian is described by

L =
1

2
θ̇TMf θ̇ +

1

2
ẋMoẋ− Vf (θ)− Vo(x). (47)

The velocity constraint in equation 24 can also derive a constraint on the virtual
displacement such as ∂θ = J−1GT∂x. Based on this, thus, the Lagrange-d’Alembert
equation can be written as below(
d

dt

∂L

∂q̇
− ∂L

∂q
−
[[
τ
0

]])
· ∂q = GJ−T

(
d

dt

∂L

∂θ̇
− ∂L

∂θ
− τ
)
· ∂x+

(
d

dt

∂L

∂ẋ
− ∂L

∂x
· ∂x

)
(48)(

d

dt

∂L

∂ẋ
− ∂L

∂x

)
+GJ−T

(
d

dt

∂L

∂θ̇
− ∂L

∂θ

)
= GJ−T τ. (49)
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Eliminating θ̇ and θ̈ through the velocity constraint, the overall system equation of
motion become like equation 25 where

M̃ = Mo +GJ−TMfJ
−1GT

C̃ = Co +GJ−T
(
CfJ

−1GT +Mf
d

dt
(J−1GT )

)
Ñ = No +GJ−TNf

F = GJ−T τ

(50)
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