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ABSTRACT

STRATEGY-PROOF SOCIAL CHOICE FUNCTIONS ON CONDORCET
DOMAINS

Flannery Marie Musk Wells

April 12, 2024

A social choice function is said to be strategy-proof if no voter has any moti-

vation to lie about their true preference. Strategy-proofness is a desirable property

of social choice functions so we consider here functions that always satisfy this

property. We add to this property the additional desirable conditions of anonymity

and neutrality and present domains on which we can get a characterization of ma-

jority rule as the only social choice function that satisfies these three properties.

Furthermore, we consider what functions look like when we drop the condition of

anonymity.
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CHAPTER 1

INTRODUCTION

Whenever a collection of people want to vote on a decision there is the

obvious question of how should the winner of such a vote be chosen. Whether that

decision is something as trivial as choosing food to have at an event or as significant

as choosing a leader of a nation, all voters have opinions that should be brought

together and collectively assessed to designate a fair winner. A common candidate

considered to be a fair winner of a vote is the majority candidate. Another name for

the majority candidate, is the Condorcet alternative. This name comes from Marie

Jean Antoine Nicolas Caritat, Marquis de Condorcet - more commonly known as

Nicolas de Condorcet. In his Essai sur l’Application de l’Analyse la Probabilité des

Décisions Rendues la Pluralité des Voix (Essay on the Application of Analysis to

the Probability of Decisions Rendered by a Plurality of Votes ), Condorcet presented

what is now referred to as Condorcet’s paradox which shows that when there are

three or more options a majority candidate is not guaranteed to exist [7]. Below we

see an example of such a paradox.

Example 1.1 Suppose we have three people submitting a ranking of their choice of

pizza topping for a lunch. They can choose from pepperoni, sausage, and cheese.

Notice, if the three voters give the following lists, there is no clear majority winner.

See Table 1.1.

This dissertation will look at collective decision making on a collection of

voter preferences in which there is always a “pairwise comparison majority winner”.
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Voter 1 Voter 2 Voter 3

First choice pepperoni cheese sausage

Second choice cheese sausage pepperoni

Third choice sausage pepperoni cheese

Table 1.1: Condorcet’s paradox

Since a Condorcet alternative will always exist, we refer to this collection as the

Condorcet domain. The language of Condorcet domains has its origin in the work

of Monjardet [16], [15] [17]. Monjardet’s notion of a Condorcet domains is slightly

different than the one in this dissertation. Monjardet defines Condorcet domains

as sets of linear orders where Condorcet’s paradox does not occur, whereas we

define our notion of the Condorcet domain more generally since we just require

that a Condorcet alternative must exist. Below is an example to help illustrate the

difference in these notions.

Example 1.2 Suppose the three people voting on their pizza order in Example 1.1

found out there was a special pizza being made that day. They are now voting

again on these four types of pizza and everybody agrees that the special is their first

choice but keeps everything else the same. Now the vote looks like the following

table. Notice that there is a pizza that would be called the Condorcet alternative -

the special - since it clearly is preferred to all other options by a majority of people.

But the vote still exhibits the cyclical behavior of Condorcet’s paradox for the three

other pizza types.

The vote in Example 1.2 would not be a part of Monjardet’s notion of a Condorcet

domain but we will consider this type of vote in our work.

2



Voter 1 Voter 2 Voter 3

First choice special special special

Second choice pepperoni cheese sausage

Third choice cheese sausage pepperoni

Fourth choice sausage pepperoni cheese

Table 1.2: Vote that has a Condorcet alternative and exhibits Condorcet’s paradox

1.1 Preliminary Definitions and Results

We mentioned the notion of a domain above but now give an explicit defi-

nition of a domain for our work. Additionally we define the notion of the rule by

which we select the winner of a vote, namely a social choice function. We will also

sometimes use the phrase voting rule when referring to a social choice function1.

We let A stand for the set of alternatives, i.e. the objects being voted on, and

L(A)N is the set of all profiles. A profile P = (P1, P2, . . . , Pn) is an n-tuple such

that Pi ∈ L(A) for i = {1, 2, . . . , n} where L(A) is the set of all linear orders on A.

Definition 1.1 A strict linear ordering, or a ranking, on a set A is a complete,

transitive, and antisymmetric binary relation, R, on A.

By complete, we mean that for all ai, aj ∈ A, aiRaj and/or ajRai. By transitive,

we mean that for all ai, aj, ak ∈ A if aiRaj and ajRak, then aiRak. Finally, by

antisymmetric we mean if aiRaj and ajRai then ai = aj.

Additionally we want to define the notion of rank in a linear order Pi. The

kth ranked alternative in a linear order, denoted rk(Pi), is the alternative x ∈ A

such that k − 1 alternatives are listed above x in Pi.

1Some authors will use these two terms to refer to distinct concepts (see [23] for example) but

this dissertation will use them interchangeably.

3



Definition 1.2 A nonempty subset D of L(A)N is called a domain and a social

choice function is a map f : D → A that assigns to each profile P belonging to

D a unique alternative f(P ) ∈ A.

The definition below is an example of a type of social choice function.

Definition 1.3 A social choice function f : D → A is a dictatorship if there

exists j ∈ N such that, for any profile P = (P1, P2, . . . , Pn), f(P ) = r1(Pj). In

this case, individual j is the dictator. We will say that a social choice function is

non-dictatorial if it is not a dictatorship.

One property that is desirable for social choice functions is that they are strategy-

proof. By this we mean that no individual has any motivation to lie about their

true preferences when voting because doing so does not produce a better result for

that individual. A dictatorship is always strategy-proof. Another property that a

dictatorship satisfies is stated below.

Definition 1.4 A social choice function f satisfies unanimity if, for any profile

P = (P1, P2, . . . , Pn), r1(Pi) = x for all i ∈ N implies f(P ) = x.

If we want our social choice functions to satisfy both the properties of

strategy-proofness and unanimity then we are likely to have a dictatorship. In

1973 and 1975, Gibbard and Satterthwaite independently established the following

seminal result showing this fact2. In Theorem 1.1 below, the domain, D, is often

referred to as the Universal Domain, that is the domain of all possible linear orders.

Theorem 1.1 (Gibbard, 1973; Satterthwaite 1975) Suppose there are at least

three alternatives and that for each individual any strict linear ordering is permissi-

ble. Then the only unanimous, strategy-proof social choice function is a dictatorship.

2Alternative phrasings of the Gibbard-Satterthwaite Theorem exist. One such equivalent phras-

ing assumes that the social choice function is onto rather than assuming it is unanimous.
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Clearly a dictatorship does not fully consider the prefernences of all individuals

when determining the social output as it is based on one specific voter’s choice.

Thus we would say a dictatorship is not anonymous, that is, the order of the voters

matters in the result. We wish to consider social choice functions that do treat all

individual’s preferences more fairly, i.e. functions that are anonymous. Another

desirable property for social choice functions is that they are neutral, meaning

that the social output does not depend on the name of the alternatives. To look

at functions that satisfy these properties, as well as are strategy-proof, we must

consider a different domain than what is stated in Theorem 1.1. One such function

is the rule that selects the majority candidate, or Condorcet alternative, often called

majority rule. Hence the overarching theme of this dissertation is to consider on

what domains we can get a characterization of majority rule as the only social choice

function that satisfies the three properties of strategy-proofness, anonymity, and

neutrality. Additionally we consider what happens when we swap the anonymity

condition for a function that must be non-dictatorial as well as what happens when

we completely drop the anonymity condition.

We begin with domain of profiles of all linear orders where the Condorcet

alternative exists. In Chapter Three we extend our work to consider a domain that

can model realistic representations of individual’s beliefs, that is the single-peaked

domain. In Chapter Four we begin to consider what happens when we do not

require that our domain only consist of strict linear orderings. Finally, we conclude

with some remaining questions that we hope to pursue in the future.

1.2 One Final Comment

The results of this dissertation are on domains where the Condorcet alter-

native always exists thus they are called Condorcet domains. There is a notion of

5



a social choice function being what is referred to as Condorcet consistent which is

slightly different than what we are considering here. We say a social choice func-

tion is Condorcet consistent if when a majority element exists, the function always

selects that element as the winner. We could look at extending our work to Con-

dorcet consistent rules. But for this work, we will always consider that the majority

element exists for all profiles in our domain.
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CHAPTER 2

THE CONDORCET DOMAIN

We begin our work by looking at the largest domain where the majority

element always exists. This domain is called the Condorcet Domain, named after

Nicolas de Condorcet. By restricting our focus to this domain, we guarantee that

the majority element is always defined which allows us to focus on the social choice

function which always outputs this element, namely majority rule or the Condorcet

rule.

2.1 Notation and Terminology

Let A denote a finite set of alternatives with |A| = m. Let N = {1, 2, . . . , n}

be a set of individuals. Each individual has a strict ranking of the alternatives.

The notation L(A) is for the set of all linear orders on A. A profile is an n-tuple

P = (P1, P2, . . . , Pn) such that Pi ∈ L(A) for i = 1, 2, . . . , n. The set of all profiles

is denoted by L(A)N . For any profile P = (P1, P2, . . . , Pn), individual i has a strict

ranking, Pi, of the alternatives with the notation xPiy representing the fact that i

prefers alternative x to alternative y. The notation rk(Pi) represents the kth ranked

alternative of individual i.

To define the Condorcet Domain we need some additional notation. For any

P = (P1, P2, . . . , Pn) belonging to L(A)N and for any subset {x, y} of A,

Nxy(P ) = {i ∈ N : xPiy}

is the set of individuals that rank x above y in the profile P .

7



Definition 2.1 Given a profile P of linear orders, an alternative x is the strict

Condorcet alternative if, for any other alternative y, |Nxy(P )| > |Nyx(P )|. The

set of all profiles of linear orders where the Condorcet alternative exists is called the

Condorcet domain and is denoted by LC.

Notice that x is a strict Condorcet alternative with respect to a profile P

if more individuals rank x above y than y above x for any y ̸= x. Throughout

this chapter, we will assume that the domain D of a social choice function is the

Condorcet domain LC . Therefore, we will drop the qualifier “strict” when referring

to the strict Condorcet alternative1.

The Condorcet domain always admits a majority winner - the Condorcet

alternative. This alternative seems an obvious potential alternative to be the output

of a social choice function. Of course this statement relies on the belief that a

majority winner is the best one (see Felsenthal and Machover [10] and Risse [21]

for arguments in favor of the Condorcet alternative being the winning alternative).

With the Condorcet alternative seeming an obvious social output, it is interesting

to consider if voting rules admit different alternatives as the social output, or if

the Condorcet alternative always wins and thus we can get a characterization of

majority rule. By focusing on the domain LC , are we limited in the possibility of

surprise outputs? That is, if the Condorcet alternative exists within a domain, can

it be guaranteed that that alternative is the social output?

Below we give a formal definition of the rule that always outputs the Con-

dorcet alternative and follow with some inherent properties of this function.

Definition 2.2 The Condorcet rule, or majority rule, is the social choice func-

1There is a notion of a weak Condorcet alternative, x, where for any other alternative y,

|Nxy(P )| ≥ |Nyx(P )|. There can be more than one weak Condorcet alternative for a profile

of linear orders. See [9] for an interesting comparison of strong Condorcet winners and weak

Condorcet winners.
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tion fC : LC → A defined as follows: for any P ∈ LC, fC(P ) = x where x is the

Condorcet alternative with respect to P .

Definition 2.3 A social choice function f : LC → A has full range, or is said

to be surjective, if for every alternative x ∈ A there exists a profile P such that

f(P ) = x.

Definition 2.4 A social choice function f satisfies anonymity, or is said to be

anonymous, if for every permutation σ : N → N and for every profile P =

(P1, . . . , Pn), f(Pσ) = f(P ) where

Pσ = (Pσ(1), . . . , Pσ(n)).

Definition 2.5 A social choice function f satisfies neutrality, or f is said to be

neutral, if for any profile P = (P1, . . . , Pn) and for any permutation ϕ : A → A,

f(ϕ(P )) = ϕ(f(P )) where

ϕ(P ) = (ϕ(P1), . . . , ϕ(Pn)).

The notation ϕ(Pi) is a linear order formed by applying the permutation ϕ to the

alternatives listed in Pi.

These two aforementioned properties can be best delineated by noting that anonymity

requires that the social output does not depend on the names of the voters whereas

neutrality requires that the social output not depend on the names of the alterna-

tives.

Below we present two examples to help illustrate these properties.

Example 2.1 Let A = {a, b, c, d} and n = 4. Consider the two social choice

functions defined below.

f(P ) =

 x if |{i ∈ N : r1(Pi) = x}| ≥ 3

a otherwise

9



g(P ) =

 x if |{i ∈ N : r1(Pi) = x}| ≥ 3

r1(P1) otherwise

Notice how the definition of f relies on a specific alternative but not a specific

voter’s preference, hence f is is not neutral but it is anonymous. On the other

hand, g relies on a specific voter’s preference but not on a specific alternative, hence

g is not anonymous but is neutral.

To make clear some of the notation we have introduced, consider Example

2.2. In this example, we use the idea of a transposition. Let x, y ∈ A. A transpos-

tion, ϕ = (xy) is a permutation that exchanges the two alternatives x and y while

all other alternatives remain fixed.

Example 2.2 Let P = (P1, . . . , Pn) be a profile as shown below.

P =


a a b c

c b a a

b c c b


To make clear the notation rk(Pi) consider here k = 2 and i = 1 so r2(P1) = c.

That is, the second ranked alternative of the first voter is c. We also want to note

the following observation. For any permutation ϕ : A → A, for any linear order

ℓ ∈ L(A), and for any j ∈ {1, 2, . . . ,m},

rj(ϕ(ℓ)) = ϕ(rj(ℓ))

We can make this more clear by letting ϕ = (ac) then the permuted profile is shown

below.

ϕ(P ) =


c c b a

a b c c

b a a b


Now we can see that r2(ϕ(P1)) = a = ϕ(r2(P1)) = ϕ(c).

10



To give a formal definition of what it means for a social choice function to

be strategy-proof, we must first introduce the following notation. Given a profile

P = (P1, P2, . . . , Pn) and an individual i ∈ N , if Pi is replaced by P ′
i in the profile

P , then the resulting profile is denoted by (P ′
i , P−i). In addition, (Pi, P−i) is another

way of writing the profile P .

Definition 2.6 A social choice function f : LC → A is said to be manipulable

at a profile P = (P1, P2, . . . , Pn) by individual i if there exists P ′
i ∈ L(A) such that

(P ′
i , P−i) ∈ LC and f(P ′

i , P−i) Pi f(Pi, P−i).

Definition 2.7 A social choice function f is said to be strategy-proof if it is not

manipulable at any profile P belonging to the domain LC.

An example of a strategy-proof social choice function is given in the next

section.

With these preliminaries in mind, we now turn our focus to characterizing

majority rule on the Condorcet Domain.

2.2 Characterizations of Majority Rule on LC

Our work to characterize majority rule stems from results due to Campbell

and Kelly [4], [6]. They established the following:

Theorem 2.1 (Campbell and Kelly, 2003) Assume m ≥ 3 is odd and n ≥ 3.

If f : LC → A is strategy-proof, non-dictatorial, and surjective, then f is majority

rule, fC.

The assumption that n is odd necessary as exhibited by the following example

which satisfies the same three properties stated in Campbell and Kelly’s theorem -

i.e. it is strategy-proof, non-dictatorial, and surjective - yet is distinct from majority

rule. This example is due to Merrill [14].

11



Example 2.3 Let n = 4 and let A = {x, y, z}. We define the social choice function

g : LC → A as follows:

g(P ) =


r1(P1) if fC(P ) = x

r1(P2) if fC(P ) = y

r1(P3) if fC(P ) = z

It is not hard to see that this example is non-dictatorial and satisfies unanimity.

Since n is even, no single voter can change their preference and change the Con-

dorcet alternative. So no single voter can manipulate g. Hence g is strategy-proof.

Moreover, g is not neutral. Consider the profile P = (P1, P2, P3, P4) below:

P =


y x x z

x y z x

z z y y


The Condorcet alternative is x, thus g(P ) = r1(P1) = y. Let ϕ = (x z) and consider

the resulting profile ϕ(P ).

ϕ(P ) =


y z z x

z y x z

x x y y


The Condorcet alternative of ϕ(P ) is z, thus g(ϕ(P )) = r1(P3) = z but neutrality

would give that g(ϕ(P )) = ϕ(g(P )) = ϕ(y) = y.

In addition to this example, Merrill presented another function that is strategy-proof

and non-dictatorial yet is distinct from majority rule [14]. This second example fails

anonymity.

As Campbell and Kelly sought to extend their characterization to include

the case where the number of voters is even, they combined their previous work to

that of Merrill and arrived at the following characterization of majority rule [5].

12



Theorem 2.2 (Campbell and Kelly, 2015) (a) For m ≥ 3 and n = 4 or n =

4k + 2 where k ≥ 0 , if f is an anonymous, neutral, and strategy-proof social

choice function on LC, then f = fC.

(b) For m ≥ 4 and n = 4k where k ≥ 1, if f is an anonymous, neutral, and

strategy-proof social choice function on LC, then f = fC.

The case where m = 3 and n is a multiple of four is missing from this

work. This missing case was addressed by Powers and Wells in their recent paper.

The work to get this complete characterization of majority rule comes from first

establishing the following results [20].

Theorem 2.3 (Powers and Wells, 2023) Assume that m ≥ 3 and n ≥ 3. A

social choice function f : LC → A is strategy-proof, non-dictatorial, neutral, and

satisfies unanimity if and only if f is majority rule, i.e., f = fC.

Lemma 2.1 (Powers and Wells, 2023) Assume f : LC → A is strategy-proof

and neutral. If P = (P1, . . . , Pn) ∈ LC satisfies x Pi z for each i = 1, . . . , n and x

is not the Condorcet alternative, then f(P ) ̸= z.

Theorem 2.3 combined with the Lemma 2.1 allows Powers and Wells to arrive

at a proof of the missing case from Theorem 2.2 and thus fully characterize majority

rule as the only anonymous, neutral, and strategy-proof function on LC . Formally

we have the following characterization [20].

Theorem 2.4 (Powers and Wells 2023) For any m ≥ 3 and for any n ≥ 3, a

voting rule f : LC → A is strategy-proof, neutral, and anonymous if and only if

f = fC.

Restricting m ≥ 3 in Theorem 2.4 is necessary. If m = 2 and n is even

then the rule that selects the Condorcet loser (i.e. the alternative that is not the
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Condorcet alternative) is also strategy-proof, neutral, and anonymous as noted in

[5]. We will later address the two alternative case more thoroughly.

2.3 Strategy-Proof and Neutral Social Choice Functions

In the previous section we presented results that showed that majority rule

is the only strategy-proof, neutral, and anonymous social choice function on the

Condorcet domain, LC . We now consider what social choice functions on the Con-

dorcet domain will look like if we drop the condition of anonymity and by doing

so arrive at a full characterization of strategy-proof and neutral rules on the Con-

dorcet domain (see Theorem 2.7). This problem was pointed out by a referee for

the Powers and Wells paper [20].

The characterizations in this section are delineated by the parity of n. We

know from the work of Campbell and Kelly that when n is odd, if a social choice

function is strategy-proof and surjective that it must satisfy unanimity [4]. By

Theorem 2.3, if we wish to satisfy this property as well as strategy-proofness and

neutrality, we would necessarily have a social choice function that is either a dicta-

torship or is majority rule. Before moving into the definitions and theorems of this

section, we will show that if our function violates unanimity, the output will never

be the Condorcet alternative.

For the proof of this lemma we need some notation. Let R ∈ L(A \ {x})N .

Then we define the profile Rx ∈ LC as the profile where we take each preference

Ri ∈ R and add x to the top, keeping the rest of Ri the same. So this profile looks

like this

Rx =

 x, x, . . . , x

R1, R2, . . . , Rn


Additionally we define below the notion of a standard sequence. For any two profiles

P = (P1, . . . , Pn) and Q = (Q1, . . . , Qn) in LC we define the standard sequence
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{P t : t = 0, 1, 2, . . . , n} of profiles from P to Q as P 0 = P and for t > 0, P t is the

profile P t
i = P t−1

i for all i ̸= t and P t
t = Qt. This is illustrated more clearly below.

P 0 = (P1, P2, P3, . . . , Pn−1, Pn)

P 1 = (Q1, P2, P3, . . . , Pn−1, Pn)

P 2 = (Q1, Q2, P3, . . . , Pn−1, Pn)

...

P n−1 = (Q1, Q2, Q3, . . . , Qn−1, Pn)

P n = (Q1, Q2, Q3, . . . , Qn−1, Qn)

Lemma 2.2 For any m ≥ 3 and for n an even integer, if f : LC → A is strategy-

proof, neutral, and violates unanimity, then f(P ) ̸= fC(P ) for all P ∈ LC.

Proof :

Assume that there exists a profile P = (P1, . . . , Pn) belonging to LC such

that f(P ) = fc(P ) = x. Let Rx = (Rx
1 , . . . , R

x
n) be the profile derived from P such

that r1(R
x
i ) = x and Rx

i |A\{x} = Pi|A\{x} for i = 1, . . . , n. Let {P t : t = 0, . . . , n} be

the standard sequence of profiles starting with P and ending with Rx. So P 0 = P

and P n = Rx. Note that fc(P
t) = x for t = 0, . . . , n and so all these profiles belong

to the Condorcet domain LC . Moreover, by strategy-proofness, f(P t) = x implies

f(P t+1) = x for t = 0, . . . , n− 1. Therefore, f(Rx) = x.

Since f violates unanimity, there exists a profile Q = (Q1, . . . , Qn) such

that r1(Qi) = y for i = 1, . . . , n and f(Q) ̸= y. It is possible that y = x. If

y ̸= x, then apply the permutation ϕ = (xy) to Q to get the profile ϕ(Q) such

that r1(ϕ(Qi)) = x for i = 1, . . . , n. Since f(Q) ̸= y it follows from neutrality that

f(ϕ(Q)) ̸= x. Now let {Rt : t = 0, . . . , n} be the standard sequence of profiles from

Rx to ϕ(Q) if y ̸= x or from Rx to Q if y = x. Note that {Rt : t = 0, . . . , n}

is a subset of LC with the strict Condorcet alternative always equaling x. Now
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R0 = Rx and so f(R0) = f(Rx) = x. By strategy-proofness, f(Rt) = x implies

f(Rt+1) = x for t = 0, . . . , n− 1. Thus, f(Rn) = x. If y ̸= x, then Rn = ϕ(Q) and

so f(Rn) = f(ϕ(Q)) ̸= x. If y = x, then Rn = Q and f(Rn) = f(Q) ̸= x. This

contradiction completes the proof of the lemma.

□

The following definition is a strange example of a voting rule, but it shows

how unanimity can always be violated.

Definition 2.8 We will say that g : LC → A is a majority avoiding dictator-

ship (MAD) if there exists j ∈ N such that g(P ) = r1(Pj|A−fC(P )).

By Pj|A−fC(P ) we mean the preference of voter j where the linear order is

now of m− 1 alternatives with the Condorcet alternative deleted from the ranking

and, if necessary, every alternative ranked below fC(P ) shifted up one place in the

linear order.

To understand Definition 2.8 more clearly, consider the following example.

Example 2.4 Let m ≥ 3 and n = 2k ≥ 4. Define g : LC → A by

g(P ) = r1
(
P1|A−fC(P )

)
=

 r2(P1) if fC(P ) = r1(P1)

r1(P1) if fC(P ) ̸= r1(P1)

This rule is neutral and strategy-proof. Below we prove that this is indeed true.

Let P ∈ LC and let ϕ be a permutation on A. Since majority rule is neutral,

fC(ϕ(P )) = ϕ(fC(P )). Then by the definition of g we have

g(ϕ(P )) =

 r2(ϕ(P1)) if fC(ϕ(P )) = r1(ϕ(P1))

r1(ϕ(P1)) if fC(ϕ(P )) ̸= r1(ϕ(P1))

Then by our observation in Example 2.2 we see r2(ϕ(P1)) = ϕ(r2(P1)) and r1(ϕ(P1)) =

ϕ(r1(P1)). Also

fC(ϕ(P )) = r1(ϕ(P1)) ⇐⇒ ϕ(fC(P )) = ϕ(r1(P1)) ⇐⇒ fC(P ) = r1(P1)
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since ϕ is a one-to-one function. Thus we can re-write g(ϕ(P )) as

g(ϕ(P )) =

 ϕ(r2(P1)) if fC(P ) = r1(P1)

ϕ(r1(P1)) if fC(P ) ̸= r1(P1)
= ϕ(g(P ))

Now to see that g is strategy-proof, suppose P ∈ LC and P ′
i ∈ L(A) with

i ∈ {1, 2, . . . , n} satisfies Q = (P ′
i , P−i) ∈ LC. Since n is even and P,Q ∈ LC,

fC(P ) = fC(Q). If i ̸= 1, then Q1 = P1 thus it follows that g(P ) = g(Q). But if i =

1 we have two possibilities. First, if g(P ) = r2(P1) then fC(P ) = r1(P1) = fC(Q).

If g(Q) ̸= fC(Q) then g(Q) = g(P ) = r2(P1) or g(P )P1g(Q). In either case, no

manipulation occurs. Second, if g(P ) = r1(P1) then either g(Q) = g(P ) = r1(P1)

or g(P )P1g(Q). Thus again, no manipulation occurs. Additionally g is clearly not

anonymous nor does it satisfy unanimity.

Definition 2.8 allows us to arrive at the following characterization.

Theorem 2.5 For any m ≥ 4 and for any even integer n ≥ 4, f : LC → A is

strategy-proof, neutral, and violates unanimity if and only if f is a majority avoiding

dictatorship.

Proof :

Let f : LC → A be strategy-proof, neutral, and violate unanimity. Suppose

P = (P1, . . . , Pn) ∈ LC . By Lemma 2.2, f(P ) ̸= fC(P ) = x.

Define fx : L(A \ {x})N → A \ {x} by

fx(R1, R2, . . . , Rn) = f(Rx)

Clearly fx satisfies strategy-proofness as f is assumed to be strategy-proof. Also, fx

is surjective as f satisfies neutrality. Since |A\{x}| ≥ 3, it follows from the Gibbard-

Satterthwaite Theorem that fx is a dictatorship. Say j ∈ N is the dictator. Thus

fx(R1, R2, . . . , Rn) = r1(Rj).
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Let P x be the profile obtained from P by moving x up to the top of every

ordering. Then f(P x) = fx(P
′
1, P

′
2, . . . , P

′
n) = r1(P

′
j) ̸= x where P ′

i = Pi|A\{x}.

By strategy-proofness, we can move x down to its original position in Pi for each

i and stay in the domain, LC , and not change the output of f . Thus we have

f(P ) = r1(Pj|A−fC(P )). Since f is a neutral function, the choice of fC(P ) = x is

arbitrary as we can apply a permutation ϕ : A → A to conclude this holds for any

y ∈ A when y = fC(P ).

Assume that f is a majority avoiding dictatorship with j ∈ N the dictator.

First f clearly violates unanimity since for all P ∈ LC such that r1(Pi) = x for

i = 1, . . . , n, fC(P ) = x. Then by definition, f(P ) = r1(Pj|A−fC(P )) ̸= x.

Now let P ∈ LC and let ϕ : A → A be a permutation. Since majority rule

is neutral we have that fC(ϕ(P )) = ϕ(fC(P )). By our observation in Example 2.2

and the fact that ϕ is a one-to-one function we have

r1(ϕ(Pj)|A−fC(ϕ(P ))) = ϕ(r1(Pj)|A−fC(ϕ(P )))

Then

f(ϕ(P )) = r1(ϕ(Pj)|A−fC(ϕ(P )))

= ϕ(r1(Pj)|A−fC(ϕ(P )))

= ϕ(f(P ))

Thus f is neutral.

Finally we show that f is strategy-proof. Suppose P ∈ LC and P ′
i ∈ L(A)

with i ∈ {1, 2, . . . , n} satisfies, Q = (P ′
i , P−i) ∈ LC . We have that fC(P ) = fC(Q)

since P,Q ∈ LC and n is even. If i ̸= j, then Qj = Pj and it follows that

f(Q) = f(P ). If i = j we have two possibilities. If f(P ) = r2(Pj), then fC(P ) =

r1(Pj) by definition so fC(Q) = fC(P ) = r1(Pj). We know f(Q) ̸= fC(Q) so
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f(Q) = f(P ) or f(Q) is some lower ranked alternative for voter j, i.e. f(P ) Pj f(Q).

Otherwise, f(P ) = r1(Pj) and again f(Q) = f(P ) or f(P ) Pj f(Q). In any case,

no manipulation occurs therefore f is strategy-proof.

□

The above characterization holds for four or more alternatives. To present

the case for three alternatives we introduce the idea of voting by committees on a

set of two alternatives. The definition below is due to Larsson and Svensson [13].2

Definition 2.9 Let W ⊆ 2N be a nonempty class of nonempty subsets of N . W is

a committee if S ∈ W and S ⊆ T ⊆ N imply that T ∈ W . Given a domain, D, and

A = {a1, a2}, a social-choice function f : D → A is called voting by committees if

for all P ∈ D

f(P ) = a1 if and only if {i ∈ N : a1 Pi a2} ∈ W

With this definition in mind, Larsson and Svensson characterized voting by com-

mittees as the only strategy-proof and surjective social-choice function when there

are two alternatives. We define our own concept of a committee based rule below

for a larger alternative set.

Definition 2.10 If m = 3 then a voting rule f : LC → A will be called a majority

avoiding committee rule if there exists a subset W of 2N satisfying

i) for any I ⊆ N , |W ∩ {I,N \ I}| = 1 (⋄)

ii) for any I ⊆ J ⊆ N , I ∈ W implies J ∈ W (⋆)

such that for any profile P ∈ LC, f(P ) = x if fC(P ) ̸= x and Nxy(P ) ∈ W where

y ∈ A \ {fC(P ), x}. To emphasize the dependence of W , we denote f by fW . Also

we will use the abbreviation (MAC) for majority avoiding committee rule. We will

refer to these two properties again as property ⋄ and property ⋆.

2This is also called a simple game with sets in W called winning coalitions.
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Below is an example of a majority avoiding committee rule.

Example 2.5 For this example, A = {x, y, z}, N = {1, 2, 3, 4}, and

W = {I ⊆ N : |I| ≥ 3 or |I| = 2 and I ⊆ {1, 2, 3}}

It is easy to check that W satisfies property ⋄ and ⋆. If

P =


x x y z

y z x x

z y z y


then fC(P ) = x. Since Nyz(P ) = {1, 3} ∈ W it follows that fW (P ) = y. It turns

out that fW is strategy-proof. In fact, no single individual can always force their

best or second best choice to be the social outcome.

Theorem 2.6 If m = 3 and n ≥ 4 is even, then f : LC → A is strategy-proof,

neutral, and violates unanimity if and only if f is a majority avoiding committee

rule.

Proof :

Let f : LC → A be strategy-proof, neutral, and violates unanimity. Since

m = 3 we may assume that A = {x, a, b}. By Lemma 2.2, f(P ) ̸= fC(P ) for every

P ∈ LC .

Define fx : L({a, b})N → {a, b} by

fx(R1, R2, . . . , Rn) = f(Rx)

Clearly fx is strategy-proof and neutral as f is assumed to be. In particular, fx

must be surjective. Then applying Theorem 2 in Larsson and Svensson’s work [13],

fx must be voting by committees. This means that if

W = {Nab(R) : R ∈ L({a, b})N and fx(R) = a}
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then

fx(R) =

 a if Nab(R) ∈ W

b if Nab(R) /∈ W

Thus W satisfies property ⋆.

Let I ⊆ N and consider the following two cases. First, if I ∈ W then there ex-

ists P ∈ L({a, b})N such that Nab(P ) = I and fx(P ) = a. Define a transposition ϕ :

{a, b} → {a, b} by ϕ = (ab). Then neutrality implies that fx(ϕ(P )) = ϕ(fx(P )) = b

so Nϕ(a)ϕ(b)(ϕ(P )) = Nba(ϕ(P )) = I and Nϕ(b)ϕ(a)(ϕ(P )) = Nab(ϕ(P )) = N \ I.

Then since fx(ϕ(P )) = b, by definition of W , N \ I /∈ W . Second, if I /∈ W

then there exists P ∈ LC such that Nab(P ) = I and fx(P ) = b. For the same ϕ,

neutrality implies fx(ϕ(P )) = ϕ(fx(P )) = a and Nϕ(a)ϕ(b)(ϕ(P )) = Nba(ϕ(P )) = I

and Nϕ(b)ϕ(a)(ϕ(P )) = Nab(ϕ(P )) = N \ I. Thus by definition of W , N \ I ∈ W .

Therefore W satisfies property ⋄.

Suppose Q ∈ LC is such that fC(Q) = x. By Lemma 2.2, f(Q) ̸= fc(Q).

By strategy-proofness, f(Q) ̸= x implies f(Qx) ̸= x. Furthermore, f(Q) = f(Qx).

Beginning with the profile Qx, one by one move x down in each Qx
i to where it is in

Qi while maintaining the relative rankings of a and b. Note that at each step the

output is never fC(Q) = x. By strategy-proofness, the output must remain f(Qx).

Suppose at some step the output changes to some y ∈ A \ {f(Qx)}. If yQ′
jf(Q

x)

then a manipulation has occurred by voter j. If on the other hand f(Qx)R′
jy,

by changing Q′
j back to Qx

j the output remains f(Qx) and again a manipulation

occurred by voter j. Thus f(Q) = f(Qx).

Consequently, for A = {x, a, b}, if Dx = {P ∈ LC : fC(P ) = x}. then for

any Q ∈ Dx

f(Q) = f(Qx) =

 a if Nab(Q) ∈ W

b if Nab(Q) /∈ W

Now suppose U ∈ LC satisfies fC(U) ̸= x. Let ϕ be a permutation on A such
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that ϕ(fC(U)) = x. Since majority rule is neutral, fC(ϕ(U)) = x. So ϕ(U) ∈ Dx.

Therefore

f(ϕ(U)) =

 a if Nab(ϕ(U)) ∈ W

b if Nab(ϕ(U)) /∈ W

Using the fact that f is neutral we have

f(U) = ϕ−1f(ϕ(U)) =

 ϕ−1(a) if Nab(ϕ(U)) ∈ W

ϕ−1(b) if Nab(ϕ(U)) /∈ W

=

 ϕ−1(a) if Nϕ−1(a)ϕ−1(b)(U) ∈ W

ϕ−1(b) if Nϕ−1(a)ϕ−1(b)(U) /∈ W

Thus we have for any profile P ∈ LC , f(P ) = w if fC(P ) ̸= w and Nwy ∈ W where

y ∈ A \ {w, fC(P )}.

Conversely suppose that W satisfies property ⋄ and property ⋆ and that

f(P ) = fW (P |A−fC(P )) for P ∈ LC . We will first show that f violates unanimity.

Let P = (P1, . . . , Pn) ∈ LC such that r1(Pi) = x for all i = 1, . . . , n. Then clearly

fC(P ) = x and by assumption f(P ) = fW (P |A−fC(P )) ̸= x. Thus f clearly violates

unanimity.

Now let us show that fW is neutral. By the definition of fW , fW (P ) ̸= fC(P )

for all P ∈ LC . Define a transposition ϕ : A → A. Suppose ϕ = (xy). Then

fC(ϕ(P )) = ϕ(fC(P )) = fC(P ) since ϕ fixes fC(P ). Notice that Nyx(ϕ(P )) =

Nxy(P ) as ϕ(x) = y thus Nyx(ϕ(P )) ∈ W and fW (ϕ(P )) = ϕ(fW (P )) = y. Now

suppose ϕ = (xz) for z = fC(P ). Then fC(ϕ(P )) = ϕ(fC(P )) = x so fW (ϕ(P )) ̸= x.

Notice again that Nzy(ϕ(P )) = Nxy(P ) since ϕ(x) = z. Thus Nzy(ϕ(P )) ∈ W and

fW (ϕ(P )) = ϕ(fW (P )) = z. Finally suppose that ϕ = (zy). Since fC(ϕ(P )) = y,

fW (ϕ(P )) ̸= y. Again we see that Nxz(ϕ(P )) = Nxy(P ) ∈ W thus fW (ϕ(P )) =

ϕ(fW (P )) = x. Therefore we conclude that fW is neutral when ϕ is a transposition.

But since every permutation can be written as a composition of transpositions, we
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can see by looking at the transpositions one at a time that at each step the function

remains neutral. Therefore fW satisfies neutrality.

Using property ⋆ we can conclude that fW must be strategy proof. Suppose

that P ∈ LC and P ′
i ∈ L(A) with i ∈ {1, . . . , n} satisfies Q = (P ′

i , P−i) ∈ LC . We

have that fC(P ) = fC(Q) since P,Q ∈ LC and n is even, thus fW (Q) ∈ {fW (P ), y}

for y ∈ A \ {fW (P ), fC(P )}. Suppose fW (P ) Pi y and y P ′
i fW (P ). Then either

fW (Q) = fW (P ) or fW (Q) = y, but no manipulation occurs. Suppose y Pi fW (P )

and fW (P ) P ′
i y. Let I = {i ∈ N : fW (P ) Pi y} and J = {i ∈ N : fw(P ) P ′

i y}.

Hence I ⊆ J ⊆ N Then since W satisfies property ⋆, fW (Q) = fW (P ). Therefore

fW is strategy-proof.

□

One way to summarize the results given in this section is by rephrasing them

into the following significant theorem. This gives a complete characterization of

strategy-proof and neutral social choice functions on the Condorcet domain.

Theorem 2.7 Assume that m ≥ 3 and n ≥ 3. A social choice function f : LC → A

is strategy-proof and neutral if and only if one of the following holds:

i) f satisfies unanimity and f is either a dictatorship or majority rule;

ii) f does not satisfy unanimity, m ≥ 4, n is even, and f is a MAD;

iii) f does not satisfy unanimity, m = 3, n is even, and f is a MAC rule.

2.4 Two Alternatives

Thus far we have focused on social choice functions that are defined only

when the size of the alternative set is three or greater. We now turn our attention

to the case where m = 2.
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Proposition 2.1 A social choice function f : Lc → A, where A = {a1, a2}, is

strategy-proof, neutral, and anonymous if and only if

(1) n is odd and f is majority rule

(2) n is even and there exists an integer k∗ ∈ [n
2
+ 1, n+ 1] such that

fk∗(P ) =

 a1 if |Na1a2(P )| ∈ (n− k∗, n
2
− 1] ∪ [k∗, n+ 1]

a2 otherwise

In Proposition 2.1, if k∗ = n
2
+ 1, then f = fC . If k∗ = n + 1, then f is the

rule that selects the Condorcet loser (recall this is the alternative that is not the

Condorcet alternative).

Before presenting the long proof for Proposition 2.1, we will illustrate the

type of rule described in item (2) with the following example.

Example 2.6 Let n = 10 so k∗ ∈ [6, 11]. Choose k∗ = 8. If |Na1a2(P )| ∈ (2, 4] ∪

[8, 11] then f(P ) = a1. Let

P =

a1 a1 a1 a2 a2 a2 a2 a2 a2 a2

a2 a2 a2 a1 a1 a1 a1 a1 a1 a1


Notice how no voter has any motivation to lie. If, for example, P changed to

P ′ = (P ′
3, P−3) where r1(P

′
3) = a1, f(P ′)��P3f(P ) hence no manipulation occurs.

Furthermore, any voter with r1(Pi) = a1 already has their most preferred social

output.

Example 2.6 is a social choice function that satisfies the three conditions of

strategy-proofness, neutrality, and anonymity but is distinct from majority rule.

This illustrates why the characterization in Proposition 2.1 is dependent on the

parity of n.
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Proof :

For (1) we will first show that when m = 2 the strategy-proof condition is

equivalent to monotonicity 3 .

Assume f is strategy-proof and let P ∈ LC such that f(P ) = a1. Let

Q ∈ LC such that Na1a2(P ) ⊆ Na1a2(Q). Beginning with the profile P , one by one,

move a1 up to the top in any Pj such that r1(Pj) = a2 but r1(Qj) = a1. Since n is

odd, at each step we know the resulting profile will remain in our domain. Then by

strategy-proofness of f , at each step the output must remain a1. Hence, upon the

final change we can conclude f(Q) = a1. The labeling of the alternatives in this

step of the proof was arbitrary, hence an analogous argument can be made where

the roles of a1 and a2 are interchanged. Thus f satisfies monotonicity.

Assume f satisfies monotonicity. Suppose by way of contradiction that f

is not strategy-proof. Then let P, P ′ ∈ LC be such that P ′ = (P ′
j , P−j) for some

j ∈ N and f(P ′) Pj f(P ). Since f(P ′) Pj f(P ), r1(Pj) ̸= f(P ) but since m = 2,

r1(P
′
j) = f(P ). Thus f(P ) is only ranked higher in P ′ contradicting that f satisfies

monotonicity. Thus f must be strategy-proof.

Now we wish to show that a social choice function f : LC → A is neutral,

anonymous, and satisfies monotonicity if and only if n is odd and f is majority rule,

i.e. f = fC .

Assume that there exits a function f : LC → A that is neutral, anonymous,

and satisfies monotonicity yet f ̸= fC . Then there exists a profile R such that

f(R) ̸= fc(R). Since f and fC satisfy neutrality, we can assume f(R) = a1 and

fC(R) = a2. Now fC(R) = a2 implies that |Na1a2(R)| < |Na2a1(R)|. Choose a

profile R′ ∈ LC such that |Na1a2(R
′)| = |Na2a1(R)| and Na1a2(R) ⊆ Na1a2(R

′).

3A social choice function f : LC → A satisfies monotonicity if, for all P ∈ LC such that

f(P ) = x, if P ′ ∈ LC is another profile such that xP ′
iy whenever xPiy for each i ∈ {1, . . . , n} and

every y ∈ A \ x, then f(P ′) = x as well.
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Since |Na1a2(R)| < |Na1a2(R
′)|, monotonicity implies f(R) = f(R′) = a1.

Let σ : N → N map Na1a2(R
′) onto Na2a1(R). Observe that the profile R′

σ

can also be formed by taking the profile R and applying the transposition ϕ : A → A

given by ϕ = (a1a2). Then using anonymity and neutrality we get

a1 = f(R) = f(R′) = f(R′
σ) = f(ϕ(R)) = ϕ(f(R)) = a2

Which is impossible, so f = fC .

For (2), assume g : Lc → A is a strategy-proof, neutral, and anonymous

voting rule. We wish to show that g = fk∗ for some integer k∗ ∈ [n
2
+ 1, n+ 1].

Let k∗ = min{k ∈ [n
2
+ 1, n] : g(P ′) = a1, P ∈ Lc, and |Na1a2(P

′)| ≥ n
2
+ 1}.

First, assume there does not exist a profile which realizes this minimal k∗, i.e. for

all P ∗ ∈ Lc such that g(P ∗) = a1, Na1a2(P
∗) ≤ n

2
− 1. Let k∗ = n + 1 so we can

write fk∗ = fn+1. Now for any Q ∈ Lc with
n
2
+ 1 ≤ |Na1a2(Q)| < n + 1 it is clear

by assumption that g(Q) = a2. Therefore g(Q) = fn+1(Q) in this case. Now let

Z ∈ Lc such that 0 ≤ |Na1a2(Z)| ≤ n
2
− 1. We see that g(Z) = a1 by neutrality

(since, for ϕ = (a1a2), ϕ(Z) would be a profile like Q above for which g(Q) = a2).

Z is such that n − k∗ < |Na1a2(Z)| ≤ n
2
− 1 for k∗ = n + 1 thus by definition

g(Z) = fk∗(Z).

Now let P ∈ Lc be a profile that satisfies this minimal k∗. Hence g(P ) = a1.

Let R ∈ Lc be a profile such that Na1a2(P ) ⊂ Na1a2(R). Since g is anonymous, we

can assume the i ∈ Na1a2(P ) satisfy i = 1, . . . , |Na1a2(P )|. We can do a similar

rearrangement of the profile R for i = 1, . . . , |Na1a2(R)|. Then one at a time, move

a1 up in each Pi such that |Na1a2(P )| < i ≤ |Na1a2(R)|. Since k∗ ≥ n
2
+1 we stay in

the domain LC at each step. Also since g is strategy-proof, at each step the output

must remain a1. Upon the final change we can conclude that g(R) = a1. Hence

g(R) = fk∗(R) for all profiles such that |Na1a2(R)| ≥ k∗.

Suppose R′ ∈ LC satisfies |Na1a2(R
′)| ≤ n − k∗. Let ϕ = (a1a2) and notice
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that ϕ(R′) ∈ LC . Since |Na1a2(ϕ(R
′))| ≥ k∗, by the previous arguement, g(ϕ(R′))| =

a1. Since g satisfies neutrality, g(R′) = fk∗(R
′) = a2.

Next consider a profile P ′ ∈ LC with g(P ′) = a1 and |Na1a2(P
′)|��≥k∗. We

know from above that n − k∗ < |Na1a2(P
′)|. Then |Na1a2(P )|��≥k∗, the minimality

of k∗, and P ′ ∈ LC together imply that |Na1a2(P )| ≤ n
2
− 1. Finally we can

conclude that for P ′′ ∈ LC with g(P ′′) = a2 and |Na1a2(P
′′)|��≤n− k∗ that n

2
+ 1 ≤

|Na1a2(P
′′)| < k∗ since k∗ is minimal and P ′′ ∈ LC .

Now assume fk∗ is a function as defined in the proposition. We wish to show

that fk∗ is anonymous, neutral, and strategy-proof. Anonymity is clear as fk∗(P )

is determined by |Na1a2(P )| and for any permutation σ : N → N , |Na1a2(P )| =

|Na1a2(Pσ)|. Therefore f(P ) = fk∗(Pσ).

To see fk∗ is neutral, suppose P ∈ LC is such that fk∗(P ) = a1 and let ϕ =

(a1a2). We have two possible cases for |Na1a2(P )|. First assume |Na1a2(P )| ≥ k∗.

Note that |Na2a1(P )| = n− |Na1a2(P )| and |Na2a1(P )| = |Na1a2(ϕ(P ))|. Then

|Na1a2(ϕ(P ))| = n− |Na1a2(P )|

≤ n− k∗

So by the definition of fk∗ , fk∗(ϕ(P )) = a2.

For the second case assume n− k∗ < |Na1a2(P )| ≤ n
2
− 1. Then multiplying

through this inequality by −1, we have

−n+ k∗ > −|Na1a2(P )| ≥ −n

2
+ 1

Then adding n to the above we have k∗ > n− |Na1a2(P )| ≥ n
2
+1. As noted above,

n − |Na1a2(P )| = |Na1a2(ϕ(P ))| giving k∗ > |Na1a2(ϕ(P ))| ≥ n
2
+ 1. This implies

fk∗(ϕ(P )) = a2.

Now suppose P ∈ LC is such that fk∗(P ) = a2. Again we have two cases two

consider. First assume n
2
+ 1 ≤ |Na1a2(P )| < k∗. Then multiplying this inequality
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through by −1 and adding n to all parts gives

n

2
− 1 ≥ n− |Na1a2(P )| > n− k∗

Thus fk∗(ϕ(P )) = a1 since n− |Na1a2(P )| = |Na1a2(ϕ(P ))|.

For the second case assume |Na1a2(P )| ≤ n − k∗. Then |Na2a1(P )| = n −

|Na1a2(P )| and |Na2a1(P )| = |Na1a2(ϕ(P ))| gives that |Na1a2(ϕ(P ))| ≥ k∗ which

implies fk∗(ϕ(P )) = a1.

To see that fk∗ is strategy-proof, suppose that P = (P1, . . . , Pn) and i ∈ N

such that fk∗(P ) = ϕ(r1(Pi)) and Q = (ϕ(Pi), P−i) ∈ LC . Consider the following

cases.

First suppose fk∗(P ) = a1 and r1(Pi) = a2. If |Na1a2(P )| ≥ k∗ then

|Na1a2(Q)| = |Na1a2(P )|+1 ≥ k∗ so clearly f(Q) = a1. If n−k∗ < |Na1a2(P )| ≤ n
2
−1.

Adding 1 to the inequality gives n − k∗ + 1 < |Na1a2(P )| + 1 ≤ n
2
, which implies

|Na1a2(Q)| ≤ n
2
. But by definition of our domain, we can conclude |Na1a2(Q)| ≤ n

2
−1

which gives fk∗(Q) = a1.

Second, suppose fk∗(P ) = a2 and r1(Pi) = a1. Using neutrality we have that

fk∗(ϕ(P )) = a1 and r1(ϕ(Pi)) = a2. Let R = ϕ(P ) and Ri = ϕ(Pi). Then by case

1, for Q′ = (ϕ(Ri), R−i), fk∗(Q
′) = a1. Then a second application of neutrality

gives fk∗(ϕ(Q
′)) = a2 and ϕ(Q) = ϕ((ϕ(Ri), R−i)) = (ϕ(Pi), P−i). Therefore f is

strategy-proof.

□

Let us now consider again what our functions look like if we drop the con-

dition of anonymity but still want to satisfy strategy-proofness and neutrality. The

results below are given on the domain, LC , explicitly defined below for the case of

m = 2.

LC =
{
P ∈ L({a1, a2})N : |Na1a2(P )| ≠ n

2

}
These results are an adaptation of the work of Larsson and Svensson on voting by
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committees for two alternatives but we replace the condition of surjectivity with

the more strict condition of neutrality [13].

Lemma 2.3 Let A = {a1, a2}. Given a voting rule f : LC → A, let

Wf = {Na1a2(P ) : P ∈ LC and f(P ) = a1}.

Then f is neutral if and only if Wf satisfies for all I ⊆ N , |Wf ∩ {I,N \ I}| = 1.

Proof :

Suppose f is neutral and let ϕ be the transposition given by ϕ = (a1a2).

Let I ⊆ N and consider the following two cases. First, if I ∈ Wf then there exists

P ∈ LC such that Na1a2(P ) = I and f(P ) = a1. Then neutrality implies that

f(ϕ(P )) = a2 so

Nϕ(a1)ϕ(a2)(ϕ(P )) = Na2a1(ϕ(P )) = I

and

Nϕ(a2)ϕ(a1)(ϕ(P )) = Na1a2(ϕ(P )) = N \ I.

Then since f(ϕ(P )) = a2, by the definition of Wf , N \ I /∈ Wf . Second, if I /∈ Wf

then there exists P ∈ LC such that Na1a2(P ) = I and f(P ) = a2. Then neutrality

implies f(ϕ(P )) = a1 and

Nϕ(a1)ϕ(a2)(ϕ(P )) = Na2a1(ϕ(P )) = I

and

Nϕ(a2)ϕ(a1)(ϕ(P )) = Na1a2(ϕ(P )) = N \ I.

Thus by definition of Wf , N \ I ∈ Wf . Therefore Wf satisfies for all I ⊆ N ,

|W ∩ {I,N \ I}| = 1.

Conversely suppose that Wf satisfies for all I ⊆ N , |W ∩{I,N \ I}| = 1 and

consider the following two cases. First, suppose P ∈ LC is such that f(P ) = a1.
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Let I = Na1a2(P ) then I ∈ Wf by definition. Consider ϕ(P ). Then

Nϕ(a2)ϕ(a1)(ϕ(P )) = Na1a2(ϕ(P )) = N \ I /∈ Wf

thus by definition f(ϕ(P )) = a2. Second, suppose P ∈ LC is such that f(P ) = a2.

Then Na1a2(P ) /∈ Wf . Let I = Na1a2(P ). Consider ϕ(P ). Since I /∈ Wf ,

Nϕ(a2)ϕ(a1)(ϕ(P )) = Na1a2(ϕ(P )) = N \ I ∈ Wf .

Thus f(ϕ(P )) = a1. Therefore f is neutral.

□

Theorem 2.8 Let A = {a1, a2}. A voting rule f : LC → A is strategy-proof and

neutral if and only if there exists a subset W of 2N such that

f(P ) = a1 if and only if Na1a2(P ) ∈ W

where W satisfies the following two conditions:

i) for any I ⊆ N , |W ∩ {I,N \ I}| = 1 (△)

ii) for any I ⊆ J ⊆ N , if I ∈ W and n
2
̸∈ [|I|, |J |] ∩ Z, then J ∈ W . (⊞)

Proof :

First let f : LC → A be a strategy-proof and neutral voting rule. Define W

as follows,

W = {Na1a2(P ) : P ∈ LC and f(P ) = a1}

We wish to show that W satisfies conditions △ and ⊞. Since f is a neutral voting

rule we know immediately by Lemma 2.3 that W must satisfy condition △. Now

suppose P ∈ LC is such that f(P ) = a1, then Na1a2(P ) = I ∈ W . Let I ⊆ J ⊆ N

where n
2
/∈ [|I|, |J |] ∩ Z. Now suppose P ′ ∈ LC is such that Na1a2(P

′) = J . Since

I ⊆ J and n
2
/∈ [|I|, |J |] ∩ Z, we can one at a time move a1 up to be top ranked in
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each Pj ∈ J \ I and note that at each step the output must be a1 since f(P ) = a1

and f is strategy-proof. Throughout this one at a time process we know that each

profile (P ′
j , P−j) ∈ LC since by the definition of the domain n

2
/∈ {|I|, |J |}∩Z. Upon

the final change of Pj ∈ J \ I, we have the profile P ′ and by strategy-proofness,

f(P ′) = a1. Therefore J ∈ W and W satisfies condition ⊞.

Conversely suppose W satisfies conditions △ and ⊞. From Lemma 2.3, f

must be neutral since W satisfies condition △. To see that f is strategy-proof,

suppose P = (P1, . . . , Pn) ∈ LC satisfies f(P ) = a1 and so I = Na1a2(P ) ∈ W . If

(P ′
j , P−j) ∈ LC for some j ∈ N \ I and P ′

j ̸= Pj, then r1(Pj) = a2 and r1(P
′
j) = a1.

By the definition of LC ,
n
2
/∈ {|I|, |I| + 1}. By ⊞, I ∈ W along with I ⊆ J ⊆ N

we have that J = {I} ∪ {j} ∈ W . Therefore f((P−j, P
′
j)) = a1. By neutrality, the

argument above holds for f(P ) = a2 as well. Therefore f is strategy-proof.

□

2.5 One Final Remark

It is interesting to note that throughout this entire chapter our results have

always assumed that the number of voters is three or more. If we wish to consider

the case where n = 2, P = (P1, P2) ∈ LC , it is necessary that r1(P1) = r1(P2)

otherwise P /∈ LC . Thus for n = 2, we can consider a strategy-proof social-choice

function on LC which can satisfy anonymity but it must be dictatorial with both

voters as the dictator in this case.
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CHAPTER 3

THE SINGLE-PEAKED DOMAIN

The previous chapter was focused on characterizing majority rule on the

largest domain on which the majority element is always defined, that is, the Con-

dorcet domain. We now turn our attention to another important domain, namely

the single-peaked domain. The notion of this domain has its roots in the work of

Duncan Black [3] and was later formalized by the work of Kenneth Arrow [1]. Many

researchers have expanded upon this initial work to investigate strategy-proof social

choice functions on single-peaked domains - such as Moulin’s work on the set of real

numbers R [18] and Weymark’s generalization of this [24]. We begin this chapter

with preliminary definitions and notation as well as a general discussion of what it

means for a preference to be single-peaked. We then turn our attention to results

on the single-peaked domain.

3.1 Preliminaries

Within this work we consider single-peakedness as it relates to an underlying

linear ordering of the alternatives, yet there are other ways to define a preference as

single-peaked (see Ballester and Haeringer for a necessary and sufficient condition

to define single-peakedness and sources therein for other definitions [2]). Below is a

formal definition of this notion of single-peaked. The peak of a linear order, Pi, is

that preference’s most preferred alternative and will be denoted τ(Pi).

Definition 3.1 Let > be a linear order on the set A of alternatives. A preference
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order Pi ∈ L(A) is single-peaked with respect to > if for all a, b ∈ A,

[τ(Pi) > a > b or b > a > τ(Pi)] ⇒ aPib.

Let SP>(A), or more simply SP (A), denote the set of all single-peaked preferences

with respect to >.

Put more simply, a preference is single-peaked if it is the single preference that is

strictly increasing or the single preference that is strictly decreasing, otherwise the

preference is first strictly increasing then strictly decreasing. This behavior can be

seen in the preferences that are represented graphically in Figure 3.1.1

First, we give some motivating examples for single-peaked preferences - a

realistic scenario in which single-peakedness can be applied. Then we show what

single-peaked preferences look like graphically. The interpretations in Examples 3.1

and 3.2 come from [25]. Further interpretations as well as a readable summary of

what it means for a preference to be single-peaked can be found in the work of

Black [3], a seminal piece within the work of the single-peaked domain.

Example 3.1 Consider political ideologies on a spectrum. Liberal verses conserva-

tive is often interpreted as left verses right. Then a voter would have a single-peaked

preference if they have an ideal balance between these two opposing viewpoints and

prefer viewpoints that are closer to this ideal than those that are farther away from

this ideal. The ideal can be one of the endpoints of the spectrum, e.g. left-wing or

right-wing views, or could be somewhere in the middle, e.g. moderate views.

Example 3.2 We can think of the set of alternatives, {a1, a2, . . . , am} as locations

on a street where each ai is the address of an individual. If only one bus stop is to

be built on the street, it is reasonable to assume that each individual would prefer to

1There is also a notion of preferences that are not strictly increasing (or strictly decreasing)

which is referred to as “single-plateaued”[2] [24].
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walk the least amount to that bus stop. Then these preferences will be single-peaked,

where each individual i has a peak of ai. As the other locations, aj for j ̸= i, move

farther away from this location in either direction, the individual dislikes the location

the farther it is from ai.

Example 3.3 Let A = {a1, a2, a3, a4, a5} and let the underlying ordering, >, on A

be as follows:

a5 > a4 > a3 > a2 > a1

The graphs in Figure 3.1 show six of the possible 16 total single-peaked preferences

5

4

3

2

1

a1 a2 a3 a4 a5
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1

a1 a2 a3 a4 a5

Figure 3.1: Some single-peaked preferences when m = 5

on A with respect to >. The vertical axis shows the number corresponding to the

ranking of each alternative, with one being the most preferred, i.e. the peak. Notice

how in each preference as we move away from the peak we move further down in

the ranking of each alternative.2

2Note, the lines on these graphs are only added for visual purposes, but they suggest ways that
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For the next definition, there will be a fixed linear order > on the set of

alternatives A.

Definition 3.2 The set of all single-peaked orderings on A with respect to > will

be denoted SP (A). The set of all profiles of linear orders where the preferences are

from SP (A) is called the single-peaked domain and is denoted SP (A)N .

Below is a concrete example of the permissible linear orderings within SP (A)N

for a specific set of alternatives.

Example 3.4 Let A = {a1, a2, a3, a4} and let the underlying ordering on A be as

follows:

a4 > a3 > a2 > a1

Then for this specific case we have

SP (A) =



a1 a2 a2 a2 a3 a3 a3 a4

a2 a1 a3 a3 a4 a2 a2 a3

a3 a3 a1 a4 a2 a4 a1 a2

a4 a4 a4 a1 a1 a1 a4 a1


For small m it is easy to list all linear orders of A and then check which

ones satisfy the underlying ordering and are thus in SP (A)N . To understand the

size of the single-peaked domain, and to verify Examples 3.3 and 3.4, below is an

argument to show that |SP (A)| = 2m−1.

First note the following two observations:

(1) If A = {a1, a2, . . . , am} and the ordering on A is defined by

am > am−1 > . . . > a2 > a1

then, for any Pi ∈ SP (A), rm(Pi) ∈ {a1, am}.

the size of the alternative set can grow even to an extension into an infinite case.
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(2) If m ≥ 3, then for any Pi ∈ SP (A) and for any x ∈ A,

Pi|A−{x} ∈ SP (A− {x}).

We will include some explanation for why (2) holds. First, suppose x is any alter-

native other than the peak, τ(Pi). By Definition 3.1,

[τ(Pi) > a > b or b > a > τ(Pi)] ⇒ aPib.

holds for all a, b ∈ A, thus it still holds for all a, b ∈ A − {x}. If x = τ(Pi), then

τ(Pi|A−{x}) = r2(Pi) and we have

[τ(Pi|A−{x}) > a > b or b > a > τ(Pi|A−{x})] ⇒ a Pi|A−{x} b.

for all a, b ∈ A− {x}.

Proposition 3.1 Let A = {a1, a2, . . . , am}, then |SP (A)| = 2m−1.

We will use observations (1) and (2) and induction for the proof below. See Escoffier

et al. [8] for a combinatorial proof of Proposition 3.1.

Proof :

First, consider the base case where m = 2. There are two linear orders on

two elements and both are single-peaked, trivially.

Suppose by way of induction that for m ≥ 2, |SP (A)| = 2m−1. We wish

to count the number of single-peaked linear orders on A′ = A ∪ {am+1} where the

underlying ordering on A is extended to A′ so that am+1 > am > . . . > a1. By

(1), we know that for all Pi ∈ SP (A′), rm+1(P ) ∈ {a1, am+1}. Hence we can take

all Pj ∈ SP (A) and append the alternative am+1 to the bottom of the linear order

and get 2m−1 single-peaked linear orders on m + 1 alternatives. Now take the set

A′ and form all single-peaked linear ordering with respect to >. By (2), we can

take each Pi ∈ SP (A′) and remove the alternative a1, maintaining the relative
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orders of the other m elements and know that each Pi|A′−{a1} ∈ SP (A′ − {a1}).

But now |A′ − {a1}| = m so by the induction hypotheses, we know there are 2m−1

distinct single-peaked orderings on A′−{a1}. By (1) we know that rm(Pi|A′−{a1}) ∈

{a2, am+1}. Thus we can append a1 to the bottom of each distinct Pi|A′−{a1} and

still have a single-peaked ordering. Thus we have

|SP (A′)| = 2(2m−1) = 2m = 2(m+1)−1.

□

Most of the definitions of properties of social choice functions given in Chap-

ter 2 can be easily translated to this chapter simply by changing the domain of the

function from LC to SP (A)N . This is not the case for neutrality, so we supply a

new definition of what it means to be neutral in the context of the single-peaked

domain.

Definition 3.3 A social choice function f : SP (A)N → A is neutral if for any

profile P ∈ SP (A)N and for any permutation ϕ on A,

ϕ(P ) ∈ SP (A)N ⇒ f(ϕ(P )) = ϕ(f(P ))

Notice that the implication in Definition 3.3 depends on ϕ(P ) ∈ SP (A)N which

makes it distinct from Definition 2.5 which held for any permutation. In fact, there

exist single-peaked profiles belonging to SP (A)N and permutations on A such that

the permuted profiles do not belong to SP (A)N .

Example 3.5 Let A = {a1, a2, a3, a4}. For a4 > a3 > a2 > a1, the full domain,

SP (A), can be seen in Example 3.4 above. Consider the profile P ∈ SP (A)3 below.

P =



a1 a2 a3

a2 a3 a2

a3 a1 a4

a4 a4 a1


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Let ϕ = (a2a3) be a permutation on A. Then if we apply ϕ to P we get

ϕ(P ) =



a1 a3 a2

a3 a2 a3

a2 a1 a4

a4 a4 a1


Notice that ϕ(P1) /∈ SP (A) hence ϕ(P ) /∈ SP (A)3.

We now introduce an idea that is pivotal to establishing many of the results

in the next section. Let A = {a1, a2, . . . , am} be the set of alternatives m ≥ 2 with

the underlying order on A as follows: ai > aj if and only if i > j. From here on, we

will assume this is the underlying ordering. We want to work with the permutation

ϕk : A → A for any integer k ∈ [2,m] defined by

ϕk(ai) = ak+1−i for i = 1, . . . , k

and

ϕk(ai) = ai for i = (k + 1), . . . ,m.

We will refer to the permutation ϕk as the k-inversion permutation. In particular,

ϕ2 is the transposition given by (a1a2).

The k-inversion permutation is constructed so that preferences of a particular

structure can be inverted and still be single-peaked. Note that if Pi ∈ SP (A), ϕk(Pi)

is not always necessarily a single-peaked preference as well (consider applying ϕ2

in Example 3.5). But since Definition 3.3 relies on the fact that ϕ(P ) ∈ SP (A),

we will show that if Pi ∈ SP (A), then ϕm(Pi) ∈ SP (A). That is, the m-inversion

permutation will always maintain the single-peaked structure of any preference.

Notice that for any a, b in A,

a < b ⇐⇒ ϕm(a) > ϕm(b).
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For any Pi ∈ L(A),

a Pi b ⇐⇒ ϕm(a) ϕm(Pi) ϕm(b).

In particular, a is ranked first in Pi if and only if ϕm(a) is ranked first in ϕm(Pi).

Proposition 3.2 Let A = {a1, a2, . . . , am} where m ≥ 2. If Pi ∈ SP (A), then

ϕm(Pi) ∈ SP (A).

Proof :

Let Pi ∈ SP (A). We know that the peak of Pi is τ(Pi) and the peak of

ϕm(Pi) is ϕm(τ(Pi)). Thus,

τ(ϕm(Pi)) = ϕm(τ(Pi)).

Consider the situation

τ(ϕm(Pi)) > a > b.

Now a = ϕm(x) and b = ϕm(y) for some x, y ∈ A. So the previous relation becomes

ϕm(τ(Pi)) > ϕm(x) > ϕm(y).

Since ϕm inverts the underlying order > on A it follows that

y > x > τ(Pi).

Since Pi is single-peaked, it follows that xPiy. Finally,

x Pi y =⇒ ϕm(x) ϕm(Pi) ϕm(y).

Thus, a ϕm(Pi) b and ϕm(Pi) is single-peaked.

□

3.2 Majority Rule on the Single-Peaked Domain
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The focus of this section is on presenting results that help to characterize

majority rule on the single-peaked domain. This question was brought up by a

reviewer for Powers and Wells’ recent paper and thus many of the proofs can be

found in that publication [20]. Here we highlight key ideas that are needed to arrive

at these previously published results.

We start off with a lemma that only requires a social-choice function, defined

on the single-peaked domain, to satisfy strategy-proofness and neutrality.

Lemma 3.1 (Powers and Wells, 2023) If f : SP (A)N → A is strategy-proof

and neutral, then f satisfies unanimity.

The key to establishing Lemma 3.1 above is the k-inversion permutation

defined above. Beginning with a single-peaked profile that has the same top-ranked

alternative for all preferences, we can get the same profile using the k-inversion

permutation and with our assumption of neutrality, this leads to a contradiction.

To do this, we must be particularly careful about the structure of the preferences so

that Pi ∈ SP (A) and ϕk(Pi) ∈ SP (A). Specifically, the preference below is utilized.

Notice that ϕk(Pi) will be single-peaked for all k ∈ [2,m].

Pi =



ak

ak−1

ak−2

...

a2

a1

ak+1

ak+2

...

am



ϕk(Pi) =



a1

a2

a3
...

ak−1

ak

ak+1

ak+2

...

am


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Lemma 3.1 presents an interesting contrast to results presented in the previ-

ous chapter, particularly those in Section 2.3. Recall that we had results that char-

acterized strategy-proof and neutral social choice functions depending on whether

or not the condition of unanimity was satisfied. Here we see that we cannot get a

characterization for a strategy-proof and neutral social choice function that violates

unanimity.

It is not true that the converse of Lemma 3.1 holds. Below is an example of

a rule that satisfies strategy-proofness and unanimity but is not neutral.

Example 3.6 Let A = {a1, a2, a3} and let the underlying ordering be a3 > a2 > a1.

Define f : SP (A)3 → A be as follows: for any P = (P1, P2, P3) ∈ SP (A)3,

f(P ) = min{r1(P1), r1(P2), r1(P3)}.

In other words, f outputs the element of A which is top ranked by some voter and

has minimum index. It is clear that f satisfies unanimity.

It is not hard to see that f satisfies strategy-proofness since the social output is

based on the minimum index. The only way a voter, say j, can change the output of

f is by changing their top ranked alternative so that r1(P
′
j) < min{r1(P1), r1(P2), r1(P3)}.

But that means r1(Pj) Pj r1(P
′
j) so no manipulation would occur.

To see that f is not neutral, consider the following profile.

P =


a1 a2 a2

a2 a1 a1

a3 a3 a3


Then f(P ) = a1. Let ϕ = (a1a3). Then applying ϕ to P we have ϕ(P ) ∈ SP (A)3

shown below.

ϕ(P ) =


a3 a2 a2

a2 a3 a3

a1 a1 a1


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Then f(ϕ(P )) = a2. Thus, f(ϕ(P )) ̸= ϕ(f(P )) and f is not neutral.

Before presenting the next result, we need some notation. Let P ∈ SP (A)N .

The profile Pam is obtained from P by moving am to the bottom for each Pi. Notice

that Pam ∈ SP (A)N , as displayed in Figure 3.2. The peak of the preferences, τ(Pi),

remains the same for all preferences where τ(Pi) ̸= am. Otherwise, the peak changes

to am−1.

a1 am

m

1

τ(Pi)

alternatives

rank

a1 am

m

1

τ(Pi)

alternatives

rank

Figure 3.2: Forming Pam by moving am to the bottom of each Pi

The k-inversion permutation played an important role in establishing the

next proposition which is Proposition 8 in Powers and Wells [20].

Proposition 3.3 (Powers and Wells, 2023) Assume f : SP (A)N → A is neu-

tral, strategy-proof, and m ≥ 3. If g : SP (A)N → A is either a dictatorship or

majority rule and

f(Pam) = g(Pam)

for all P ∈ SP (A)N , then f = g.

What we know from Proposition 3.3 is that if f agrees with a dictatorship

or majority rule on all Pam , then f is either a dictatorship or majority rule on all

P ∈ SP (A)N . This idea, along with Lemma 3.1, is used by Powers and Wells to

establish the following result which presents a characterization of majority rule [20].
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Theorem 3.1 (Powers and Wells, 2023) Let m ≥ 2. A social choice function

f : SP (A)N → A is strategy-proof, anonymous, and neutral if and only if n is odd

and f is majority rule.

Theorem 3.1 is basically Theorem 2.4 where the Condorcet domain, LC is restricted

to its subdomain, SP (A)N which necessitates the fact that n must be odd. We

cannot have a function that outputs a single alternative and satisfies these three

properties when n is even. A proof of this claim will follow in the next section.

If we wish to replace the condition of anonymity with the weaker condition

that f must be non-dictatorial, we have a new result about majority rule that only

holds for three voters.

Theorem 3.2 Let |A| = m ≥ 2. If f : SP (A)3 → A is strategy-proof, neutral, and

non-dictatorial, then f is majority rule.

Proof :

Consider the base case where m = 2. Suppose f : SP (A)3 → A is strategy-

proof, neutral, and non-dictatorial. Then, by Lemma 3.1, f satisfies unanimity. So

for any P = (P1, P2, P3) ∈ SP (A)3 where r1(Pi) agree for all i, f(P ) = r1(Pi), which

is clearly the majority element. So we must look at profiles that are not unanimous.

Consider the profile

P =

a1 a2 a2

a2 a1 a1


We wish to show that f(P ) = a2, the majority element. Suppose by way of con-

tradiction that f(P ) = a1. Then by strategy-proofness, a1 can be moved up in P2

or P3 and maintain that the output is a1. Hence f(P ) = a1 implies that f(Q) = a1

for any Q ∈ SP (A)3 where r1(Q1) = a1. Furthermore, neutrality implies that for

ϕ = (a1a2), f(ϕ(P )) = ϕ(a1) = a2 and again by strategy-proofness we get that

f(Q) = a2 for any Q ∈ SP (A)3 where r1(Q1) = a2. Thus we get a contradiction
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with the assumption that f is non-dictatorial. A similar argument can be made in

the cases where r1(P2) ̸= r1(P1), r1(P3) and r1(P3) ̸= r1(P1), r1(P2) resulting in a

dictator for the disagreeing preference, which is always a contradiction. Hence f is

majority rule.

Suppose by way of induction that for m − 1 ≥ 2, if f : SP (A)3 → A is

strategy-proof, neutral, and non-dictatorial, then f is majority rule. We wish to

show this holds true for m. Suppose |A| = m, f : SP (A)3 → A is strategy-proof,

neutral, and non-dictatorial, and P ∈ SP (A)3 is an arbitrary profile. We wish to

show that f(Pam) = fc(Pam). Let B = {a1, . . . , am−1} and define h : SP (B)3 → B

as follows: for any Q ∈ SP (B)3,

h(Q) = f

Q

am



where

Q

am

 ∈ SP (A)3 is formed by adjoining to Q ∈ SP (B)3 rm(Qi) = am for all

i ∈ {1, 2, 3}. Since h is defined from f , h inherits the properties of neutrality and

strategy-proof and we have that h is either a dictatorship or it is not.

Note that f(Pam) = h(Q) where Pam ∈ SP (A)3, Q ∈ SP (B)3, and Q = P |B.

Suppose that h is a dictatorship. Then f is a dictatorship on all Pam and by

Proposition 3.3 f is dictatorship on all P ∈ SP (A)3, contradicting that f is non-

dictatorial. Thus h must be non-dictatorial and applying Proposition 3.3 again,

h must be majority rule. Hence f(Pam) = h(Q) = fC(Q) for any Pam and by

Proposition 3.3 f is majority rule on all P ∈ SP (A)3.

□

3.3 Additional Results on the Single-Peaked Domain

We begin this section with a simple example to show why we must restrict
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the previous result, Theorem 3.2, to n = 3.

Example 3.7 Let |A| = m ≥ 2 and n ≥ 4. Define f : SP (A)N → A to be the

majority element on the first three preferences. This rule is strategy-proof, neutral,

and non-dictatorial yet is not majority rule. This rule is well-defined as there will

always be a majority element on the first three preferences since a profile of odd

single-peaked preferences always gives a Condorcet winner.

To see that this rule is distinct from majority rule consider the following

profile

P =



a1 a1 a2 . . . a2

a2 a2 a1 . . . a1

a3 a3 a3 . . . a3
...

...
... . . .

...

am am am . . . am


The profile

P =



a1 a1 a2 a2

a2 a2 a1 a1

a3 a3 a3 a3
...

...
...

...

am am am am


belongs to SP (A)N and the majority element of P is not defined. If n ≥ 5, clearly the

majority element is a2 as it is ranked first for all Pi with i = 3, . . . , n but the majority

element on the first three preferences is a1. In either case, f(P ) = a1 ̸= fC(P ).

Since f is defined as the majority element on the first three preferences it

is not hard to see that f is neutral and non-dictatorial as majority rule is neutral

and non-dictatorial. To verify that f is indeed strategy-proof, suppose to the con-

trary. That is suppose there exists i ∈ {1, 2, . . . , n} and P ′
i ∈ SP (A) such that

f(P ′
i , P−i) Pi f(Pi, P−i). Since the only voters who have an affect on the social out-
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come are the first three, we can assume that i ∈ {1, 2, 3}. Since f(P ′
i , P−i) Pi f(Pi, P−i),

the new output, f(P ′
i , P−i), must have been r1(Pi) ̸= f(Pi, P−i). Additionally, the

original output, f(Pi, P−i), must be the top ranked alternative for Pj and Pk where

j, k ∈ {1, 2, 3}\{i}. So the only change that can be made from Pi to P ′
i is to change

r1(P
′
i ) to agree with r1(Pj) = r1(Pk). Thus f(P ′

i , P−i) = f(Pi, P−i) contradicting

the assumption that f(P ′
i , P−i) Pi f(Pi, P−i).

In contrast to the example above which shows there is a strategy-proof, neu-

tral, and non-dictatorial function that is distinct from majority rule, the proposition

below shows this is not the case when we switch the condition of non-dictatorial for

that of anonymity.

Proposition 3.4 Let m ≥ 2 and n = 2k for some positive integer k. There is no

social choice function f : SP (A)N → A such that f is strategy-proof, neutral, and

anonymous.

Proposition 3.4 is a consequence of Theorem 3.1. Recall that Theorem 3.1

required n to be odd to get a characterization of majority rule. For cohesiveness, a

proof of Proposition 3.4 is given below. The idea behind the proof is to construct a

profile that has some symmetry and then use anonymity and neutrality to leverage

this “symmetry” and get a contradiction.

Proof :

Let m ≥ 2. Assume to the contrary that there does exist a function f that

is strategy-proof, neutral, and anonymous that outputs a single alternative when n

is even. First we will show that |A| = m must be odd.

Let P = (P1, . . . , Pn) be the single-peaked profile where the first n
2
entries are

a1 . . . am and the second n
2
entries are am . . . a1. So P looks like the profile shown
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below:

P =



a1 . . . a1 am . . . am

a2 . . . a2 am−1 . . . am−1

... . . .
...

... . . .
...

am . . . am a1 . . . a1


Apply the m-inversion permutation ϕm to the profile P and notice that a1 . . . am

and am . . . a1 each occur n
2
-times. Hence, ϕm(P ) is a permutation of the original

profile P . Then anonymity implies f(ϕm(P )) = f(P ). By neutrality, f(ϕm(P )) =

ϕm(f(P )). Thus, ϕm(f(P )) = f(P ). The only way the m-inversion permutation

fixes an element of A is if m is odd and the element is am+1
2
. Thus,

f(P ) = am+1
2
.

Let ℓ be the following single-peaked linear order on A:

ℓ = am+1
2
am+1

2
+1 · · · amam+1

2
−1 · · · a1

So r1(ℓ) = am+1
2

and r2(ℓ) = am+1
2

+1. Next, let ϕ be the transposition (am+1
2

am+1
2

+1)

and note that ϕ(ℓ) ∈ SP (A), r1(ϕ(ℓ)) = r2(ℓ) and r2(ϕ(ℓ)) = r1(ℓ). We now

introduce the profile Q = (Q1, . . . , Qn) defined by Qi = ℓ for each i = 1, 2, . . . , n
2

and Qi = ϕ(ℓ) for all i = n
2
+ 1, . . . , n. By strategy-proofness,

f(P ) = am+1
2

implies f(Q) = am+1
2
.

Consider the profile ϕ(Q). Neutrality implies that f(ϕ(Q)) = ϕ(f(Q)) = am+1
2

+1.

But since ϕ(Q) is permutation of Q, anonymity implies f(ϕ(Q)) = f(Q) = am+1
2
,

hence a contradiction.

□

Proposition 3.4 is a result on the single-peaked domain but there could be a

class of functions that are strategy-proof, neutral, and anonymous for m ≥ 3 if we

consider a slight restriction on the domain. In general,

SP (A)N ⊆ LC
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if and only if n is odd. If n is odd we know from the work of Black [3] that the

Condorcet alternative exists. If n is even, then we could consider the domain

SP (A)C = SP (A)N ∩ LC .

In other words, we can look at single-peaked profiles with an even number of voters

in which there is a Condorcet winner. The class of functions that satisfy strategy-

proofness, anonymity, and neutrality for m = 2 on SP (A)C were characterized in

the previous chapter. The case for m ≥ 3 on the domain SP (A)C still needs to

explored.

All of the results thus far on the single-peaked domain have assumed our

social choice function satisfies neutrality. If we no longer require that the functions

satisfy neutrality, we can get a characterization that follows directly from the work

of Weymark [24].

To understand the language of the following definition and result, the idea

of a median must be discussed. The median of an ordered list of an odd number of

elements is simply the middle element. That is, if {a1, . . . , at} is an ordered list is

of t alternatives, then the median is the element aj such that

∣∣{i : aj ≥ ai}
∣∣ ≥ t

2
and

∣∣{i : aj ≤ ai}
∣∣ ≥ t

2
.

We will use the notation below to indicate that aj is the median of the list a1, . . . , at.

med(a1, . . . , at) = aj

When it comes to the median of a set of alternatives, the underlying ordering >

is used to establish the order that the alternatives are listed. The example below

illustrates how we choose the median of a set of alternatives.

Example 3.8 Let A = {a1, a2, a3, a4, a5} and let f : SP (A)N → A be the function

that outputs the median of the top ranked alternative for all voters. Suppose P is
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the profile shown below:

P =



a1 a5 a5 a3 a3

a2 a4 a4 a2 a4

a3 a3 a3 a1 a5

a4 a2 a2 a4 a2

a5 a1 a1 a5 a1


The list of top ranked alternatives for this profile is as follows: a1, a5, a5, a3, a3. If

we arrange this list with respect to the underlying ordering a1 > a2 > a3 > a4 > a5

we have: a1, a3, a3, a5, a5. Hence the median of this list is a3. Therefore, f(P ) =

med(a1, a3, a3, a5, a5) = a3.

Below is Weymark’s definition of an (n − 1)-parameter generalized median

social choice function adapted to our notation.

Definition 3.4 A social-choice function f : SP (A)N → A is an (n− 1)-parameter

generalized median social choice function if there exist bi ∈ A for i = 1, . . . , n − 1

(the parameters) such that, for any P = (P1, . . . , Pn) ∈ SP (A)N , f(P ) is the median

element with respect to the ordering > on A of the list

r1(P1), . . . , r1(Pn), b1, . . . , bn−1.

We denote this median element by

med(r1(P1), . . . , r1(Pn), b1, . . . , bn−1).

We can use this definition to characterize all functions on the single-peaked

domain that satisfy strategy-proofness, anonymity, and unanimity. This result is

due to Weymark [24] but rephrased into the language and notation of our results.

Theorem 3.3 (Weymark, 2011) A social choice function f : SP (A)N → A is

strategy-proof, anonymous, and satisfies unanimity if and only if f is an (n − 1)-

parameter generalized median social choice function.
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If n is odd, then the Condorcet rule fC is an (n− 1)-parameter generalized

median social choice function where half of the parameters equal a1 and the other

half equal am. Choosing these as the parameters in this specific case is necessary

for the function to satisfy neutrality, which we know must always hold by Theorem

3.1. An example where n is odd is illustrated below.

Example 3.9 Let n = 5, m = 4, and f : SP (A)N → A be an (n − 1)-parameter

generalized median social choice function. Consider the profile P = (P1, . . . , Pn) ∈

SP (A)N below.

P =



a1 a2 a3 a2 a3

a2 a3 a4 a1 a2

a3 a4 a2 a3 a4

a4 a1 a1 a4 a1


Then for b1, b2 = a1 and b3, b4 = a4 we get

f(P ) = med(a1, a1, a1, a2, a2, a3, a3, a4, a4) = a2 = fC(P )

To illustrate that neutrality holds in this case consider the k-inversion permutation

with k = 4. Then applying ϕ4 to the profile P we have the following profile

ϕ4(P ) =



a4 a3 a2 a3 a2

a3 a2 a1 a4 a3

a2 a1 a3 a2 a1

a1 a4 a4 a1 a4


Then for the same parameters as above we see that

f(ϕ4(P )) = med(a1, a1, a2, a2, a3, a3, a4, a4, a4) = a3 = fC(ϕ4(P )).

Additionally, f(ϕ4(P )) = ϕ4(f(P )) = ϕ4(a2) = a3.
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3.4 Conclusion

Both this chapter and the previous chapter had much discussion of domains

for which we could get our characterization of majority rule as the only strategy-

proof, anonymous, and neutral function. But we know that this characterization

does not always hold when we alter the domain of interest. As pointed out earlier in

the chapter, we wonder what the class of functions that satisfy these three properties

will look like on SP (A)C . Recall SP (A)C is defined for even n. When n is odd,

we can construct a restriction of SP (A)N that produces a rule that is strategy-

proof, anonymous, and neutral, but is not fC . We conclude this chapter with an

interesting example to illustrate this idea.

Example 3.10 Let A = {a1, a2, . . . , am} with our standard underlying ordering.

Let Σ be the subset of SP (A) defined by

Σ = {a1a2 . . . am−1am, amam−1 . . . a2a1}.

In other words, the profiles will only consist of the above two single-peaked prefer-

ences - the one that is strictly decreasing and the one that is strictly increasing.

Assume n is odd. For m ≥ 3 and odd, define f : ΣN → A by f(P ) = am+1
2

for all P ∈ ΣN . Since we are only considering profiles where each preference is one

of two linear orders, it is not difficult to prove that f is strategy-proof, anonymous,

and neutral.
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CHAPTER 4

EXPANDING THE DOMAIN TO ALLOW FOR INDIFFERENCE

Thus far, all results have been on profiles that contain preferences that are

strict linear orders. In this chapter, we introduce the idea of voter indifference. A

voter is indifferent between two alternatives, say x, y ∈ A, if x is as at least as good

as y and y is at least as good as x. Allowing for voter indifference expands the

domain that we are considering since we now want to allow for weak orders of the

alternatives.

4.1 Preliminaries

As usual, A = {a1, a2, . . . , am} is the set of alternatives. A binary relation,

R, on A is a subset of A×A. We will write aiRaj if the ordered pair (ai, aj) belongs

to R. In addition, we will write ai ��R aj if (ai, aj) does not belong to R. We begin

by giving a formal definition of a weak order.

Definition 4.1 A weak order on A is a reflexive, complete, and transitive binary

relation, R, on A.

By reflexive, we mean that aRa for all a ∈ A. By complete, we mean that for

all ai, aj ∈ A, aiRaj and/or ajRai. Finally, transitive means for all ai, aj, ak ∈ A, if

aiRaj and ajRak, then aiRak.

Below we give a formal statement of what we mean by indifference.

Definition 4.2 We say that alternative ai and alternative aj are indifferent based
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on the weak order R on A if aiRaj and ajRai. Moreover, the indifference class

containing ai is the set of all elements from A that are indifferent to ai.

When working with strict linear orderings we used the notation P = (P1, . . . , Pn)

for a profile of linear preferences and xPiy to say voter i prefers alternative x to alter-

native y. In the context of weak orders, we change this notation to P = (R1, . . . , Rn)

for a profile and xRiy to say that x is at least as good as y.

A linear ordering is a weak ordering, but not all weak orderings are linear

orderings. Thus the domain of all weak orderings on A has larger cardinality than

the domain of linear orderings on A. In this chapter, we are generally interested

in exploring domains that are between the domain of linear orders and of weak

orders. Let W (A) denote the set of weak orders on A. Let D be a pre-domain in

the following sense:

L(A) ⊆ D ⊆ W (A).

To go from the pre-domain, D, to the collection of profiles we will be working

with in this chapter we need some notation. First, we define rank in the context

of weak orders. Let k be a positive integer. The notation rk(Ri) represents the

kth ranked indifference class of individual i. Since there can be indifference in

preferences, rk(Ri) can be one single alternative or a set of alternatives. The first,

or top, ranked indifference class is denoted r1(Ri) and is defined as follows

r1(Ri) = {x ∈ A : xRiy for all y ∈ A}.

Next,

r2(Ri) = {x ∈ A : xRiy for all y ∈ A \ r1(Ri)}.

This generalizes as follows

rk(Ri) = {x ∈ A : xRiy for all y ∈ A \ r1(Ri) ∪ r2(Ri) ∪ . . . ∪ rk−1(Ri)}.
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Below we give an example that further illustrates some of the definitions and

notation that we have presented.

Example 4.1 Let A = {a1, a2, a3, a4, a5}. Consider the following profile P =

(R1, R2, R3).

P =



a1 a1a2 a3a5

a2a4 a3a4 a1

a3 a5 a4

a5 a2


Then r2(R2) = {a3, a4} whereas r2(R3) = a1. Additionally, R2 shows that a3 is

indifferent to a4 so we can call {a3, a4} the indifference containing a4 for R2. Notice

that R1 has a different indifference class containing a4, namely r2(R1) = {a2, a4}.

We need some more notation. For any profile, P = (R1, R2, . . . , Rn), belong-

ing to DN and for any subset {x, y} of A,

Nxy(P ) = {i ∈ N : xRiy and y ��Ri x}

is the set of individuals that rank x in an indifference class above y in the profile

P . Additionally,

N[xy](P ) = {i ∈ N : x is indifferent to y}

is the set of individuals that rank x and y in the same indifference class in the profile

P .

We can now define the domain of interest. The notation DC is for the set of

all profiles of weak orders P = (R1, R2, . . . , Rn) ∈ DN such that there exists x ∈ A

satisfying

|Nxy(P )| > |Nyx(P )|

for all y ∈ A \ {x}. In particular, WC denotes the set of all profiles of weak orders

P = (R1, R2, . . . , Rn) ∈ W (A)N such that there exists x ∈ A satisfying

|Nxy(P )| > |Nyx(P )|

54



for all y ∈ A \ {x}. Observe that

L(A) ⊆ D ⊆ W (A) =⇒ LC ⊆ DC ⊆ WC .

We now extend the Condorcet rule from LC to DC in the obvious way.

Definition 4.3 The function fC : DC → A is defined as follows: for any profile

P ∈ DC, fC(P ) = x where x is the Condorcet alternative with respect to P . Then

fC is the Condorcet rule on DC.

The domain DC can be equal to LC or equal to WC . Later we give examples

of a DC that is strictly between LC and WC . Below we give an example of a different

domain that is between LC and WC but not a DC .

Example 4.2 Let I denote the complete indifference relation on a set A. An in-

dividual chooses I if they have no strict preferences among the alternatives in A.

Given n ≥ 3 and a profile P = (R1, R2, . . . , Rn) ∈ (L(A) ∪ {I})N , let top(P ) be the

set of alternatives that are ranked first by at least one individual in the profile P .

Notice that top(P ) = ∅ if and only if Ri = I for all i. Let

Z = {P ∈ (L(A) ∪ {I})n : |{i : Ri = I}| ≥ (n− 2) and |top(P )| = 1}.

So Z contains profiles where at least n− 2 individuals choose complete indifference

and either one or two individuals choose a linear order on A with the same top

ranked alternative. The Condorcet rule is well defined on Z by [20] thus we have

the domain LC ∪ Z and can see that

LC ⊆ LC ∪ Z ⊆ WC .

The addition of weak orders to the domain, once again requires us to define

neutrality for this domain where ϕ : A → A is a permutation. For this definition

we use the notation, ϕ(P ). By this we mean, for any profile P = (R1, R2, . . . , Rn)

and for any ϕ : A → A, ϕ(P ) = (ϕ(R1), ϕ(R2), . . . , ϕ(Rn)).
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Definition 4.4 A social choice function f : DC → A is neutral if for any profile

P ∈ DC and any permutation ϕ : A → A, if ϕ(P ) ∈ DC then f(ϕ(P )) = ϕ(f(P )).

Similar to Definition 3.3 for neutrality in the context of single-peakedness,

Definition 4.4 depends on the permuted profile, ϕ(P ), remaining in the domain.

Indeed, we can construct domains where ϕ(P ) is not always an element of the

domain for some permutations ϕ. This is illustrated below.

Example 4.3 Let A = {a1, a2, a3, a4}. Let our pre-domain be D = L(A) ∪ {R̂}

where

R̂ =


a1

a2

a3a4


Let n = 3 and suppose we have the following profile:

P =



a1 a2 a1

a2 a1 a2

a4 a4 a3a4

a3 a3


Then P ∈ DC with fC(P ) = a1. If ϕ = (a3a4), then ϕ(P ) ∈ DC. However, if

ϕ′ = (a1a4), then ϕ′(P ) /∈ DC since a1 and a3 are not indifferent in the pre-domain.

ϕ(P ) =



a1 a2 a1

a2 a1 a2

a3 a3 a3a4

a4 a4


ϕ′(P ) =



a4 a2 a4

a2 a4 a2

a1 a1 a3a1

a3 a3



4.2 Majority Rule with Weak Orders
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In this section we present a characterization of majority rule on the domain

DC . This question was brought up by a reviewer for Powers and Wells recent paper

[20] and this is an expansion of that work which gives a more robust result.

Theorem 4.1 Let D be a pre-domain such that

L(A) ⊆ D ⊆ W (A)

for m ≥ 3 and n ≥ 2. A social choice function f : DC → A is strategy-proof,

neutral, and anonymous if and only if f = fC.

Since majority rule always satisfies strategy-proofness, neutrality, and anonymity,

our proof focuses on the forward direction of Theorem 4.1.

Proof :

We will give the following proof in two cases.

First, consider the case for n = 2. Assume P = (R1, R2) ∈ DC , with

fC(P ) = x, f(P ) = y, and x ̸= y. Let ϕ be the permutation on A equaling the

transposition (xy) and let ℓ be a linear order on A such that x is ranked first and y

is ranked second. Since fC(P ) = x, we know that x must be ranked on top in both

preferences.

If r1(R1) = r1(R2) = {x}, then, one at a time, replace R1 and R2 with the

linear order ℓ. Strategy-proofness implies fC(ℓ, ℓ) = x and f(ℓ, ℓ) = y. Now consider

the profile P ′ = (ϕ(ℓ), ϕ(ℓ)). Strategy-proofness implies that f(ϕ(ℓ), ϕ(ℓ)) = y but

neutrality implies f(ϕ(ℓ), ϕ(ℓ)) = ϕ(f(ℓ, ℓ)) = x, a contradiction.

If r1(R1) = {x} and {x} ⊂ r1(R2), then we can replace R1 with ℓ and main-

tain that f(ℓ, R2) = y by strategy-proofness. Apply ϕ and see that neutrality implies

f(ϕ(ℓ), R2) = ϕ(y) = x when 2 ∈ N[xy](P ) and f(ϕ(ℓ), ϕ(R2)) = ϕ(y) = x when

2 /∈ N[xy](P ). On the other hand, strategy-proofness implies that f(ϕ(ℓ), R2) =

f(ϕ(ℓ), ϕ(R2)) = y, a contradiction.
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Finally, consider {x} ⊂ r1(R1) and {x} ⊂ r1(R2). Since fC(P ) = x we know

that x can be the only alternative that is contained in both top ranked indifference

classes. Without loss of generality, we will assume y /∈ r1(R1). We can replace R1

with ℓ and maintain that f(ℓ, R2) = y. But this has already been established by

the previous two cases so this completes the proof for n = 2.

For our second case, assume n ≥ 3. Let P = (R1, . . . , Rn) be a profile

belonging to DC . Recall that if P ∈ LC then f(P ) = fC(P ) by Theorem 2.4 and

we are done. We are interested in profiles in which at least one Ri ∈ W (A) \ L(A).

Assume there exists P ∈ DC such that fC(P ) = x, f(P ) = y, and x ̸= y. Let

|Nxy(P )| = k, |Nyx(P )| = h with k > h. Since f is anonymous we can arrange the

preferences in P so that {1, . . . , k} = Nxy(P ), {k + 1, . . . , k + h} = Nyx(P ), and

{(k + h), . . . , n} = N[xy](P ).

From P = (R1, . . . , Rn) obtain P ′ = (R′
1, . . . , R

′
n) by one at a time replacing

each Ri in P in the following way:

R′
i =


ℓ if i ∈ Nxy(P )

ϕ(ℓ) if i ∈ Nyx(P )

Ri if i ∈ N[xy](P )

Notice that Nxy(P ) = Nxy(P
′) and Nyx(P ) = Nyx(P

′). Using the fact that fC and

f are strategy-proof it follows that

fC(P
′) = x and f(P ′) = y.

If N[xy](P ) = ∅, then N[xy](P
′) = ∅ as well. Upon the final change from

Ri to R′
i we get P ′ ∈ LC . This results in a contradiction with Theorem 2.4 as

f(P ′) = y ̸= fC(P
′).

If N[xy](P ) ̸= ∅, proceed as follows. Apply ϕ to P ′ to get the profile ϕ(P ′) ∈
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DC shown below. Recall that Ri is such that i ∈ N[xy](P ) so Ri = ϕ(Ri).

ϕ(P ′) =


y . . . y x . . . x Ri . . .

x . . . x y . . . y

︸ ︷︷ ︸
k

... . . .
... ︸ ︷︷ ︸

h

... . . .
... ︸ ︷︷ ︸

n− (k + h)

... . . .



By neutrality, fC(ϕ(P
′)) = ϕ(fC(P

′)) = y and f(ϕ(P ′)) = ϕ(f(P ′)) = x. Notice

that |Nyx(ϕ(P
′))| = k, |Nxy(ϕ(P

′))| = h, and |N[xy](ϕ(P
′))| = n− (k + h).

Let r = k − h > 0. First assume r is odd. We can obtain a rearrangement

of P ′ from ϕ(P ′) by one at a time moving x up in the first r preferences. Since r is

odd, at each step either x or y will be a Condorcet winner thus we always stay in

the domain. Call the resulting profile R which is shown below.

R =


x . . . x y . . . y x . . . x Ri . . .

y . . . y x . . . x y . . . y

︸ ︷︷ ︸
r

... . . .
... ︸ ︷︷ ︸

k − r

... . . .
... ︸ ︷︷ ︸

h

... . . .
... ︸ ︷︷ ︸

n− (k + h)

... . . .



At each step, strategy-proofness implies f(R) = x. Notice that R is a rearrange-

ment of the profile P ′ since |Nxy(R)| = r + h = k and |Nyx(R)| = k − r = h. By

anonymity, f(R) = f(P ′) which contradicts our earlier assumption that f(P ′) = y.

Now assume r = k−h is even. So r ≥ 2. Choose one Ri from the profile ϕ(P ′)

such that i ∈ N[xy](P ) and replace Ri with the linear order ℓ. Call the resulting

profile W . Now |Nxy(W )| = h+ 1 and |Nyx(W )| = k. Let r′ = k− (h+ 1) = r− 1.

Since r is even, |Nyx(W )| > |Nxy(W )|, hence fC(W ) = fC(ϕ(P
′)) = y. By strategy-

proofness, f(W ) = x. If |N[xy](P )| = 1, W is a profile such that N[xy](W ) = ∅.

Then, as above, we get a contradiction with Theorem 2.4. On the other hand, if

|N[xy](P )| ≥ 2, notice that by breaking the tie to form the profile W we have that
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r′ = r − 1 must be an odd value. Hence we get a contradiction by the argument

above. Therefore we can conclude f(P ) = fC(P ) for all P ∈ DC .

□

Similar to the work of Chapter 2, this characterization of majority rule re-

quires that the size of the alternative set be three or more. For the m = 2 case,

we know how strategy-proof, neutral, and anonymous functions would behave if

D = L(A) (see Proposition 2.1). But for any larger pre-domain, D, the question

remains open. The recent work of Lahiri and Pramanik [12] does give some insight

into voting over two alternatives with indifference. However, their domain does not

require that a strict Condorcet alternative exist. Additionally, they look at the

surjective condition rather than neutrality.

Consider the following example to help illustrate Theorem 4.1 and the do-

main DC .

Example 4.4 Let A = {a1, a2, a3}, n = 3, and let D = L(A) ∪ {I} where I is the

complete indifference relation on A. Then

DC = {P = (R1, R2, R3) ∈ D3 : |{i : Ri = I}| ≤ 2 and fC(P ) exists}

Suppose f : DC → A is strategy proof, neutral, and anonymous. Consider the profile

below

P =


a1 a1

a2 a3 I

a3 a2


Suppose f(P ) ̸= fC(P ) = a1. Let ϕ = (a2a3). Then we have the profile

ϕ(P ) =


a1 a1

a3 a2 I

a2 a3


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Notice that ϕ(P ) is just a rearrangement of the profile P and since f is anonymous,

f(P ) = f(ϕ(P )). Since f is neutral, f(P ) must be fixed by ϕ. Hence f(P ) =

fC(P ) = a1.

Notice that the set DC given in the previous example is similar to LC ∪ Z,

the domain defined in Example 4.2. Even though that is not a DC domain, we

can still get a characterization of majority rule. This result was discussed in the

remarks of Powers and Wells’ paper [20].

Proposition 4.1 (Powers and Wells 2023) For any m ≥ 3 and any n ≥ 3, a

voting rule f : LC ∪ Z → A is strategy-proof, neutral, and anonymous, if and only

if f = fC.

Below we present a simple example to show that Theorem 4.1 does not hold

if we replace anonymity with the non-dictatorial assumption.

Example 4.5 Let A = {a1, a2, . . . , am}, m ≥ 2 and let D = L(A)∪ {I} where I is

the complete indifference relation on A. For n = 4, define f : DC → A as follows:

for any profile P = (R1, R2, R3, R4),

f(P ) =

 r1(R1) if {i : Ri = I} = {4};

fc(P ) otherwise.

Clearly the above example is not majority rule. Let us verify that it is indeed not

anonymous but is non-dictatorial, neutral, and strategy proof.

We can see that f is not anonymous through the following example. Let

P ∈ DC be the following profile.

P =

a1 a2 a2 I

a2 a1 a1


By definition, f(P ) = a1. Let σ : N → N be given by σ = (34). Then Pσ ∈ DC and

f(Pσ) = fC(Pσ) = a2 ̸= f(P ), hence f is not anonymous.
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Referring to the profile, Pσ, above we can see that f is non-dictatorial. Since

f(P ) = r1(R1) whenever {i : Ri = I} = {4}, voter 1 is the only possible dictator.

But since there exists a profile in the domain where the output is not the first ranked

alternative of voter 1, clearly f is non-dictatorial.

It is easy to see that neutrality holds. If f(P ) = r1(R1), then applying any

permutation, ϕ : A → A, does not change that R4 = I. Furthermore, since a

dictatorship is neutral, f(ϕ(P )) = ϕ(f(P )) = ϕ(r1(R1)). If f(P ) = fC(P ), then the

neutrality of majority rule guarantees the result.

Finally we show that f is strategy-proof. First suppose P ∈ DC is such that

{i : Ri = I} = {4}. Then f(P ) = r1(R1). If P ′ = (R′
j, R−j) ∈ DC is such that

{i : R′
i = I} = {4}, so that the only change from P to P ′ occurs in R1, R2, or R3,

then f is strategy-proof in this case as a dictatorship is strategy-proof. Similarly,

suppose P ∈ DC is such that {i : Ri = I} ̸= {4}. Then f(P ) = fC(P ). If P ′ ∈ DC

is such that {i : R′
i = I} ̸= {4} then f is strategy-proof in this case as majority

rule is strategy-proof. Thus the only case we need to be concerned of a possible

manipulation is when P changes to P ′ in such a way that {i : Ri = I} = {4}

changes to {i : R′
i = I} ≠ {4} and vice versa.

Suppose P ∈ DC is such that {i : Ri = I} = {4} and P ′ = (R′
j, R−j) ∈ DC

is such that {i : R′
i = I} ≠ {4}. If R′

j = R′
4, then f(P ′) is no better for voter 4

since R4 = I originally. Since P ∈ DC with say fC(P ) = x, for some x ∈ A, then

|Nxy(P )| > |Nyx(P )| for all y ∈ A \ {x}. If Rj for j = 1, 2, or 3 changes their

preference to R′
j = I then since P ′ ∈ DC, |Nxy(P

′)| > |Nyx(P
′)| for all y ∈ A \ {x}.

Finally, suppose P ∈ DC is such that {i : Ri = I} ≠ {4} and P ′ = (R′
j, R−j) is such

that {i : R′
i = I} = {4}. If r1(R

′
1) = fc(P ) then f(P ) = f(P ′). If r1(R

′
1) ̸= fC(P ),

with say r1(R
′
1) = y and fC(P ) = x, then |Nxy(P )| = 2 implying x R4 y. Thus no

manipulation occurs in this case. Therefore f is strategy-proof.
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4.3 Strategy-proof and Neutral Social Choice Functions

We begin by defining a restriction of the domain DC . We are interested in the

subset of profiles where all preferences have a singleton as the top ranked alternative

and a singleton as the second ranked alternative but can have indifference elsewhere.

We will use the following notation for these preferences:

W 1
2 (A) = {Ri ∈ W (A) : a singleton ranked on top and second}

Then our domain is as follows:

D∗
C = {P ∈ DC : Ri ∈ W 1

2 (A) for all i ∈ {1, . . . , n}}

Since L(A) ⊆ W 1
2 (A), our chain of domains now look like this

LC ⊆ D∗
C ⊆ WC

Below is an example of the type of domain we are interested in.

Example 4.6 Let A = {a1, a2, a3, a4}. Then D∗
C consists of profiles that only have

preferences that are strict linear orders or come from the set below.
a1 a1 a1 a2 a2 a2 a3 a3 a3 a4 a4 a4

a2 a3 a4 a1 a3 a4 a1 a2 a4 a1 a2 a3

a3a4 a2a4 a2a3 a3a4 a1a4 a1a3 a2a4 a1a4 a1a2 a2a3 a1a3 a1a2


By defining such a domain, we hope to be able to extend the results of Section 2.3

to include some indifference in the preferences. Consider the function shown below.

Example 4.7 Let m ≥ 3 and n = 2k ≥ 4. Define g : D∗
C → A by

g(P ) = r1
(
R1|A−fC(P )

)
=

 r2(R1) if fC(P ) = r1(R1)

r1(R1) if fC(P ) ̸= r1(R1)

This rule is neutral and strategy-proof. Below we prove that this is indeed true.
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Let P ∈ D∗
C and let ϕ be a permutation on A such that ϕ(P ) ∈ D∗

C. Since

majority rule is neutral, fC(ϕ(P )) = ϕ(fC(P )). Then by the definition of g we have

g(ϕ(P )) =

 r2(ϕ(R1)) if fC(ϕ(P )) = r1(ϕ(R1))

r1(ϕ(R1)) if fC(ϕ(P )) ̸= r1(ϕ(R1))

Then we see r2(ϕ(R1)) = ϕ(r2(R1)) and r1(ϕ(R1)) = ϕ(r1(R1)). Also

fC(ϕ(P )) = r1(ϕ(R1)) ⇐⇒ ϕ(fC(P )) = ϕ(r1(R1)) ⇐⇒ fC(P ) = r1(R1)

since ϕ is a one-to-one function. Thus we can re-write g(ϕ(P )) as

g(ϕ(P )) =

 ϕ(r2(R1)) if fC(P ) = r1(R1)

ϕ(r1(R1)) if fC(P ) ̸= r1(R1)
= ϕ(g(P ))

Now to see that g is strategy-proof, suppose P ∈ D∗
C and R′

i ∈ W 1
2 (A) with

i ∈ {1, 2, . . . , n} satisfies Q = (R′
i, R−i) ∈ D∗

C. Since n is even and P,Q ∈ D∗
C,

fC(P ) = fC(Q). If i ̸= 1, then Q1 = R1 thus it follows that g(P ) = g(Q). But if i =

1 we have two possibilities. First, if g(P ) = r2(R1) then fC(P ) = r1(R1) = fC(Q).

If g(Q) ̸= fC(Q) then g(Q) = g(P ) = r2(R1) or g(P )R1g(Q). In either case, no

manipulation occurs. Second, if g(P ) = r1(R1) then either g(Q) = g(P ) = r1(R1)

or g(P )R1g(Q). Thus again, no manipulation occurs. Additionally g is clearly not

anonymous nor does it satisfy unanimity.

Example 4.7 rephrases Example 2.4 within the context of the domain D∗
C .

This example gives rise to the idea of a majority avoiding dictatorship. Below we

extend the definition of majority avoiding dictatorship from LC to D∗
C .

Definition 4.5 We will say that g : D∗
C → A is a majority avoiding dictator-

ship (MAD) if there exists j ∈ N such that g(P ) = r1(Rj|A−fC(P )).

Recall that in Section 2.3 the characterization of strategy-proof and neutral

rules was dependent on the parity of n. This was due to the fact that a strategy-

proof and surjective function defined on the Condorcet domain, LC , must satisfy
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unanimity when n is odd (as shown in the proof of Theorem 1 in Campbell and

Kelly [4]). We will show this also holds in our current domain. Since profiles in D∗
C

all have single elements on top, our definition of unanimity from the introduction

still holds.

Lemma 4.1 For any m ≥ 3 and for any odd integer n ≥ 3, if f : D∗
C → A is

strategy-proof and surjective then f satisfies unanimity.

Proof :

Suppose f : D∗
C → A is strategy-proof and surjective but does not satisfy

unanimity. Then there exists a profile P = (R1, . . . , Rn) ∈ D∗
C such that r1(Ri) = x

for i = 1, . . . , n but f(P ) ̸= x. Say f(P ) = y for some y ∈ A \ {x}. Note that

fC(P ) = x. By strategy-proofness we can move y up to be the second ranked element

in each preference and maintain f(P ) = y and fC(P ) = x. Let Q = (Q1, . . . , Qn)

be a profile where each Qi ∈ L(A) with r1(Qi) = x and r2(Qi) = y. Then Q ∈ LC

with fC(Q) = x. Let {P t : t = 0, . . . , n} be the standard sequence of profiles from

P to Q. Note that fC(P
t) = x for t = 0, . . . , n and so all these profiles belong to

the domain D∗
C . Moreover, by strategy-proofness, f(P t) = y implies f(P t+1) = y

for t = 0, . . . , n− 1. But P n = Q ∈ LC thus we get a contradiction since f(Q) = x

by Campbell and Kelly [4].

□

With Lemma 4.1 established, we would like to show that when n is even

and our function is strategy-proof, neutral, and does not satisfy unanimity then the

output is never the Condorcet alternative; the function in Example 4.7 is one such

function.

Lemma 4.2 For any m ≥ 3 and for n an even integer, if f : D∗
C → A is strategy-

proof, neutral, and violates unanimity, then f(P ) ̸= fC(P ) for all P ∈ D∗
C.
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Proof :

Assume that there exists a profile P = (R1, . . . , Rn) belonging to D∗
C such

that f(P ) = fC(P ) = x. From P ∈ D∗
C , we wish to derive a new profile that

maintains that the Condorcet alternative is x. Let ℓ be a linear order on A such

that r1(ℓ) = x. For each Ri from the profile P such that r2(Ri) = x, construct a

linear order, R′
i, where r1(R

′
i) = r1(Ri) and r2(R

′
i) = r2(Ri) = x. Consider a new

profile P ′′ ∈ D∗
C formed in the following way:

R′′
i =

 R′
i if r2(Ri) = x

ℓ otherwise

Let {P t : t = 0, . . . , n} be the standard sequence of profiles from P to P ′′. Note

that fC(P
t) = x for t = 0, . . . , n and so all the profiles belong to the domain D∗

C .

Then by strategy-proof f(P t) = x implies f(P t+1) = x for t = {0, . . . , n − 1}.

But P n = P ′′ ∈ LC thus by Lemma 2.2, f(P ) ̸= fC(P ) for all P ∈ LC . This

contradiction completes the proof.

□

Utilizing Lemma 4.2 and Lemma 4.1, we believe that a generalization of

the characterization of strategy-proof and neutral social choice functions can be

extended from LC to D∗
C . It seems likely that strategy-proof and neutral functions

would behave similarly in this domain. One reason, is we know we can construct

a function that will be dictatorial (as we did in the proof of Theorem 2.4). This is

due to the fact that the Gibbard-Satterthwaite Theorem extends nicely to voting

with weak orders. Below is the definition of a weak dictatorship followed by the

theorem. Both of these are taken from the work of Taylor [23] and translated into

our current notation.

Definition 4.6 We say that a social choice f : W (A)N → A is a weak dictator-

ship if there exists a voter j such that for all P ∈ W (A)N f(P ) ∈ r1(Rj). Then we

call voter j a weak dictator.
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Theorem 4.2 (The Gibbard-Satterthwaite Theorem with Weak Orders)

For n a positive integer and m ≥ 3, then any social choice function f : W (A)N → A

that is surjective and strategy-proof is a weak dictatorship.

Theorem 4.2 requires that the number of alternatives be at least three, just

as the original phrasing of the Gibbard-Sattherwaite. Therefore to utilize Theorem

4.2 to get a characterization of strategy-proof and neutral rules, we look at the

number of alternatives being at least four so that we can define a function on a

restriction of the domain D∗
C . Below we present some notation for how we think

such a restriction will need to be constructed.

LetW (A)12|A\{x} be the preferences fromW (A)12 with the alternative x deleted

from the ordering with all other relative rankings maintained. To illustrate how

these preferences will look consider the following example. Since we know how lin-

ear orders look when we delete a single alternative, we focus on preferences that

have indifference.

Example 4.8 Let A = {w, x, y, z}. Then the following preferences are three of the

types of preferences with indifference from W (A)12
x y z

y x y

wz wz wx


Now if we remove x from the ordering but maintain all other relative rankings we

have the following preferences in W (A)12|A\{x}
y y z

wz wz y

w


Now we want to define a restriction of our domain. We have

D∗
C\x = {P ∈ D∗

C : Ri ∈ W 1
2 (A)|A\{x} for all i ∈ {1, . . . , n}}
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With this notation in mind we present the following conjecture.

Conjecture 4.1 For any m ≥ 4 and for any even integer n ≥ 4, f : D∗
C → A is

strategy-proof, neutral, and violates unanimity if and only if f is a majority avoiding

dictatorship.

Notice this conjecture is for m ≥ 4. We do not know yet what strategy-proof

and neutral functions will look like for m = 3 and an even number of voters. We

hope to explore this question in the future.
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CHAPTER 5

CONCLUSIONS

In this dissertation we explored social choice functions on Condorcet do-

mains, paying particular attention to functions that satisfy the property of strategy-

proofness. Throughout our work we considered what happens when we add or

remove other desirable properties of social choice functions such as unanimity, neu-

trality, and whether a function satisfies anonymity or must be non-dictatorial.

Much of this work focused on presenting a characterization of majority rule

as the only strategy-proof, neutral, and anonymous social choice function on the

relevant domain (LC , SP (A)N , and DC). Yet even though majority rule always

satisfies these properties, there are certain cases where a function, distinct from

majority rule, is characterized by these properties (see Proposition 2.1 and Example

3.10). Below we present one more example of a function defined on a subdomain

of LC that is strategy-proof, neutral, and anonymous yet is distinct from majority

rule.

Example 5.1 Let A = {a1, a2, a3, a4} and

Σ =



a1 a2 a1 a2

a2 a1 a2 a1

a3 a3 a4 a4

a4 a4 a3 a3


Assume n is an odd integer then ΣN ⊆ LC. Define f : ΣN → A to be majority

rule on {a3, a4}. Then f is strategy-proof, neutral, and anonymous. Clearly f(P ) ̸=
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fC(P ) for any profile P ∈ ΣN .

Reducing the desired conditions for the social choice functions to just strategy-

proofness and neutrality allowed us to arrive at a significant theorem that completely

characterizes the class of functions on LC that satisfy these two properties (see Sec-

tion 2.3). This characterization raised the question of what this class of functions

might look like when we allow for indifference (see Section 4.3), though we have not

yet arrived at a complete characterization in this context.

We now conclude this dissertation with ideas for future work.

5.1 Future Work

5.1.1 Extending the MAC Rule

We believe that there is an extension to our definition of a majority avoiding

committee rule that does not satisfy the condition of neutrality. Thus only our

second condition in the definition would hold. We believe that this extension would

require a committee that is formed for each alternative rather than a general com-

mittee structure which is what allows for neutrality to hold. Below is an example

of what this type of rule may look like for m = 3. We believe this could extend

relatively naturally to any size set of alternatives.

Example 5.2 Let A = {a1, a2, a3} and define a social choice function f : LC → A

as follows:

If fC(P ) = a1, then

f(P ) =

 a2 if Na2a3(P ) = N

a3 otherwise
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If fC(P ) = a2, then

f(P ) =

 a3 if Na3a1(P ) = N

a1 otherwise

If fC(P ) = a3, then

f(P ) =

 a1 if Na1a2(P ) = N

a2 otherwise

To see that this function is not neutral, consider the profile P given below

P =


a1 a1 . . . a1

a2 a3 . . . a3

a3 a2 . . . a2


By definition of f , f(P ) = a3 Let ϕ = (a2a3). Then

ϕ(P ) =


a1 a1 . . . a1

a3 a2 . . . a2

a2 a3 . . . a3


Neutrality would imply that f(ϕ(P )) = a2 but since Na2a3 ̸= N , f(ϕ(P )) = a3.

5.1.2 Classes of Functions That Are Strategy-Proof, Anonymous, and Neutral

As mentioned in Chapter 3, we wonder what the class of functions that

satisfy strategy-proofness, anonymity, and neutrality look like when we look at the

domain SP (A)C , the restriction of the single-peaked domain for and even number

of voters where the Condorcet alternative always exists.

In Chapter 4, we noted that for two alternatives, we have yet to fully char-

acterize the class of functions that satisfies strategy-proofness, anonymity, and neu-

trality when m = 2 and indifference is allowed. We have some work on this question

that can be expanded upon to see if we can get a complete characterization.
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5.1.3 Strategy-proof, Neutral and Non-Dictatorial

Our work often presented characterizations where we replaced the condition

of anonymity with the weaker condition of a non-dictatorship. In the context of the

single-peaked domain, we were able to present a characterization of majority rule

as the only rule that satisfied these properties but that result was only for three

voters (see Theorem 3.2). This leads to the following open problem:

� For n ≥ 3, characterize the rules f : SP (A)N → A which satisfy strategy-

proofness, neutrality, and non-dictatorial.

Theorem 3.2 and Example 3.7 are first steps in solving this problem.
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[8] J. Escoffier, B. Lang and Öztürk M., Single-peaked consistency and its com-

plexity, Proc. of ECAI-08, IOS Press, FAIA 178 (2008), 366–370.

[9] D. S. Felsenthal and N. Tideman, Weak Condorcet winner(s) revisited, Public

Choice 160 (2014), 313–326.

73



[10] D. S. Felsnthal and M. Machover, After two centuries, should Condorcet’s vot-

ing procedure be implemented?, Behavioral Science 37 (1952), 250–274.

[11] A. Gibbard, Manipulation of voting schemes: A general result, Econometrica

41 (1973), no. 4, 587–601.

[12] A. Lahiri and A. Pramanik, On strategy-proof social chioce between two alter-

natives, Social Choice and Welfare 54 (2019), no. 4, 581–607.

[13] B. Larsson and L.-G. Svensson, Strategy-proof voting on the full preference

domain, Mathematical Social Sciences 52 (2006), no. 3, 272–287.

[14] L. N. Merrill, Parity dependence of a majority rule characterization on the

Condorcet domain, Economic Letters 112 (2011), no. 3, 259–261.

[15] B. Monjardet, Condorcet domains and distributive lattices, Annales du LAM-

SADE 6 (2006), 285–302.

[16] , Social choice theory and the “centre de mathématique sociale”. some
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