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ABSTRACT

USING DYNAMIC SCHEMAS FOR QUERY OPTIMIZATION OVER JSON

DATA

Tomás Felipe Llano-Ríos

April 19, 2024

Query optimization in document stores has traditionally relied on rule-based ap-

proaches, but recent research advocates for a shift towards cost-based optimization.

However, this transition is hindered by the fragmented nature of existing approaches,

stemming from the early development stage of cost-based query optimization for doc-

ument databases. A key challenge lies in the absence of a standardized query language

and semantics, exacerbated by the diverse and schema-less nature of JSON document

collections. To tackle these challenges, the literature has proposed dynamic schemas,

primarily utilized at parsing time. However, these schemas lack a formal foundation

that describes meaningful semantics for query optimization. This thesis proposes a

novel framework based on a relational-like plan, employing an algebra to internally

represent queries. By manipulating algebra expressions, multiple plans are generated

and subsequently evaluated for cost. Specifically tailored to JSON data, the thesis

introduces a document algebra designed to accommodate JSON characteristics. Ad-

ditionally, it formalizes a dynamic schema concept termed Data Pilot, inspired by

XML DataGuides. An algebra over Data Pilots is presented, facilitating cardinality

estimation without executing operations, aiding in query optimization. Furthermore,
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the thesis proposes a strategy to determine when query rewriting using Document

Algebra properties may be advantageous. Experimental validation demonstrates the

feasibility of the proposed framework and showcases the construction of Data Pilot

structures. Through this research, a step towards standardized, cost-based query op-

timization in document stores is taken, paving the way for more efficient and scalable

query processing in the future.
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CHAPTER I

INTRODUCTION

In the ever-evolving realm of data management, traditional relational database sys-

tems have long held a position as the industry’s gold standard. Nevertheless, the

limitations of these systems in handling the intricacies of modern data have become

glaringly evident, as they grapple with the relentless surge in data volume, diversity,

and velocity.

To address these formidable limitations, two distinct categories of solutions have

emerged over the years:

Specialized Database Systems These systems are finely tuned to cater to specific

data types, with document databases, such as MongoDB1 and Couchbase2, leading

the charge. Additionally, vector databases like Elasticsearch’s vector database3, time

series databases such as InfluxDB4 and Prometheus5, and graph databases like Neo4j6,

have become prominent players in this landscape.

Multi-Paradigm Database Systems This category encompasses databases that

embrace a multi-faceted approach, incorporating support for various data types. No-

tably, within the realm of relational databases, there have been groundbreaking pro-
1https://www.mongodb.com/
2https://www.couchbase.com/
3https://www.elastic.co/elasticsearch/vector-database
4https://www.influxdata.com/
5https://prometheus.io/
6https://neo4j.com/
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posals such as SQL/JSON, enabling the storage and querying of JSON data us-

ing SQL within a relational database management system (RDBMS). More recently,

SQL/PGQ has emerged, extending SQL to incorporate graph pattern matching ca-

pabilities into existing RDBMSs, a proposal put forth by the SQL standardization

committee.

Remarkably, the lines between specialized and multi-paradigm systems have be-

gun to blur, with specialized systems evolving to support diverse data types. For

instance, MongoDB has introduced specialized storage support for time series data.

In parallel, established relational systems like PostgreSQL and MariaDB offer exten-

sibility via plugins and various storage engines. For instance, MariaDB introduced

a column storage engine with a massively parallel processing shared-nothing archi-

tecture, facilitating distributed data warehousing, a feat that traditional relational

systems have grappled with for years.

However, it is essential to recognize that these solutions are not without their

trade-offs. Specialized systems often encounter scenarios where users require features

from other data paradigms. For example, document databases excel in storing semi-

structured data in JSON format, avoiding the need for a normalized schema found

in traditional relational databases. Users can embed data within a single record that

would typically reside in separate tables in a relational database. This simplifies and

expedites data read and write operations by eliminating the necessity for transforming

semi-structured data into a structured format and eradicating the need for complex

joins.

MongoDB’s evolution is illustrative; it initially lacked an operator analogous to

relational joins, as users were encouraged to perform in-depth analyses in an OLAP

database and utilize MongoDB exclusively for OLTP. However, the burgeoning de-

mand for data analytics and OLAP use cases necessitated the addition of a join-

like operator and the development of a comprehensive query optimizer. Similarly,
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Couchbase, another document database, initially lacked a query optimizer capable

of handling OLAP queries but later introduced a relational-like cost-based query

optimizer7.

Conversely, multi-paradigm databases often grapple with integrating common fea-

tures across data paradigms, such as query optimization and statistics collection. For

instance, PostgreSQL faced criticism after introducing JSON support due to the lack

of statistics and optimization capabilities for this data type[77].

In many instances, the integration of these features becomes challenging due to

the relative novelty of the paradigm and its original intended use case. An illustrative

case in point is the realm of NoSQL document stores. These systems, beyond their

proficiency in handling semi-structured data compared to relational databases, pos-

sess the unique trait of requiring no upfront design efforts. They are often architected

from the ground up for distribution, a characteristic shared by many other NoSQL

systems. This inherent feature allows document stores to be rapidly deployed, par-

ticularly in environments that do not favor centralized architectures. Consequently,

these systems, along with other members of the NoSQL family, present themselves

as viable alternatives to traditional RDBMSs for specific problem domains[32].

However, to achieve some of these advantages, NoSQL systems often find them-

selves compelled to deviate from the traditional relational model[68]. This deviation

can entail limitations on optimization or require the management of data in superset

formats such as JSON, a domain where research is still maturing. These trade-offs,

naturally, carry over to Multi-Paradigm systems that incorporate these paradigms.

This thesis centers its focus on the JSON document model. JSON has not only

gained prominence as one of the most prevalent data formats in recent years, thanks

to its widespread use in web environments and data interchange, but also presents

ample room for improvement within the scope of database research. Specifically, it

offers promising avenues for enhancement in the domain of query optimization.
7https://www.couchbase.com/blog/cost-based-optimizer-for-couchbase-n1ql-sql-for-json/
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In the forthcoming chapters, Chapter II will commence by providing essential

background information about NoSQL databases in a general context. This chapter

will introduce various common data models and query languages while delving into

the specific nuances associated with document databases. It will also address the typ-

ical challenges encountered when optimizing queries over JSON data for two leading

(formerly) specialized systems, MongoDB and Couchbase, as well as for one of the

most prominent multi-paradigm RDBMSs, PostgreSQL. To illustrate and analyze the

complexities involved in query optimization for JSON, an experimental comparison

will be conducted.

Following that, Chapter III will outline the proposed approach to query opti-

mization. It will dissect each component of a theoretical cost-based optimization

framework designed for the JSON document model, elucidating the rationale behind

its inclusion in the framework.

Chapter V will delve into a theoretical data structure known as a Data Pilot and

its pivotal role in query optimization, particularly when indexes are either unusable

or unavailable.

Chapter VI will present the results of a simulation of the approach proposed in

Chapter III, substantiating its feasibility through empirical evidence.

Lastly, Chapter VII will provide an exploration of research related to the Data

Pilot structure, the proposed cost-based query optimization approach, and theoretical

formalizations pertinent to the JSON model. This chapter will also offer insights into

avenues for future research.
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CHAPTER II

BACKGROUND

1 Introduction

The term “NoSQL” can be perplexing for readers due to its various interpretations

over the years [51][68]. Thus, it is imperative to establish a precise definition within

the context of this thesis. Sharp-eyed readers may have observed its casual usage

in the previous chapter without prior clarification. This was intentional because the

interpretations of “NoSQL” that were implied in Chapter I encompass all the systems

discussed.

Originating back to 1998, Carlo Strozzi coined the term "NoSQL" for his relational

database, which is still available for download1. Unlike conventional databases, this

system didn’t employ SQL queries; instead, it used shell commands inspired by the

UNIX file structure, where commands resembled UNIX utilities. For example, to

create a table, a user would first craft a template in a text file (e.g., template.tpl),

specifying the table’s column names and descriptions. Subsequently, the user would

deploy commands like nosql maketable < template.tpl | nosql write -s ta-

ble.rdb to create the new table as a file. Here, nosql write functioned akin to

the UNIX tee utility, with the -s option suppressing STDOUT. In this instance,

“NoSQL” pertained to a specific system rather than a category, implying that a

NoSQL database referred to any database devoid of a SQL query interface, irrespec-

tive of whether it adhered to the relational model or not.
1http://www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/NoSQL/Home%20Page
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Conversely, when Eric Evans reintroduced the term in 2009, it referred to the

burgeoning array of specialized, non-relational distributed databases of that era[51].

Under this interpretation, a NoSQL database was one specialized in managing non-

relational data, signifying a departure from the relational model but not necessarily

from the SQL language itself. Accordingly, a NoSQL database, under this definition,

could offer a variety of query interfaces, including SQL. This interpretation is now

commonly referred to as “Not only SQL”.

While the second interpretation has gained widespread acceptance, it still occa-

sionally leads to confusion:

• From an implementation perspective, relational database management systems

(RDBMSs) are assumed to store table records row-wise, but they can also

store them column-wise, a fundamental principle of column-oriented databases.

While the relational model is conceptually independent of implementation specifics,

it is often associated with row-wise data storage. Consequently, column-oriented

databases are sometimes categorized as NoSQL databases, even though their

theoretical foundation remains relational.

• Systems that initially operated as RDBMSs are progressively evolving into

multi-paradigm databases as they adopt the new SQL standard and incorpo-

rate JSON data. Thus, systems like PostgreSQL or MariaDB, which already

support JSON, could be seen as “Not only SQL” systems. Nonetheless, they

are still primarily regarded as relational databases.

Within the context of this thesis, a NoSQL system aligns with the “Not only SQL”

interpretation but also maintains a history of being non-relational and lacking SQL

support from its inception. Therefore, systems traditionally classified as RDBMSs,

such as MariaDB and PostgreSQL, retain their classification in this thesis, even as

they incorporate features from non-relational systems.
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This chapter serves as an introduction to contemporary NoSQL data paradigms

and the popular query languages associated with the data types they handle. It also

delves into the transformative journey of JSON document stores, as they evolve into

OLAP-capable systems, shedding light on the myriad challenges they encounter. Of

particular focus is the central issue that forms the core of this thesis.

Special emphasis is placed on the structural aspects of the data these databases

store and how these structural nuances significantly impact the key metrics used to

assess their performance in specific use cases, which are explored within this thesis.

To provide readers with a solid foundation, Section II.2 offers a concise overview

of pertinent information from relational databases. This overview serves as a base-

line, enabling readers to discern the primary motivations and differentiating factors

between NoSQL systems and their relational counterparts.

Section II.3 dives into various NoSQL paradigms, elucidating their core features

and data management approaches. This section provides essential context for under-

standing the diversity and nuances of NoSQL databases.

Section II.4 takes a deep dive into document databases, offering a comprehensive

understanding of their unique characteristics and addressing the specific challenges

they encounter when tasked with data analytics responsibilities.

Lastly, Section III.1, elucidates on the central problem that forms the focal point

of this thesis. This section is complemented by a series of illustrative experiments

that substantiate and reinforce the core issue at hand.

2 Relational Databases

Before the relational model, data management was characterized by the use of net-

work databases, which essentially comprised a collection of interconnected records,

or hierarchical databases, where data resided in tree-like structures, with each record

connected to one or more parent records. In these models, programmers were tasked

with determining the navigational paths between various entities during the database
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design phase. Think of it as envisioning a directed graph, with entities as nodes. Con-

sequently, if a particular navigation path was absent, programmers were compelled to

either overhaul the entire database design or implement query logic at the application

level. This phenomenon, aptly named “path dependency” by [21], gave rise to three

primary challenges:

• Hierarchical Ambiguity: Data represented in tree or network structures

could assume multiple hierarchies. Deciding which hierarchy to adopt was far

from straightforward, as certain queries would require significantly more effort

in some hierarchies than in others.

• Access Path Reliance: Applications were heavily reliant on specific access

paths to reach the data, making them susceptible to disruptions if the structure

of the data changed.

• Redundancy: In hierarchical systems, particularly when many elements of one

entity were related to many elements of another (and vice versa), hierarchies

often necessitated the storage of multiple redundant copies of certain data.

The inception of the relational model was driven by the need for efficient data storage

that minimized redundancy. This was of paramount importance at a time when stor-

age resources were scarce and costly. Storing each piece of data just once translated

to significant cost reductions in an era when storage was at a premium. [21, 69, 3].

Furthermore, the relational model was meticulously crafted with a paramount

focus on data independence. This design principle empowered developers to write

queries in a declarative manner, effectively shielding them from the labyrinthine in-

tricacies of low-level implementation and performance concerns. This was in stark

contrast to the procedural query construction necessary in network and hierarchical

databases.

These remarkable achievements were made possible through the introduction of

a fundamental concept known as the “schema” [1]. This schema serves as the archi-

8



tectural blueprint for a database, defining its structure at two essential levels: the

logical and the physical.

The logical schema provides a high-level, conceptual framework for defining data

structure. It outlines how data is modeled into tables, specifying their attributes and

the intricate relationships between them. In more precise terms, it articulates that

within a relational data perspective, a relation (in the mathematical sense) denoted

as R is a set of n-tuples, where the first element of each tuple belongs to set S1,

the second to S2, and so forth. In essence, this translates to R being a subset of

S1 × S2 × · · · × Sn. When visually represented as a table, each row embodies one of

these n-tuples, rendering their order inconsequential (in the same manner as tuples),

and necessitating that every row remains distinct (akin to each tuple). Each column,

in turn, embodies one of the domains, such as Si, maintaining alignment with the

ordering S1, S2, . . . Sn of R’s domains.

Conversely, the physical schema plunges into the granular depths of data storage,

encompassing both disk and memory configurations, indexing mechanisms, and op-

timization strategies, including the vital realm of statistics. It is within this schema

layer that all performance and efficiency-related intricacies come to fruition.

The concept of a schema has wielded and continues to wield profound implications

for both database theory and the development of database applications.

The logical schema enables applications to seamlessly manipulate data through

operations designed over the relational model. These operations, capable of deriving

relations from other relations, provide a powerful and abstract means of interacting

with data. Crucially, any low-level data management concerns are deftly handled by

the database system at the physical level. This means that a logical operation can

find myriad physical implementations, with the system selecting the most suitable

one based on the specific query at hand. Notably, modifications at the physical level,

whether involving data representation on disk or the intricate implementations of

relational operators, have no bearing on how queries are formulated.

9



The division of the schema into logical and physical tiers has been instrumental

for researchers, affording them the opportunity to delve into each level independently

[1]. At the logical level, database theory researchers have dedicated substantial effort

to the exploration of query languages. They have scrutinized their complexities and

expressive capabilities, forging close ties with complexity theory and logic—a trifecta

of intertwined subjects. Noteworthy among these languages are relational algebra,

relational calculus, and nonrecursive datalog with negation, forming the bedrock for

SQL. For this thesis, the most pertinent of these languages is relational algebra (RA),

including the following operations over relations: projection (π), selection (σ), join

(▷◁), union (∪), intersection (∩), difference (−), Cartesian product (×), and rename

(ρ).

On the flip side, at the physical level, researchers have devoted their energies to

the efficient storage and the nimble implementation of algorithms. These endeavors

are aimed at delivering the expected functionality of relational operators established

at the logical level.

Eventually, the proliferation of tools tailored for the analysis of vast datasets

charted a course for this research to give birth to the SQL language. SQL was crafted

for query-intensive applications and a query evaluation framework, comprising dis-

tinct phases: (1) Parsing and translation, (2) optimization, and (3) evaluation [3]. In

the first phase, the query is translated into a relational algebra expression, which is

subsequently passed to the optimizer. The second phase leverages collected statistics

about the data to reconfigure the relational algebra expression into a more efficient

counterpart. In this process, the system catalog provides semantic information used to

rewrite the query based on algebraic-rules (i.e. rule-based optimization) and statistics

used to produce feasible logical and execution plans (i.e. cost-based optimization).

Each operation is annotated with instructions on its evaluation—this entails specify-

ing the algorithm for the operation or stipulating a particular index or set of indices

to utilize. This process culminates in the construction of a query-execution plan.

10



Finally, in the third phase, the executor, also known as the query-execution engine,

takes the query-execution plan, executes it, and furnishes the answer to the query.

This query evaluation framework is depicted in Figure 1.

SQL Query

Relational Algebra (RA)
query

Parser and query
translator

RA-query
transformer

Estimator

Optimizer

Plan generator

Executor

Rewritten RA-query

RA-query + estimates

Query execution plan

Semantic
information

Statistics

System Catalog

Result

Database

Data

Figure 1. SQL query processing workflow

Example 2.1. Consider a database comprising two tables, with column names en-

closed in parentheses: Employee(E-ID, E-Name, E-LastName, E-Age, E-DeptID)

and Department(D-ID, D-Name). Assume that the Employee table contains 50 rows,

while the Department table contains 3 rows. Now, consider the following relational

algebra queries:

Q1 = πE-ID,E-Name,D-Name (σE-DeptID=D-ID∧E-Age>25 (Employee×Department))

Q2 = πE-ID,E-Name,D-Name (σE-Age>25 (Employee) ▷◁E-DeptID=D-ID Department)

At the logical level, both Q1 and Q2 aim to answer the same question: What are

the names and departments of employees over the age of 25? Consequently, Q1 and

11



Q2 are equivalent as they yield identical results. However, if an optimizer is presented

with Q1, it is highly likely to transform it into Q2, or even further optimize it. Here

is why:

Q1 computes all conceivable combinations of records between the Employee and

Department tables, resulting in a table with 3 ∗ 50 = 150 rows when evaluating

Employee × Department. Conversely, Q2 initially filters the Employee table to se-

lect a subset of rows containing employees older than 25. These selected n rows

are subsequently joined with Department rows having matching department IDs

(E-DeptID = D-ID). This operation generates a table with a maximum of n rows

when computing: σE-Age>25 (Employee) ▷◁E-DeptID=D-ID Department. In the worst-case

scenario, where all employees are over 25, n equals 50. Consequently, Q2 requires the

storage of a maximum of 50 rows in memory, while Q1 necessitates three times as

much space (i.e., a 200% increase in memory usage).

At the physical level, once the optimizer has selected Q2, it proceeds to con-

struct the query-execution plan. The choice of join algorithm depends on the specific

database system but typically includes options like “Nested Loop”, “Hash Join”, and

“Merge Join”. Given the relatively small size of the tables in this example, the opti-

mizer is likely to employ the “Nested Loop” implementation for the join operation.

For the selection on the Employee table, it will either conduct an index scan if a

suitable index exists or resort to a full table scan.

As relational databases began to grapple with more intricate and hierarchical data

structures, such as arrays and records, it became increasingly clear that the traditional

relational model alone would not suffice. This was primarily because data structured

in such hierarchical ways did not seamlessly fit into the flat, tabular representations

of tables, often leading to redundancy—something the relational model was initially

designed to minimize.

To address these challenges, the Nested Relational Model was introduced, allowing

relations to have attributes with relation values. In this model, queries were formu-

12



lated using various forms of nested relational algebra (NRA). Some of these algebras

extended the traditional relational algebra by introducing additional operators such

as nest and unnest. These operators were used to transform nested relations, bringing

relevant attributes to the outermost level, where regular relational algebra operators

could be applied. Once the necessary operations were completed, attributes could be

nested back to replicate the original nested structure. An influential example of such

an algebra is the Thomas and Fischer NRA[31, 30].

D-ID D-Name Employee
E-ID E-Name E-LastName E-Age

1 Human Resources 2 Jane Doe 30
5 Hunter Smith 40

2 Information Technology
1 Jhon Doe 25
3 Levi Smith 45
4 Sean McCormick 20

Figure 2. Example of relation Department with nested relation Employee

D-ID D-Name E-ID E-Name E-LastName E-Age
1 Human Resources 2 Jane Doe 30
1 Human Resources 5 Hunter Smith 40
2 Information Technology 1 Jhon Doe 25
2 Information Technology 3 Levi Smith 45
2 Information Technology 4 Sean McCormick 20

Figure 3. Example of unnested relation Employee from Figure 2

Example 2.2. Consider the nested relation shown in Figure 2. Writting a query in

Thomas and Fischer NRA equivalent to those of Example 2.1 would look as follows:

πE-ID,E-Name,D-Name(σE-Age>25(µEmployee(Department)))

the query reads from right to left: unnest (µ) the attribute Employee from relation

Department, which produces the table shown in Figure 3. Then filter out and retain

employees whose age is greater than 25. Finally, output the id and name of such

employees alongside the name of the department they belong to.

13



It is worth mentioning that traditional relational operators alone would not suffice

to express the query from this example, as they can only operate on flat relations.

Thus, the introduction of unnest becomes necessary.

Other approaches focused on defining operators that could manipulate nested

attributes directly, eliminating the need for prior flattening. These extended the

selection operator to support subrelation constructs, enabled navigation (traversal of

nested relations), and facilitated modification of nested relations. The Deshpande

and Larson NRA[25] is a notable example of this category.

Yet another approach, exemplified by the Latha S. Colby NRA[23], redefined

relational operators and the nest and unnest operators originally introduced in the

Thomas and Fischer NRA. This redefinition allowed these operators to operate recur-

sively, enabling them to work on subrelations without the requirement of flattening

beforehand.

To conclude this concise overview of relational databases, it is essential to un-

derscore the pivotal roles played by the schema and the optimization phase in the

query evaluation process. These two foundational concepts have been instrumental

in allowing relational query optimizers to achieve the remarkable robustness and effi-

ciency they exhibit today. Interestingly, this level of robustness is a benchmark that

NoSQL databases are now actively striving to incorporate into their systems, as they

seek to tackle similar challenges in the world of modern query-intensive applications.

3 NoSQL Databases

The 1990s witnessed the explosive growth of the World Wide Web, leading to a

significant increase in the deployment of relational databases[3]. Relational databases

not only had to handle this surge in demand but also adhere to high standards of

reliability and availability. Over the years, as the influx of data continued to swell,

these databases evolved to support not only high transaction-processing rates, crucial
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for update-intensive applications, but also a robust analytics engine.

However, with the realization that web logs held valuable insights into user be-

havior, companies sought to leverage this data to enhance marketing and advertising

campaigns, driving the need for a different approach. It became evident that tra-

ditional RDBMSs were ill-equipped to handle the rapidly accumulating textual and

semi-structured data, now known as Big Data. Additionally, as applications became

increasingly interconnected, data of various types and formats arrived from multiple

sources, necessitating extensive data transformations to conform to the rigid con-

straints imposed by the relational model. These transformations, often managed at

the application level, added significant time to data insertion and updating processes.

Big Data is typically distinguished from relational databases across several key

dimensions: Volume, Velocity, Variety, Value, and Complexity[43]. Volume pertains

to the sheer quantity of data, which even parallel relational databases struggled to

manage, as they were originally designed to operate across tens to a few hundred

machines in parallel[3]. Big Data use cases often necessitated thousands of machines.

Velocity relates to the speed at which data arrives, with streaming services being

a prime example. This metric encompasses not only data transmission speed but

also the time it takes to ingest (i.e., extract-transform-load) data. Variety reflects

the diversity of data formats, including text, video, and audio, used by applications.

Value indicates the usefulness of data in decision-making, which can be challenging

to discern, particularly with unstructured data, often requiring data exploration as a

preliminary step. Complexity denotes the interconnectedness of data structures and

the potential impact of minor changes.

From an analytics perspective, these metrics represent challenges to efficient data

utilization. Notably, Data Variety emerged as a top concern for analytic sprawl due to

the loss of advantages offered by schema-based relational databases. These advantages

included data integrity, consistency, and abstraction, the flexibility to modify the

logical schema without affecting the physical one, and robust query optimization.
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To address these challenges, NoSQL systems have progressively evolved. In the

2000s, early NoSQL systems offered lightweight data management without a high-

level query language like SQL and relied on "eventual consistency," where distributed

copies of data could be inconsistent but would eventually reconcile. This schema-less

approach allowed rapid data ingestion and granted applications greater flexibility

when dealing with distributed data stores. While these relaxed data management

schemes offered scalability and availability benefits highly valued by applications,

they also brought the challenge of complex system maintenance for database admin-

istrators.

In response to these challenges, modern NoSQL systems have incorporated stricter

notions of consistency. Furthermore, they have started developing declarative query

languages tailored to certain semi-structured data formats, exemplified by the SQL++

query language, which operates seamlessly on JSON data, and are currently working

towards strengthening their query optimizers to meet the demands of query-intensive

applications.

One of the primary challenges faced by NoSQL database systems in terms of

optimization is the absence of a clear and universally applicable logical data model

with well-defined mathematical foundations, as noted by [68]. In contrast to the

early days of relational databases, where significant research efforts were dedicated to

developing the relational model and its associated algebraic frameworks, the initial

focus of NoSQL databases was predominantly on the physical properties of data, their

storage, and their distribution across multiple systems.

Legacy NoSQL Systems

Object-Oriented Database Systems (OODBMS)

As mentioned in Section II.2, relational databases primarily focused on simple or

atomic data types and their structural representation within the data. However,

during the rise of the object-oriented movement in the 1990s, there was a growing
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demand for support for more complex data types and nested structures. This was

particularly evident because the object-oriented data model was closely aligned with

popular programming languages of that era, such as Simula 67, Smalltalk, C++, and

Java. Programmers saw significant advantages in directly mapping classes, objects,

and attributes to databases due to the striking similarities between the object-oriented

and relational models. In this mapping, classes resembled relations, objects or class

instances corresponded to tuples, and class attributes were analogous to columns[50].

However, certain concepts from the object-oriented model, such as inheritance,

did not have a straightforward translation to the relational model. For instance, in

object-oriented programming, an attribute a of some class C could be of an abstract

class type A. In this scenario, two different objects, O1 and O2, both of type C, might

have attributes O1.a and O2.a holding instances I1 and I2 of concrete subclasses of A,

respectively. In the relational model, a would typically be represented as a domain

(i.e., a column) in the relation C. However, I1 and I2 cannot coexist in the same

domain because they are fundamentally of different types, and RDBMSs lack the

concept of inheritance[50].

Today, the common approach to model such cases in RDBMSs is to use an Object-

Relational Mapping (ORM) framework like Hibernate. These frameworks handle the

translation between the object-oriented and relational models. In this approach,

the framework maps concrete classes to new relations and establishes relationships

between them and class C based on the specified relationship type (1-1, 1-M, M-N)

indicated by the user at the application level. ORM tools also provide an API for per-

forming CRUD operations, making it easy to create, insert, delete, or update records

that are distributed across multiple tables. These tools abstract complex operations

like joins by providing programmers with predefined functions that execute queries at

the database level to populate objects with information stored in multiple tables. In

contrast, back in the 1990s, this translation process was performed manually by pro-

grammers, often involving extensive schema planning and meticulous manipulation
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of indexes[50].

On the other hand, Object-Oriented Database Management Systems (OODBMSs)

allowed the storage of complex, nested data types without requiring prior knowledge

of how user-defined abstract data types (ADTs) functioned[50]. This flexibility had

the advantage of eliminating the need for joins in some cases, resulting in faster

queries. Furthermore, OODBMSs enabled the sharing of inherited objects across

programs and supported computationally complete operations on data, in contrast

to the distinctions between class methods and stored procedures in RDBMSs[50].

As mentioned in [50], queries in OODBMSs were expressed in the Object Query

Language (OQL), a SQL-like query language that, at the time, extended the SQL-92

select-from-where syntax with additional features for path expressions, complex

objects, and inheritance. Notably, OQL was not a complete language like SQL,

as it relied on object-defined methods to handle updates and invoked state-altering

methods such as create(), add(), delete(), etc., closely bound to the programming

language. Path expressions in OQL made it a navigational language, enabling the

traversal of references from one retrieved object to another.

However, despite the existence of a standard, most products at the time only par-

tially implemented it or had their own dialects. Unlike SQL, which also has its share

of dialects, the close integration with programming languages and object-oriented

features made the divergence of internal models handled by OODBMSs a signifi-

cant concern. Moving to another system or migrating data often posed substantial

challenges[50]. Another issue was the management of primitive (non-complex) data

types, which OODBMSs typically handled less effectively compared to RDBMSs[50].

XML (document-oriented) Database Systems

An attempt was made to create a unified data model that could accommodate various

types of data in the form of XML documents. Back then, and as of today, XML data

can be well-structured or loosely-structured[33]. A well-structured XML document
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follows a relatively fixed schema and is typically used for communication between ap-

plications. In contrast, a loosely-structured XML document usually prioritizes human

readability and does not have a well-stablished schema. Hence, well-structured XML

documents are generally easier to parse than loosely-structured XML documents. An

example of these two types of XML documents is shown in Figure 4.

<Message>
<Talk date="2023−01−10" time="20:00">

The Future of Databases
</Talk>
<Location> Jhon Doe Hall </Location>

</Message>

(a) well-structured XML

<Message>
All students, please attend to the Talk
<Talk> The Future of Databases </Talk> given at
<TalkLocation> Jhon Doe Hall </TalkLocation>
<TalkDate> 2023−01−10 </TalkDate>
<TalkTime> 20:00 </TalkTime>

</Message>

(b) loosely-structured XML

Figure 4. Example of XML document types

The query evaluation process within early XML systems, most notably the Lore

system, bore a resemblance to RDBMSs’ query evaluation. This architecture closely

adhered to the schematic representation illustrated in Figure 1. Notable distinctions

included the use of “Lorel” (Lore Language) for query composition, an Object Query

Language (OQL)-based language featuring a SQL-like select-from-where syntax[2].

The internal data model employed for XML was the Object Exchange Model (OEM),

which resembled a labeled directed graph[66]. The optimization process encountered

familiar challenges from Relational DBMSs, along with additional complexities such

as efficient traversal of subelements and reference links, often referred to as path

traversals[55].

One of the primary concerns in this pioneering system revolved around adapting

collected statistics to suit the graph-like data model. Among these statistics, a criti-

cal component was the description of the graph’s shape, essentially an approximation

of the logical schema. This proved immensely valuable for the optimizer as it facil-

itated the discovery of optimal or near-optimal navigation paths. The intricacies of

navigating paths were so profound that the system resorted to the aggressive appli-

cation of new heuristics, surpassing those typically utilized by traditional RDBMSs.
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To illustrate the concept of an XML document visualized as an OEM graph, Figure 5

presents an adapted example from [20].

<AGroup>
<person id="&1">

<name>
<firstname> Jhon </firstname>
<lastname> Doe </lastname>

</name>
<address> Atlanta </address>
<email> jhon@doe </email>
<company−link company="&2">

</person>
<company id="&2" name="cnn">

<person−link person="&1">
<url> http://cnn.com </url>

</company>
<person id="&3" school="&4">

<name>
<firstname> Jane </firstname>
<lastname> Doe </lastname>

</name>
<address> Seattle </address>
<school−link school="&4">

</person>
<school id="&4" name="snu">

<baseball−team> lions </baseball−team>
<person−link person="&3">

</school>
</AGroup>

&0

&1

&5 &7 &8 &9

&14 &15

&14 &15

&12 &13

&6

&2 &3 &4

person

person

DBGroup

person

person

company

school

school

name

"Jhon" "Jane"

"snu" "lions"

"Doe""Doe"

"jhon@doe"

email name name
name

baseball-team

url

"cnn" "http://cnn.com"

Figure 5. Example XML data and OEM graph

Apart from Lorel, the early days of XML databases saw the emergence of sev-

eral other XML query languages, including XML-QL and YaTL. These languages

shared commonalities in their querying approaches and expressive capabilities[29].

As XML gained prominence, a plethora of languages were crafted, some serving pur-

poses beyond mere querying. Among these, three distinguished themselves as the

most prominent: XSLT, XQuery, and XPath.

XSLT, or eXtensible Stylesheet Language - Transformation, was designed to per-

form transformations on XML data, converting it into various other formats such as

HTML, RDBMS load files, plain text (including CSV), PDF, or even another XML

document with a distinct tag set. Its primary role revolved around altering the display

format of information contained within one or multiple XML documents.

On the other hand, XQuery was tailored explicitly for querying XML databases,

akin to how SQL operates on Relational Database Management Systems (RDBMSs).
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While XQuery possessed the capability to convert one XML document into another,

it did not match the transformation prowess of XSLT.

XPath, in essence, functions as a subset of both XQuery and XSLT. It serves

as the syntax for navigating through XML documents. These three languages were

thoughtfully designed to work in concert. For instance, an application could ex-

tract data from an XML database using XQuery, articulating navigational queries

via XPath, and finally present the results to users by employing XSLT transforma-

tions.

Example 3.1. Consider the following XML document:
<company>

<employees>

<employee id="1" age="25">Jhon Doe</employee>

<employee id="2" age="30">Jane Doe</employee>

<employee id="3" age="45">Levi Smith</employee>

<employee id="4" age="20">Sean McCormick</employee>

<employee id="5" age="40">Hunter Smith</employee>

</employees>

<department id="1">

<name>Human Resources</name>

<employeeRef>2</employeeRef>

<employeeRef>5</employeeRef>

</department>

<department id="2">

<name>Information Technology</name>

<employeeRef>1</employeeRef>

<employeeRef>3</employeeRef>

<employeeRef>4</employeeRef>

</department>

</company>

To retrieve the name of departments where at least one employee is older than

25, the following XPath query suffices:

//department[employeeRef=//employees/employee[@age>25]/@id]/name

it reads as follows: Identify all <department> elements within the hierarchical struc-

ture, regardless of their level, and filter these elements to include only those where
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the employeeRef attribute matches the result of a subquery. This subquery entails

selecting the <empoyees> element, which is a child of the top-level <empoyees> el-

ement. From these selected empoyees, only those whose age is greater than 25 are

retained, and their corresponding id attributes are extracted.

On the other hand, to retrieve something slightly more complicated like the name

of all employees older than 25 and their corresponding department (i.e. the equivalent

of both queries from Example 2.1) the following XQuery FLWOR expression can be

used:

let $root := .

for $d in $root//department, $e in $root//employees/employee

where $e/@age > 25 and $d/employeeRef = $e/@id

return <result>{data($e/@id)},{data($e)},{data($d/name)}</result>

the query starts with a let statement, which serves to define a variable. Then, it

uses for to establish range variables, d and e, which iterate over departments and

employees, respectively. The where clause filters and retains pairs of (department,

employee) where the employee’s age is greater than 25. Finally, the return statement

specifies to retrieve the employee id, name and department.

XML gained popularity for a time, with notable RDBMS systems like PostgreSQL

and SQL Server adopting it, a scenario referred to as an XML-enabled database

(i.e., an RDBMS that offers XML support). In contrast to Native XML databases

(NXDs), XML-enabled databases underwent more extensive processing steps. They

either stored XML documents as opaque LOB (Large OBject) data types or engaged

in data extraction and mapping to a relational schema, a process commonly known

as "shredding."

In both cases, queries expressed in XQuery had to be translated into SQL. In the

former approach, documents were parsed every time they were retrieved to validate
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their XML schema. This strategy had its drawbacks, as elucidated in [63], including

the need to load and re-parse entire documents into memory for conducting full-text

searches, limited search capabilities on shredded XML documents, heavy dependence

on indexes for search operations, and significant performance penalties during data

writes if an index required modification.

In contrast, NXDs employed hierarchical storage techniques that preserved infor-

mation about the structure of XML documents. Consequently, their search processes

were more memory-efficient, as they could partially load documents, and eliminated

the need for the document identity loss associated with “shredding”. This highlights

the advantages of NXD over XML-enabled DBMSs when querying loosely-structured

XML documents compared to well-structured ones.

Eventually, XML’s inherent complexity, verbosity, and lack of a clear standard led

to a decline in its popularity. XML incurred substantially greater storage costs com-

pared to more streamlined formats like JSON and posed challenges for optimization

due to the intricate data hierarchies it introduced.

Modern NoSQL systems

As NoSQL systems evolved, they departed from the notion of a one-size-fits-all data

format and instead embraced specific formats that align closely with the intended

use cases of the respective databases. This evolution gave rise to various categories

of NoSQL systems, each tailored to specific data models, as discussed in Section II.1.

Some of the most prominent categories include:

• key-value stores: Often referred to as “big hash tables”, these stores manage

collections of tuples in the form of (key, value) pairs. Keys serve as unique iden-

tifiers similar to columns in a relational database, while values can be structured

or unstructured, often stored as Binary Large Objects (BLOBs). Importantly,

pairs can encompass different data types, unlike the strict typing of the rela-
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tional model. Examples of key-value stores include Google’s Bigtable, Amazon’s

DynamoDB, and Apache HBase.

• document stores: Document stores represent a subtype of key-value stores

that permit records to have a semi-structured schema. These systems focus on

the content and structure of data stored in (key, value) pairs rather than treating

the “value” part as an opaque BLOB. However, there is no overarching schema

for an entire set of records, in contrast to relational databases. MongoDB and

Couchbase are well-known document stores that often store values in the JSON

format.

• Column-family stores: In column-family stores, data is not constrained to

individual rows; this stands in contrast to RDBMSs, where missing values are

often represented as NULL. Instead, column-family stores employ a structure

where data is organized into column families. These column families are essen-

tially key-value pairs, where the key represents the name of the column family,

and the value encompasses the associated columns. Columns that share the

same column family are physically stored together on disk. Consequently, it is

common practice to group columns that are frequently accessed or modified in

the same column family. In column-family stores, the schema is highly flexible,

allowing columns to be added to a column family at any point in time.

• graph databases: These databases excel in managing highly interconnected

data structures, which can be viewed as nodes and edges in a graph. Although

the relational model can represent graph data, graph databases like Neo4j of-

fer more efficient and programmer-friendly implementations of path traversal

queries.

The absence of a standardized and universally agreed-upon data model in NoSQL

databases poses challenges for researchers. It restricts the exploration of schema

properties through mathematical and complexity theory, a well-established practice in
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the field of relational databases. Consequently, researchers often rely on entirely new

algebraic frameworks or leverage existing query languages with sufficient expressive

power to accommodate the specific logical data model of a given NoSQL system.

However, the lack of a universally accepted data model means that logical properties

discovered through research are often applicable exclusively to the specific model in

question. This complicates efforts to exploit established optimization patterns in the

broader context of NoSQL databases.

Moreover, since records within these systems can exhibit varying structures, the

schema of a collection of records cannot be assumed to be fixed but rather is variable.

This variability has notable implications:

• If an attribute (e.g., attribute x) is present in some but not all records within

a collection, removing records without attribute x would effectively remove x

from the schema. The optimizer often lacks access to the values of the data

itself, making it uncertain about the removal of an attribute unless the filter

explicitly requests the attribute’s existence.

• Attributes may assume values of multiple types, which can either aid or com-

plicate optimization efforts. The presence of various data types allows filters to

more accurately estimate the number of retained records based on data hetero-

geneity. However, operations defined for multiple data types introduce complex-

ity to the physical schema and may raise interpretability issues. To illustrate,

consider a scenario where a collection comprises ten records, each having an

attribute x. In two of these records, x is an integer, while in the remaining

eight, x is a string. When applying a filter such as x > 5, it becomes evident

that, at most, two records will satisfy this condition. This is because the filter is

unequivocally false for any record where x is not an integer. When dealing with

records where x is of string type, should the condition x > 5 be interpreted as

x > ”5”, with the comparison based on lexicographical order? Such a feature is
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not unprecedented, as many programming languages have long supported im-

plicit type conversion (e.g., arithmetic operations between operands of different

types in C++). Nevertheless, adopting this approach could potentially com-

promise the advantages previously mentioned. It would prevent the optimizer

from assuming that the condition x > 5 will always evaluate to false for records

where x is a string.

In summary, NoSQL databases offer diverse data models tailored to specific use

cases, challenging researchers to adapt established methodologies to these models

while grappling with issues of schema variability and diverse data types.

4 Document Stores

The JSON Data Model

The JavaScript Object Notation (JSON) was conceived as a text format facilitating

data interchange between programming languages[16, 24].

The format is built on top of two fundamental hierarchical structures: objects

and arrays. Objects are a collection of key-value pairs and arrays are ordered lists of

values. A value can be a number, string, true, false, null, object or array.

Because JSON has a language agnostic syntax, types are generic, or abstract,

in the sense that they encompass many different concrete types defined within a

particular language. For instance, the number type can be represented by a variety

of concrete types (e.g. int32, int64) in multitude of programming languages. However,

even if their internal representation differs, they all understand a sequence of digits

to be a number and this is enough to interchange data. Objects can be represented

as dictionaries, hash tables, etc., and arrays by vectors, lists, etc.

Format-wise, a string is a sequence of unicode points enclosed in quotation marks.

null, true and false are reserved keywords. Object keys are strings, key-value pairs

are enclosed in curly brackets and separated by a colon (:), and keys within the
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same object must be unique. Array elements are all enclosed within square brackets.

Listing II.1 shows the corresponding BNF grammar.

object ::= {} | { member }

member ::= pair | pair, member

pair ::= string:value

array ::= [] | [element]

element ::= value | value, element

value ::= object | array | string | number

string ::= "" | \"character string\"

number ::= + number | - number | digit number

Listing II.1. JSON BNF grammar

Numerous formalisms have been proposed in the literature for modeling JSON

data[15, 52, 37, 39, 14]. While most of these formalisms recognize JSON’s hierarchical

nature and represent it as a labeled tree, there is not a unanimous consensus on the

most effective way to handle arrays.

For instance, [39] highlights concerns with using array indexes as edge labels,

particularly when certain operators require relabeling the edges. However, [15] and

[37] assert that array indexes as edge labels are essential for JSON’s navigational

primitives when traversing the hierarchy. An example of the latter representation is

shown in Figure 6.

{
"department": "HR",
"employees": [

{ "name": "John Doe", "age": 25 },
{ "name": "Jane Doe", "age": 30 }

]
}

30"Jane Doe"

"name" "age"

25"Jhon Doe"

"name" "age"

1 2
"HR"

"department" "employees"

Figure 6. Example of a JSON object modeled as a labeled tree. Dotted lines
represent the values leaf nodes point to.

It is worth noting that there are formalisms used for XML, such as the XML data-

tree model, that share significant similarities with these JSON formalisms, mainly due

to JSON’s tree-like structure[15]. This resemblance creates opportunities for poten-

tially reusing constructs and concepts from the realm of XML databases. However,
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JSON and XML have inherent differences that render many of these XML constructs

incompatible with JSON in their original form:

• JSON’s deterministic nature arises from its requirement for distinct sibling

edges within a JSON tree, while XML trees are inherently non-deterministic.

• Unlike JSON, XML lacks an equivalent construct to represent arrays.

• JSON objects can contain other JSON objects as values, introducing the ne-

cessity to consider subtree equality, whereas in XML, comparisons are typically

made between atomic values.

• JSON objects have no inherent ordering, but arrays are ordered in JSON. This

duality means that JSON accommodates both ordered and unordered data.

As a result, any attempt to repurpose XML constructs for JSON demands careful

adjustments and considerations to account for these inherent distinctions.

A document database is designed to store and query self-defined, hierarchical

(tree-like) data structures called documents often following the JSON specification,

or an extension of it, and stored using a plethora of mechanisms. A document is

recursively defined as a list of attributes and values, where each value can be simple

(e.g. a string or number), a list of values, or a whole document. This creates a

nested structure of documents and sub-documents, similar to nested relations ([22]).

Documents are analogous to records (tuples) in RDBMSs, but are not tied to a

rigid schema; that is, their attributes may have differences across documents logically

having the same type. Document databases store sets (or multisets) of documents

in a logical organization of typically, but not limited to, JSON data. MongoDB and

Couchbase call this a collection, analogous to tables in relational databases (RDBMS).

One or more collections make up a database (or Bucket as it is called in Couchbase).

Document-oriented databases typically adopt a different approach to data model-

ing compared to relational databases. In a document-oriented database, it’s common
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practice to aggregate all available data within a single collection. In contrast, rela-

tional databases organize data entities and their relationships across multiple tables,

relying on foreign keys to establish connections between entities.

The document-oriented database model excels at handling one-to-one (1-1) and

one-to-many (1-M) binary relationships through a technique known as nesting or

embedding. This means that related data is included directly within a document, often

in the form of arrays or sub-documents. For example, consider entities like Customer,

Order, and Lineitem in the TPCH schema [73]. In a document database, you could

store these entities in a single collection. Each document represents a customer and

includes an attribute called "Orders," which contains an array or list of sub-documents

representing orders. Each of these orders, in turn, contains a "Lineitems" attribute,

an array or list of sub-documents representing line items. This hierarchical structure

aligns well with the document model’s capabilities.

However, challenges arise when dealing with many-to-many (M-N) relationships,

which can introduce consistency problems and redundancy in document databases.

For instance, entities like Parts and Suppliers have an M-N relationship. In a

document database, representing this relationship directly can be problematic. To

prevent redundancy, a common strategy is to employ linking. Each document in the

collection is assigned a unique identifier by the database system. With this identifier,

you can create two separate collections, one for parts and another for suppliers. Then,

you can include an attribute in the parts documents containing a list or array of

supplier IDs, and vice versa. However, this approach has significant implications

for the query language and the way queries are constructed, as will be discussed in

Section III.1.

MongoDB and Couchbase closely adhere to the document data model. Documents

are typically formatted in JSON, and both databases offer the flexibility of using

both embedding and linking to model relationships [19]. For instance, following the

strategy outlined above, you can model relations like Customer, Order, and Lineitem
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within a single collection. Alternatively, you have the option to represent them in

three separate collections or explore other combinations. These modeling choices will

be illustrated schematically in Section III.1.

At the physical level, various systems employ binary formats that enhance JSON’s

capabilities in distinct ways. For instance, MongoDB utilizes BSON, PostgreSQL

employs JSONB, and MySQL adopts its unique binary representation. These binary

extensions introduce their own primitive data types to JSON, expanding its range of

functionalities.

In contrast, AsterixDB employs the Asterix Data Model (ADM), which incorpo-

rates certain OODBMS principles, such as Derived Types, into JSON.

Conversely, certain systems like MariaDB and SQL Server store JSON data as

text and provide features to parse JSON records, similar to the approach adopted

by XML-enabled databases. This parsing process allows these systems to extract the

necessary content and convert it into specific data types as needed.

Query language

Most document-based systems provide a navigational query language, i.e. one where

several operators are connected in a sequence to build queries. Typical operators in

such languages allow operations in documents of a collection that are similar to selec-

tion, projection, grouping and aggregation in relational algebra. A query is given by

a “chain” of operators: OP1.OP2...OPn, where each operator may have additional

parameters and the whole chain is “anchored” in a single database collection. Oper-

ators are executed in the order in which they appear in the chain unless an optimizer

decides to change this order.

MongoDB follows this pattern. In MongoDB parlance, the query defines a data

processing pipeline: documents from the collection are the initial input; they go

through multiple pipeline stages (one per operator) and the final stage outputs a

result. Operators are considered methods of the collection, invoked using the dot
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notation. An schematic of this is shown in Figure 7, where each stage Stagei is

comprised of a collection of operators opsi and a buffer bufferi to store any temporary

data produced.

Stagei

bufferi

Stagei−1

bufferi−1

Stagei+1

bufferi+1

. . .

arityi−1
out = arityiin arityiout = arityi+1

in

. . .opsi−1 opsi opsi+1

Stage1

buffer1

Collection

. . . ops1

Num Docs = arity1in

Base case:
i = 1

Other
cases:
i > 1

. . .
. . .Doc1 Docn

Figure 7. Pipeline-like query language schematic

MongoDB offers methods that fulfill the same role as relational operators. The

input and the output for each all takes as input a collection of documents and returns

a collection of documents:

• $match: condition filters out documents that do not meet a one or multiple

conditions.

• $unwind: array-name outputs a new document per element in an array. This

is an unnest operator ([22]).

• $project: attribute-list creates new documents by projecting attributes men-

tioned in the attribute-list.

• $group: expression-list creates groups of documents and outputs a document

per group, applying any aggregates in expression-list. This acts like SQL’s

GROUP BY.

Conditions on nested attributes are expressed using the dot notation to reach

such attributes. Unfortunately, this syntax provokes some ambiguity, since it can be
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used to go inside an array, whence it is unclear whether the condition is meant for

at least one, several, or all the elements of the array. A full list of pipeline stages

and operators used within stages is provided at the MongoDB online manual2,3. The

language’s flexibility allows for queries to be written using different combinations of

stages and methods. In fact, because documents can be nested the schema design

may determine what is the best of such combinations. Example 4.1 shows common

combinations to filter nested documents.

Example 4.1. Consider a collection with the document below:
{

"department": "HR",

"employees": [

{ "name": "John Doe", "age": 25 }, { "name": "Jane Doe", "age": 30 },

{ "name": "Carol Smith", "age": 26 }

]

}

Suppose that a query is issued to find the employees of each department whose

age is greater than 25. In MongoDB, there are two ways to express such condition;

both shown in Figure 8.

{'$project': {
'department': 1,
'employees': {

'$filter': {
'input':'$employees',
'as': 'employee',
'cond': { '$gt': ['$$employee.age',

25] }
}

}
}},
{'$unwind': '$employees'}

(a) $project and $filter + $unwind

{'$unwind': '$employees'},
{'$match': {

'employees.age': { '$gt': 25 }
}}

(b) $unwind + $match

Figure 8. Example of two different ways to filter nested documents

In Figure 8a, the $filter operator within the $project stage removes elements

from the employees array without deconstructing it. The parameter as declares
2https://www.mongodb.com/docs/manual/reference/operator/aggregation-pipeline/
3https://www.mongodb.com/docs/manual/reference/operator/aggregation/
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a variable named employee to reference in the condition parameter (cond). This

variable is de-referenced (i.e. its value is accessed) by prepending $$ to its name, i.e.

$$employee and passed to the $gt (greater-than) operator. In essense, it behaves

like the array filter() method in JavaScript:

function isOlderThanTwentyFive(employee) {

return employee.age > 25;

}

let employees = employees.filter(isOlderThanTwentyFive);

after this stage, the document would look as follows:

{

"department": "HR",

"employees": [

{ "name": "Jane Doe", "age": 30 }, { "name": "Carol Smith", "age": 26 }

]

}

The $unwind stage deconstructs the filtered array afterwards, thus producing:

{ "department": "HR", "employees": { "name": "Jane Doe", "age": 30 } }

{ "department": "HR", "employees": { "name": "Carol Smith", "age": 26 } }

In Figure 8b, the array employees is deconstructed first, thus producing an in-

termediate result that includes employee John Doe:

{ "department": "HR", "employees": { "name": "Jhon Doe", "age": 25 } }

{ "department": "HR", "employees": { "name": "Jane Doe", "age": 30 } }

{ "department": "HR", "employees": { "name": "Carol Smith", "age": 26 } }

then, the $match stage filters out John Doe.

When a database contains more than one collection, it may be necessary for a

query to retrieve data from two or more of them. For such cases, MongoDB pro-

vides an analog to relational join, called $lookup: from, localField, foreignField.

This operator performs a left outer join between the collection from which the op-

erator is called (which plays the role of “left” relation) and a collection specified in

the from field (which plays the role of “right” relation) on condition localField
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= foreignField. The syntax can be extended to perform uncorrelated subqueries

and/or specify multiple join conditions.

In contrast, some systems offer declarative query languages that, akin to SQL,

encompass both a data definition language (DDL) designed for index creation, mod-

ification, and deletion, and a data manipulation language (DML) for actions such

as selecting, inserting, updating, deleting, and upserting data into JSON documents.

This approach is followed by platforms like Couchbase and Asterixdb, both of which

employ the SQL++ language. SQL++ is a declarative SQL-like language that main-

tains significant compatibility with SQL.

SQL++ intentionally eliminates many of SQL’s constraints to minimize the intro-

duction of new features, instead opting to reuse much of SQL’s underlying semantics[64].

Here are some notable distinctions:

• The FROM clause is no longer limited to binding with tuples but can be asso-

ciated with any JSON element.

• SQL++ prioritizes composability, allowing subqueries to generate nested results

when utilized in the SELECT clause.

• While SQL prohibits the correlation of subqueries within the same FROM

clause, SQL++ enables the correlation of earlier defined variables in a FROM

clause with subsequent subqueries in the same clause.

• In SQL, groups formed by a GROUP BY clause are exclusively employable in

aggregate functions. In contrast, SQL++ permits their use in nested queries.

• SQL++ neither enforces nor demands data homogeneity.

A comprehensive survey[64] outlines a multitude of SQL++ features and high-

lights its compatibility with fifteen diverse data models. Additionally, it offers em-

pirical validation of SQL++’s support for various query language features. This
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information is succinctly presented through feature matrices, demonstrating the lan-

guage’s expressive capabilities.

35



CHAPTER III

PROPOSED APPROACH

1 The Problem: Query Optimization

The need to store and query semi-structured data has a long history, dating back to

the emergence of XML databases as the earliest form of document stores. Research

efforts in optimizing these systems mainly revolved around two primary objectives:

(1) Developing navigational techniques for efficiently traversing hierarchical XML

structures and (2) creating methods for storing and retrieving XML data efficiently,

often involving compression due to XML’s inherent verbosity.

In contrast, modern document stores have primarily focused on handling high-

volume transaction processing and addressing challenges related to not being fully

ACID-compliant. However, the recent shift in research priorities is towards support-

ing analytics. This shift is driven by the fact that analytics tends to follow the data,

and the growing interest in near-real-time analytics, which eliminates the time for a

costly ETL process, especially when dealing with heterogeneous data. Consequently,

interest in query optimization for document stores has been on the rise, as evidenced

by several recent papers ([42, 72, 67, 44, 49]).

Despite these recent advancements, query optimization for document stores is not

yet fully developed:

• Optimization techniques from XML databases are not readily applicable to

JSON databases due to several key differences:
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– Deterministic Structure: JSON trees have a deterministic structure, which

restricts navigation compared to the more flexible navigation in XML. In

XML, you can easily navigate between sibling elements, while JSON’s

requirement for distinct keys at the same level simplifies value retrieval.

These distinctions render some XML-specific navigational optimizations

ineffective in the context of JSON, thus influencing the design of query

languages.

– Mixed Data Order: JSON mixes ordered and unordered data, which is not

native to XML. While this behavior can be emulated in XML, it’s not

inherently enforced. As a result, optimization techniques for XML often

assume all elements are unordered, an assumption that doesn’t hold in

JSON.

– Subtree Comparisons: JSON commonly involves comparisons between JSON

subtrees, whereas XML primarily focuses on value comparisons within at-

tributes of nodes, rather than comparing entire subtrees.

• Optimization techniques for any Nested Relational Algebra (NRA) face chal-

lenges when applied to JSON databases:

– Unknown Schema: In JSON, the schema of nested relations is often un-

known, unlike in NRA where it is well-defined. This creates complica-

tions when using operations like unnesting in JSON, as incorrectly defined

unnesting operations can lead to documents that violate the rule of distinct

object keys.

– Heterogeneous Arrays: JSON arrays can be heterogeneous, containing el-

ements of various types. NRA’s unnest operator is designed to bring at-

tributes of nested relations to the root level, but JSON arrays don’t have

attributes in the same way. This creates ambiguity, particularly when
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dealing with arrays of primitive types. For example, unnesting an array of

integers doesn’t have a straightforward counterpart in NRA.

Many approaches still rely on rule-based methods, and the development of a com-

prehensive approach is hindered by the diversity of systems with varying query lan-

guages and back-ends. Additionally, JSON’s unique features, such as heterogeneity

and the combination of ordered and unordered elements, pose challenges for clean

and efficient query processing.

However, a common thread among many recent proposals for optimizing JSON

data queries is the adoption of the relational framework. This framework involves cre-

ating an internal declarative query representation, transforming this representation

into equivalent forms using formal equivalences, and then converting each resulting

representation into a query plan by implementing the corresponding operators. Some

proposals, particularly those focusing on cost-based optimization ([44, 58]), also in-

corporate the ability to estimate the cost of each plan.

While this framework provides a foundation for general cost-based optimization

for JSON data, it demands significant customization at each step to accommodate

the specific characteristics of the JSON data model and leverage new techniques. For

instance, similar to RDBMSs, capturing statistics about a dataset plays a crucial role

in query processing, as demonstrated in Example 1.1 for estimating a physical plan.

Example 1.1. Consider again the relations Department and Employee from Exam-

ple 2.1, but this time assume that there are 500000 employees instead of just 50. A

common statistic maintained by relational systems is a histogram, which gives infor-

mation about the distribution of data in a column. Suppose a histogram is created

for column E-Age of table Employee and it finds that there are 20 distinct values

(ages 20,21,. . . , 40), 96% of employees are between the ages of 31 and 40, and 4%

between 20 and 29. If an user queries for the employees older than 30, an optimizer

without a histogram assumes an even distribution, thus estimating a cardinality of
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500000/20 = 25000 rows (i.e. 5% employees). With this estimate, the optimizer

chooses to perform an index scan of the table. With the histogram, the optimizer

estimates that 96% of the employees are older than 30, thus choosing a most appro-

priate alternative: a full table scan.

In the case of JSON data, statistics gathering and use in a RDBMS-fashion is

especially complicated due to the lack of schema enforcement and data heterogeneity.

Example 1.2 illustrates this.

Example 1.2. Consider the tables from Example 2.1, but with employee ages stored

as birthdays in the E-Birthday attribute. These tables can be modeled in JSON in

two ways:

1. Two Collections: Similar to the relational case, two separate collections are

used, one for employees and another for departments.

2. Single Collection: Here, a single collection is used where each document rep-

resents a department, and employees are nested within an array under their

respective departments. This structure resembles the JSON document in Fig-

ure 6.

In the first model, building a histogram, as shown in Example 1.1, could be

straightforward if the employee birthdays were always of a numeric type. However, a

document store faces challenges due to:

• Lack of Schema Knowledge: Some RDBMSs, like Oracle[6], auto-create

histograms for columns with high query workloads based on past queries. How-

ever, this feature isn’t feasible when the system lacks schema knowledge and

cannot track attribute references.

• Heterogeneity: Documents in the collection may have birthdays represented

as strings, integers, or other types. For instance:
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{ "name": "Jhon Doe", "birthday": "1998-03-10" }

{ "name": "Jane Doe", "birthday": 19931010 }

• Lack of Integrity Constraints: Even if the documents are homogeneous at

one point, future insertions may introduce heterogeneity.

Maintaining a histogram per type or a single histogram that accommodates all types

becomes significantly more complex in a document store compared to maintaining

histograms in RDBMSs.

In the second model, the same problems as the first model apply. Additionally,

even if a histogram exists, it becomes challenging for the system to use it reliably. For

instance, if the query language requires flattening nested data, a query like “select

all employees older than 30 from the HR department” would utilize the histogram

effectively in RDBMSs and the first model but not in the second. This is because

when querying at the top level (i.e., departments), the removal of non-HR depart-

ments automatically eliminates the associated employees, rendering the histogram

ineffective.

Some concepts from XML statistics gathering have found utility in the context

of JSON data processing. Notably, [46] and [10] adapted an early proposal on XML

statistics gathering, introducing a dynamic schema called DataGuide[35]. This (dy-

namic) schema serves as a repository for statistics, sample values, and structural

summaries for XML collections. Most reuse efforts have focused on enhancing effi-

cient storage ([26]) or integrating JSON data with relational systems ([52]).

Another approach known as the “structural index” compiles metadata for query

optimization during parsing. These indexes are particularly suitable for DBMSs that

store JSON as text, like the systems mentioned in Section II.4. They assume JSON

documents are parsed when processing a query. For instance, the Mison parser[49]

employs a structural index in the form of a bitmap, designed to navigate structural
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characters within JSON, such as “:” for child relationships and “,” for siblings. The

Pison structural index constructor[41] provides techniques for efficiently constructing

structural indexes, including parallelism within records and memory-saving mecha-

nisms for processing deeply nested records.

However, it is important to note that these approaches primarily address optimiza-

tion at the physical schema level, with less emphasis on the logical schema. They

assume the presence of logical operators akin to those from Thomas and Fischer NRA

(i.e., relational algebra operators along with nest and unnest) as these operators are

found in the query languages of popular JSON document stores and RDBMSs that

support JSON.

Furthermore, JSON document stores heavily rely on indexing for optimization.

Over-reliance on indexes necessitates meticulous upfront planning and complicates

the migration process to other JSON DBMSs, as they may not support the same

types of indexes. Consequently, migrating data to a new system requires a fresh

round of planning to determine the appropriate indexing strategy.

However, the need for modern document stores to handle high ingestion rates

often forces system administrators into a reactive stance rather than a proactive one.

This thesis identifies this situation as an opportunity to enhance the utilization of

readily collectable statistics for query optimization at the logical level when a suitable

index is unavailable.

Finally, to evaluate the optimization challenges outlined earlier in JSON document

stores, an experimental validation was carried out. Detailed information regarding

this validation is presented in Section III.1. This validation offers valuable insights

into the performance of popular and widely adopted JSON Document Stores in com-

parison to traditional RDBMSs concerning the optimization of analytical queries

within a Decision Support environment.
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Customer
c_custkey : number
c_name : text
c_address : text
c_nationkey : number
c_phone : text
c_acctbal : number
c_mktsegment : text
c_comment : text

Orders
o_orderkey : number
o_custkey : number
o_orderstatus : text
o_totalprice : number
o_orderdate : date
o_orderpriority : text
o_clerk : text
o_shippriority : text
o_comment : text

Lineitem
l_orderkey : number
l_linenumber : number
l_partkey : number
l_suppkey : number
l_quantity : number
l_extendedprice : number
l_discount : number
l_tax : number
l_returnflag : text
l_linestatus : text
l_shipdate : date
l_commitdate : date
l_receiptdate : date
l_shipinstruct : text
l_shipmode : text
l_comment : text

Part
p_partkey : number

p_name : text
p_mfgr : text
p_brand : text
p_type :  text
p_size : number
p_container : text
p_retailprice : number
p_comment : text

PartSupp
ps_partkey : number
ps_suppkey : number

ps_availqty : number
ps_supplycost : number
ps_comment: text

Supplier
s_suppkey : number
s_name : text
s_address : text
s_nationkey : number
s_phone : text
s_acctbal : number
s_comment: text

Nation
n_nationkey : number
n_name : text
n_regionkey : number
n_comment : text

Region
r_regionkey : number

r_name : text
r_comment : text

Number of rows (i.e. Cardinality):
   -  Customer: ScaleFactor * 150,000
   -  Orders: ScaleFactor * 1,500,000
   -  Lineitem: ScaleFactor * 6,000,000
   -  P a r t : ScaleFactor * 200,000
   - Supplier: ScaleFactor * 10,000
   -  PartSupp: ScaleFactor * 800,000
   -  Nation: 25
   -  Region: 5

Figure 9. ER diagram of the TPC-H Benchmark’s schema
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Hierarchical Schema (S1)

Hybrid schema (s3)

M-N model

Customer
c_custkey number
c_name tex t
c_address tex t
c_nationkey number
c_phone tex t
c_acctbal number
c_mktsegment tex t
c_comment tex t
c_orders o_orderkey number

o_orderstatus tex t
o_totalprice number
o_orderdate date
o_orderpriority tex t
o_clerk tex t
o_shippriority tex t
o_comment tex t
o_lineitems l_linenumber number

l_partkey number
l_suppkey number
l_quantity number
l_extendedprice number
l_discount number
l_tax number
l_returnflag tex t
l_linestatus tex t
l_shipdate date
l_commitdate date
l_receiptdate date
l_shipinstruct tex t
l_shipmode tex t
l_comment tex t

Orders
o_orderkey number
o_custkey number
o_orderstatus tex t
o_totalprice number
o_orderdate date
o_orderpriority tex t
o_clerk tex t
o_shippriority tex t
o_comment tex t
o_lineitems l_linenumber number

l_partkey number
l_suppkey number
l_quantity number
l_extendedprice number
l_discount number
l_tax number
l_returnflag tex t
l_linestatus tex t
l_shipdate date
l_commitdate date
l_receiptdate date
l_shipinstruct tex t
l_shipmode tex t
l_comment tex t

Customer
c_custkey number
c_name tex t
c_address tex t
c_nationkey number
c_phone tex t
c_acctbal number
c_mktsegment tex t
c_comment tex t

Supplier
s_suppkey number
s_name tex t
s_address tex t
s_nationkey number
s_phone tex t
s_acctbal number
s_comment tex t
s_nation n_nationkey number

n_name tex t
n_region r_regionkey number

r_name tex t
r_comment tex t

n_comment tex t
s_parts Array<number>

Part
p_partkey number
p_name tex t
p_mfgr tex t
p_brand tex t
p_type tex t
p_size number
p_container tex t
p_retailprice number
p_comment tex t
p_suppl iers ps_suppkey number

ps_availqty number
ps_supplycost number
ps_comment tex t

Figure 10. Nested models of the TPC-H schema analogous to the schemas of data
used during experimentation. Attributes in bold are used to link the relations
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Experimental validation

Two comprehensive experiments were conducted, encompassing popular RDBMSs

and JSON DBMSs. These experiments encompassed diverse database designs and

query formulations to assess the impact of schema design and query optimization in

document-based stores. The comparison was drawn against RDBMSs, which served

as a baseline for evaluation. Both experiments employed the well-established TPC-

H benchmark, renowned as a Decision Support System (DSS) Benchmark, across

various scale factors (1G, 10G, 25G, 50G, 100G). The schema of this benchmark is

shown in Figure 9.

For the JSON DBMS scenario, the dataset was initially generated using the ded-

icated TPC-H benchmark generation tool known as DBGEN. It was then mapped to

JSON in the following schemas:

• Denormalized Schema (S1): This schema consolidates data into a single

collection named COL. Here, customers are endowed with an array containing

zero or more orders, with these orders, in turn, housing arrays of line items.

• Normalized Schema (S2): This schema mirrors the relational model, dis-

persing documents across three distinct collections, namely C, O, and L, which

correspond to the tables Customer, Orders, and Lineitem in a relational con-

text. The 1-M relationships between collections are depicted through attributes

such as o_custkey in O, referencing customers, and l_orderkey in L, linking

to orders.

• Hybrid Schema (S3): This schema entails documents residing in two col-

lections, C and OL. C is identical to its counterpart in S2, whereas OL in-

corporates the embedding of line items into orders while preserving a reference

link represented by the attribute o_custkey to link back to customers. This

approach maintains symmetry in embedding orders into customers and form-

ing connections from line items to orders. Each variant is tailored to enhance
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specific queries at the expense of others. Thus, evaluating the performance of

one schema provides insights into the others.

For the many-to-many (M-N) relationship between Supplier and Part, two collec-

tions, S (for Supplier) and P (for Part), were employed using a two-way embedding

technique. Within S, the attribute s_parts stores a list of IDs corresponding to all

associated parts. Within P , the attribute p_suppliers maintains a list of documents

that encapsulate all relevant suppliers along with attributes from the PartSupp table.

Furthermore, S incorporates attributes from the Nation table within the s_nation

field and attributes from the Region table within the nested field: s_nation.n_-

region. Notably, attributes from PS can be embedded within Parts, Suppliers, or

both.

The nested relational model of these schemas is shown in Figure 10 for illustrative

purposes.

Experiment 1: Rich querying does not imply effective querying

This experiment examines the query capabilities of MongoDB and Couchbase, focus-

ing intently on query re-ordering and the selection of optimal indexes. Particular

emphasis is placed on MongoDB due to its rich aggregation query framework, boast-

ing a plethora of operators that can effectively emulate the functionality of various

operators from distinct nested relational algebras. MongoDB is also renowned for its

heavy reliance on indexes to enhance the efficiency of join and selection operations.

It’s worth noting that this experiment exclusively addresses one-to-many relation-

ships for data modeling. Consequently, the Part and Supplier tables from TPC-H are

not within the scope of consideration.

All queries are run on an IBM System x3650 M2 server with two Intel Xeon

X5672 processors at 3.20GHz, 16 virtual cores, and 46GB of RAM. The server runs

CentOS Linux version 7.6.1810, MongoDB version 4.0.6, Couchbase version 6.5, and

PostgreSQL version 10.6. The operating system and all databases are tuned according
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to best practices. All queries are run five times and the average running time is

reported. After every single execution, the cache of the operating system and both

databases is cleared.

The TPC-H data is mapped to PostgreSQL in plain relational following the TPC-

H schema and an extra table (called J COL) is created using the JSONB datatype

to mimic schema S1. To distinguish between the collection schemas S1, S2 and S3 on

the document stores, the collections are named as indicated in Table 1.

Collection Schemas
JSON DBMS S1 (Denormalized) S2 (Normalized) S3 (Hybrid)

MongoDB MCOL MC,MO,ML MC,MOL
Couchbase CBCOL CBC, CBO, CBL CBC, CBOL

PostgreSQL
with JSONB J COL N/A N/A

Table 1. Collections per schema and JSON DBMS on experiment 1

Queries The study focuses on specific TPC-H queries, namely 1, 3, 4, 12, 13, and

22. These queries exclusively operate on the Customer, Orders, and Lineitem tables.

Their parameters are strategically modified to enhance selectivity and facilitate index

performance analysis. Additionally, a micro-benchmark featuring ad-hoc queries is

introduced to investigate various issues identified during experimentation. Detailed

discussions on these ad-hoc queries will follow.

To explore the effects of employing different operators, the experiment gener-

ates multiple query versions for document stores, simply referred to as “versions”.

MongoDB and Couchbase’s optimizers generate query plans that closely mirror the

original query structure, with minimal reordering of certain operations. Different

combinations of operators are explored within MongoDB and Couchbase to assess

their impact on query ordering. It should be noted that correlated sub-queries can

be challenging, and sometimes impossible, to implement in Couchbase without rep-

resenting the correlation as a join. Couchbase suggests utilizing a single bucket with
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multiple data groups, each identified by selections over a “type” attribute. However,

this approach introduces ambiguity since every join becomes a self-join.

To distinguish between these versions, a naming convention is adopted. For Post-

greSQL, queries are denoted as q<num>_psql or q<num>_psql_json, where <num>

corresponds to the TPC-H query number, and json indicates the use of the JSONB

data type. For document stores, queries are named as q<num>[v<ver>]_<engine>_-

<schema>, where <num> represents the TPC-H query number, <ver> denotes the

version number, <engine> is either cb for Couchbase or mongo for MongoDB, and

<schema> specifies whether the query runs on S1, S2, or S3.

MongoDB versions serve the following purposes:

• Demonstrating the superior filtering method for arrays, comparing combina-

tions like $unwind and $match versus $project, $filter and $unwind. Query

versions 1 and 2 on S1 provide insights into this aspect.

• Assessing the reliability of multi-key indexes (i.e. indexes over array fields) in

scenarios where documents are nested more than one level. Query version 3 on

S1 serves this purpose.

• Investigating whether the “direction” of a join influences execution time. In

MongoDB’s aggregation framework, the starting collection of a pipeline defines

the direction of a join. Reversing this direction requires re-creating the entire

query. Query versions 1, 2, and 3 on S2, along with versions 1 and 2 on S3,

help measure the impact of joining from different directions.

Couchbase exhibits documented limitations, such as the absence of join reordering[59],

which historically lacked a cost-based optimizer until its introduction in the enterprise

edition of version 6.5. While Couchbase’s query versions, outlined in Table 3, don not

directly address these issues, they aim to tackle undocumented challenges related to

query predicate reordering for enhanced performance. These challenges encompass:
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Schema Version Meaning
S1 1 Use $filter to filter objects within an array and $unwind

to retrieve elements from within it.
S1 2 Use $unwind to retrieve elements from within an array

and $match to filter them.
S1 3 Use an extra $match meant to trigger MongoDB’s opti-

mizer to use an index, if any.
S2 1 Start pipeline atMO, lookup fromML, andMC there-

after.
S2 2 Start pipeline atMC, lookup fromMO, andML there-

after.
S2 3 Start pipeline atML, lookup fromMO, andMC there-

after.
S3 1 Start pipeline at MOL and lookup from MC.
S3 2 Start pipeline at MC and lookup from MOL.

Table 2. Description of MongoDB’s query versions

Schema Query Version Meaning
S2 3 1 No explicit selection push-down on CBC.
S2 3 2 Explicit selection push-down on CBC.
S1 13 1 Filter orders using LEFT OUTER UNNEST

and WHERE.
S1 13 2 Filter orders using the ARRAY operator.
S1 13 3 Explicit projection of orders after LEFT

OUTER UNNEST and later filter using
WHERE.

S2/S3 22 1 Compute customers without orders using an
uncorrelated sub-query, store result set LET and
match in WHERE using IN.

S2/S3 22 2 Compute customers without orders in the
WHERE using an uncorrelated sub-query and
match using IN.

S2/S3 22 3 Similar to version 2, but the average account
balances are saved using LET prior to the WHERE
clause and the selection over c_phone is in-
cluded when computing the set of customers
without orders.

S2/S3 22 4 Filter CBC based on c_phone predicate, then
left join with CBO and select customers with-
out orders. Here, the combination of the un-
correlated sub-query and IN operator present
in previous versions is replaced by the left join
and further selection described earlier.

Table 3. Description of Couchbase’s query versions
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• Selection Push-Down within Join Predicate (Query 3): This query

involves straightforward aggregations, selections, and joins among the three

tables Customer, Orders, and Lineitem. The primary bottleneck resides in the

join operation. An effective optimizer should push down selections within the

WHERE clause to select subsets of data from each table before performing the

join. To validate Couchbase’s optimization in this aspect, two versions of the

query are created, one with selections pushed down and one without.

• Filtering in Nested Structures (Query 13): Query 13 evaluates conditions

exclusively on table Orders, with its bottleneck in S1 being the c_orders array.

Couchbase provides various methods to assess conditions within this structure,

including flattening the array using UNNEST and filtering using WHERE or looping

through the array and applying ARRAY filtering. To explore the efficiency of

these alternatives, two versions of the query are devised. Version 3 additionally

examines the performance of unnesting c_orders within a sub-query, followed

by projection and filtering using WHERE, in comparison to Version 1.

• Correlated Sub-Query (Query 22): Couchbase’s N1QL query language

cannot express correlated sub-queries referencing documents from a different

bucket. Consequently, such sub-queries need to be restructured as joins or em-

ploy IN with an uncorrelated sub-query. Four versions of Query 22 are designed

to assess the performance of different operator combinations when expressing

correlated sub-queries.

Results The graphs in Figures 12, 14, 15, 18, 19, and 20 depict the runtimes of

MongoDB, PostgreSQL (both relational and JSONB versions) for six TPC-H queries

across five different scale factors. Each figure contains two parts: a line chart and a

bar chart. The line chart displays the running times for each implementation at all

five scale factors, while the bar chart focuses on the 100G scale factor, providing a

detailed comparison among query versions.
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Couchbase versions are tested solely at the 1G scale factor due to performance

limitations. Results presented for Couchbase represent the best outcomes achieved

after extensive manual query rewriting. Figures 11, 13, 16, 17, 21, and 22 compare

Couchbase’s running times with other databases. The relational SQL version of each

query serves as a baseline and is represented by a horizontal black line parallel to

the x-axis. The white bar corresponds to the PostgreSQL JSONB version, while bars

with similar gray tones represent versions in the same schema (S1,S2,S3). Bars with

matching hatch patterns denote versions in the same database (star for Couchbase,

inverted diagonal line for MongoDB, crossed diagonals for PostgreSQL). The y-axis is

presented in logarithmic scale to accommodate the significant differences in runtimes,

with Couchbase often exhibiting runtimes several orders of magnitude higher than

MongoDB and PostgreSQL.

Figure 11. Running time (in log

scale) of Q1 on all databases using

scale factor of 1G

Throughout the experiments, a time limit

of 24 hours was imposed, and queries exceeding

this limit were terminated, with their runtimes

not recorded. For versions on schemas S2 and

S3 in MongoDB, where queries employing the

$lookup operator tended to surpass the time

limit, indexes were created on o_custkey (for

MO andMOL) and l_orderkey (forML) to

enhance the operator’s performance. All collec-

tions had an index on the _id field by default.

Although this optimization reduced runtimes,

some queries still exceeded the time limit. Furthermore, in PostgreSQL and Couch-

base, indexes on foreign keys and linking attributes were created to ensure a fair

comparison, referred to as “key-only indexes”. Alternative strategies involving addi-

tional indices are discussed separately.

Below is a summary of the observed results for the tested queries:
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(a) (b)

Figure 12. Running times of Q1 on MongoDB and PostgreSQL

Query 1 Since the query exclusively relies on attributes from the Lineitem table, the

initial hypothesis is that versions on schemas S1 and S3 may be disadvantaged. In

both scenarios, the target documents (lineitems) are stored within arrays as nested

objects, necessitating the use of additional operators for retrieval. In MongoDB,

these operators would include stages $project (with $filter) or $unwind followed

by $match. In Couchbase, the UNNEST operator is employed. Conversely, queries

executed on S2 work with smaller documents and do not require these supplementary

stages. This accounts for their superior performance in MongoDB. However, it is

worth noting that q1_mongo_s2 is still over 50% slower than q1_psql, even in this

scenario marked by efficiency.

Surprisingly, in Couchbase (as shown in Figure 11), this hypothesis does not hold.

Depending on the intricacies of storage, scanning a larger number of documents can

actually be more costly, especially when most of them need to be fetched from disk.

Additionally, since the UNNEST operator operates in-memory, it does not significantly

contribute to the overall cost. This phenomenon might explain why the Couchbase

version on S2 is slower than on S3, and the version on S3 is slower than on S1.
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Figure 13. Running time (in log

scale) of Q3 on all databases using

scale factor of 1G

Query 3 Schema S2 exhibits highly variable

running times, both at the best and worst ends

of the spectrum. Query plan analysis elucidates

this behavior. Versions 2 and 3 on MongoDB

perform notably poorly, with the latter failing

to complete even at the 25G scale factor. In

these versions, the joins are translated into two

lookup (i.e. join) operations: the first scans

MO, and the second scans ML and MC, re-

spectively. In contrast, version 1 looks up MC

first and ML second.

This divergence in performance can be at-

tributed to the substantial size difference between MO and MC, with MO being

roughly 82.55% larger. Consequently, the scanning of MO consumes considerably

more time, resulting in versions 2 and 3 spending a disproportionate amount of time

on the first lookup compared to version 1. In fact, query 3 experiences a bottleneck

when scanning any MongoDB equivalent of the Orders table, as evidenced by the

same behavior in query q3v2_mongo_s3. However, due to the embedding of lineit-

ems into orders in MOL, a second lookup is unnecessary in this query, resulting in

reduced running time compared to version 3 on S2. Nevertheless, q3v1_mongo_s3

highlights that scanning MC is still more economical.

The observation is that q3v1_mongo_s2 outperforms q3v1_mongo_s3 because the

cost of joining MOL with MC is significantly higher than joining MO with MC,

primarily due to the significantly larger document size in MOL compared to MO.

This pattern appears to hold for the $unwind operator on S1 as well. The cost

of unwinding documents with substantial nested documents is greater than joining

two collections with smaller documents. In summary, q3v1_mongo_s2 emerges as the

fastest version of query 3 in MongoDB, owing to the order in which collections are

52



(a) (b)

Figure 14. Running times of Q3 on MongoDB and PostgreSQL

(a) (b)

Figure 15. Running times of Q4 on MongoDB and PostgreSQL

joined and the document size of each one.

In Couchbase, Figure 13 illustrates that version 1 on S2 is slower than on S3 and

S1. This is because the system retrieves all documents in the respective buckets of

each schema. As noted earlier for query 1, it seems that scanning a larger number

of documents in Couchbase has a considerably greater impact than the in-memory

operators. Additionally, the system joins all documents before filtering, without

pushing down any selection, which severely impacts performance. For version 2 on

S2, all selections were explicitly pushed down, reducing the number of documents to

fetch and join. Consequently, running time decreased to almost match that of the

version on S1.
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Figure 16. Running time (in log
scale) of Q4 on all databases using
scale factor of 1G

Figure 17. Running time (in log
scale) of Q12 on all databases using
scale factor of 1G

Query 4 In the case of q4_mongo_s2, a join is necessary because the query does not

align with the schemaMO. Conversely, q4_mongo_s3 benefits significantly from the

design of S3 as it fits well within MOL.

The query also fits withinMCOL, but queries on S1 require additional, seemingly

costly steps: (1) the use of $unwind to deconstruct each array of orders per customer,

and (2) the use of $group to re-group tuples of o_orderkey and o_orderpriority

after unwinding o_lineitems. To elaborate, by deconstructing o_lineitems, new

documents are generated per element in the array, each retaining all other fields. Con-

sequently, tuples o_orderkey and o_orderpriority are no longer unique after this

operation. The final result hinges on the count of such unique tuples, necessitating a

re-grouping operation.

Couchbase tends to favor S1 due to the smaller number of documents to scan.

Analogous to MongoDB, the query aligns with CBOL and CBCOL, with the latter

containing an order of magnitude more documents. This discrepancy results in q4_-

cb_s3 being slower than q4_cb_s1. However, due to Couchbase’s incomplete support

for correlated subqueries, q4_cb_s2 was modeled as a join between CBO and CBL.

Consequently, the system scans all buckets, performs the join, and filters afterward,

elucidating its subpar performance.
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(a) (b)

Figure 18. Running times of Q12 on MongoDB and PostgreSQL

(a) (b)

Figure 19. Running times of Q13 on MongoDB and PostgreSQL

Query 12 The MongoDB and Couchbase query versions exhibit notably slower per-

formance on S2 compared to other versions. This outcome is expected since the act

of joining MO and ML, as well as CBO and CBL, demands significant time due to

their respective sizes.

For MongoDB queries running on S1 and S3, they align withMCOL andMOL,

respectively. However, the former requires an additional unwind operation on the

array of orders per customer, which contributes to its slower execution compared to

the latter. The same rationale applies to JSONB.

In the case of Couchbase, scanning CBCOL proves to be more cost-effective than

scanning CBOL, resulting in faster query performance on S1.

Query 13 Due to the left outer join, the MongoDB pipeline must commence from
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(a) (b)

Figure 20. Running times of Q22 on MongoDB and PostgreSQL

Figure 21. Running time (in log
scale) of Q13 on all databases using
scale factor of 1G

Figure 22. Running time (in log
scale) of Q22 on all databases using
scale factor of 1G

collection MC and perform lookups from MO for queries on S2, and MOL for

queries on S3. As noted in Query 3, adopting this sequence results in suboptimal

performance, as scanning any MongoDB equivalent of the Orders table in the $lookup

operation proves to be slower than scanning MC. A similar pattern emerges in

Couchbase, as illustrated in Figure 21.

Notably, versions executed on S1 demonstrate shorter running times since they

align with J COL, MCOL, and CBCOL, thereby bypassing the need for $lookups

in MongoDB and left joins in Couchbase and PostgreSQL.

Additionally, Figure 21 underscores that filtering nested structures using UNNEST

in
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Figure 23. Running times of Q22

on MongoDB using the $lookup

stage or the $group stage + the $ad-

dToSet operator

conjunction with WHERE in Couchbase outper-

forms the use of the ARRAY operator. Further-

more, the practice of projecting specific fields

from orders in q13v3_cb_s1 is shown to be ben-

eficial in reducing running times for subsequent

aggregation steps.

Query 22 As with Query 1, query versions

operating over J COL and ACOL face disad-

vantages compared to the plain relational ap-

proach. In MongoDB, all these versions neces-

sitate a self-join at a specific juncture in the

pipeline. However, after documents have tra-

versed multiple stages, the $lookup stage must redundantly retrace the same steps

leading to this juncture, resulting in considerable inefficiency. Specifically, while

computing the average account balance, essential fields such as _id, c_acctbal, and

c_cntrycode that are required later in the pipeline are lost due to the $group stage.

Versions on S2 and S3 bear the brunt of this inefficiency since they must navigate

through $lookup before self-joining, incurring the overhead of a nested $lookup stage.

Given this suboptimal performance, an alternative approach is devised to poten-

tially enhance efficiency. This approach entails using the $addToSet operator instead

of $lookup to retain the fields that would otherwise be lost.

For the queries conducted on schemas S1 and S2, the $lookup stage, meant to

simulate a self-join, is replaced with a combination of the $group stage and the

$addToSet operator. Figure 23 presents the running times of these queries. Versions

employing $lookup include the keyword “lookup” in their names, while those utilizing

$group + $addToSet are denoted with “addToSet”.

The results underscore that the use of $addToSet reduces running times on S2 and

S3 but increases them on S1. It is worth noting that using the $push operator instead
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Query id Objective What the query does
a Evaluate the performance of $match

plus $unwdind against $project and
$filter plus $unwind.

Select all lineitems where o_-
orderkey is equal to 7.

b Evaluate how fast small and big doc-
uments are filtered

Select customer with c_custkey = 7
from MC, and MCOL.

c Evaluate if the performance of join-
ing a big collection with a small col-
lection is affected by the direction of
the join

Join pairs of collections in S2: MC ∧
MO (version 1),MO∧MC (version
2),MO∧ML (version 3),ML∧MO
(version 4).

d Evaluate performance of coalescing
an $unwind within a lookup and then
filtering vs projecting a subset of the
array created by $lookup and then
using $unwind

Select customer id and order id for
orders where o_totalprice > 37500.

Table 4. Description of point queries

of $addToSet is also a feasible option. During experimentation, both approaches

yielded similar performance when compared against $lookup.

The bottleneck observed in the first two versions appears to be primarily caused

by the nested $lookup stage. Replacing it with $addToSet led to decreased running

times. In the third version, while there is no nested $lookup stage, it involves fil-

terings ($match) and a projection ($project). This combination appears to be less

computationally intensive than using the $addToSet operator.

In Couchbase, due to the system’s limitations, the correlated sub-query within the

EXISTS clause had to be modeled as a join. Figure 22 illustrates that version 4 on S2

is the fastest among all Couchbase queries. In this version, the selection over c_phone

was integrated into the uncorrelated sub-query, along with the predicate filtering c_-

acctbal based on the average of positive account balances. As all selections have

been pushed down in this version, it retrieves fewer documents, resulting in improved

performance.

Micro-benchmark In most queries, with the exception of 3 and 4, the PostgreSQL

(relational) implementation consistently outperformed both MongoDB and Couch-
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base by a margin exceeding 50% at all scale factors. To elucidate this result, a set of

hypotheses is formulated and subsequently tested through a custom micro-benchmark

comprising the queries outlined in Table 4. These specific queries are referred to as

“point queries” and are described below:

• In the case of Q3, Q4, and Q12, Query version 1 on S1 outpaces version 2.

It is postulated that projecting a subset of an array based on a condition and

then deconstructing it is faster than first deconstructing it and then filtering

the result. Point query a is devised to explore this hypothesis. In version 1,

documents are filtered after unwinding field c_lineitems, while in version 2,

a subset of the array is projected before unwinding it. The results, as depicted

in Figure 24a, affirm the hypothesis by demonstrating that version 2 is faster

than version 1.

• Drawing insights from the outcomes of Q3, it is conjectured that retrieving

larger documents is slower than retrieving smaller ones. Point query b is crafted

to test this hypothesis, measuring the filtering speed of attributes at the top

level of both large and small documents. Figure 24b supports this assertion by

revealing that scanning MC is faster than MCOL, confirming the hypothesis

as MCOL contains substantially larger documents.

• Q3 showcases a conspicuous difference in running time when comparing versions

1, 2, and 3 over S3. This leads to the belief that the order in which collections

are joined significantly affects performance, particularly whether the order of

collections used for an equijoin (or equality match) with $lookup has a tangible

impact. Point query c is devised to investigate this notion. Figure 24c illustrates

that initiating the pipeline at MO is faster than starting at MC or ML.

Although this observation may be influenced by collection size, our experiments

cannot definitively confirm it. Nevertheless, it is evident that the join’s direction

plays a pivotal role in running time.
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• Results from both the TPC-H queries and point query a indicate that the

combination of $project, $filter, and $unwind (approach 1) is more efficient

than $unwind and $match (approach 2). However, when filtering elements

of an array generated by the $lookup stage, both approaches yield similar

performance because the optimizer consolidates $unwind (from approach 2) into

$lookup. Point query d is introduced to verify this, evaluating both approaches

after a $lookup. Figure 24d demonstrates that there is no substantial difference

between the two approaches.

Indexes To evaluate the influence of indexing, additional indices are incorporated

into the dataset. Specifically, attributes employed in query selections are identified,

leading to the creation of indices on l_shipdate, l_commitdate, l_receiptdate,

o_orderdate, c_mktsegment, and c_acctbal. This approach is termed “extended

indexing”. However, it’s important to note that the TPC-H Benchmark experiences

limited indexing impact due to the presence of many attributes with low cardinality,

resulting in reduced selectivity.

Extended indexes are established for relational and JSONB queries, as well as

MongoDB and Couchbase queries on S1 (representing a typical schema for document

stores). Notably, in MongoDB, only the first stage and the $lookup stage can benefit

from indexing since they directly ingest documents from a collection. Consequently,

these indexes are primarily effective for queries where one of these stages is used,

specifically, queries 3 and 22.

The index selections made by each database are compared as follows:

In the case of query 3, parameters [DATE]=1992-01-02 and [SEGMENT]=

’AUTOMOBILE’ are employed. The former is part of a condition involving o_orderdate

and another involving l_shipdate. The first condition selects a mere 0.0414% of or-

ders, while the second encompasses 99% of lineitems. The latter parameter relates to

a condition involving c_mktsegment and selects approximately 19.83% of customers.
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(a) Point query a

(b) Point query b

(c) Point query c

(d) Point query d

Figure 24. Running

times of queries in the mi-

crobenchmark

PostgreSQL relational queries opt for the index on o_-

orderdate, while MongoDB and JSONB queries utilize

the index on c_mktsegment. Table 5 reflects that Post-

greSQL achieves superior speed-up as data size increases,

underscoring the impact of better selectivity on perfor-

mance. In contrast, MongoDB employs an available in-

dex indiscriminately, leading to suboptimal query plans.

Indices in JSONB queries contribute to decreased perfor-

mance, potentially attributed to PostgreSQL’s inability

to gather statistics on the JSONB type without the use

of a functional index. In the case of Couchbase, all three

indexes are scanned, with only documents matching the

most selective predicate being fetched. This technique,

known as “intersect scan”, results in a significant speed-

up by minimizing disk access.

For query 22, the sole viable index selection pertains

to c_acctbal. Two conditions are associated with this at-

tribute: one filtering positive account balances (selecting

around 90% of customers) and another filtering account

balances greater than the average of positive account bal-

ances (selecting roughly 45% of customers). PostgreSQL

queries universally employ the index related to the second

condition, while MongoDB utilizes it for the first condi-

tion. This index usage pattern significantly impacts Mon-

goDB’s performance, as indicated in Table 5, further un-

derscoring MongoDB’s tendency to employ an index without considering selectivity.

Analysis Experimental results support the following points:
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Query SF: 1G SF: 10G SF: 25G
q3_psql 1.60% 26.71% 27.95%
q3_psql_json 0.78% -11.15% -6.05%
q3v1_mongo_s1 4.93% 9.16% 9.37%
q3v2_mongo_s1 2.43% 9.29% 9.62%
q3v3_mongo_s1 4.55% 10.41% 9.61%
q22_mongo_s1 -2944.67% -2291.34% -1992.62%
q22_psql -1.66% 7.50% 1.27%
q22_psql_json 0.62% 23.69% 24.12%

Table 5. Speedup gained by using indexes. Negative percentages mean using indexes
made the implementation slower

The performance of an arbitrary query, denoted as q, is not consistently superior

when executed over a single collection compared to multiple collections. In the exper-

imentation, queries over S1 typically do not necessitate joins, yet the absence of joins

does not invariably translate to faster execution, as these queries often entail scanning

a larger volume of data. Additionally, q may require the selection of data buried deep

within a complex document structure, incurring the cost of deconstructing arrays.

A discernible trade-off becomes evident when contemplating database design,

weighing the merits of employing a smaller number of intricate, deeply nested ob-

jects against multiple, albeit smaller, data units. This trade-off is substantiated by

the results: when q comfortably fits within a collection in S2 or S3, its performance

tends to be sluggish in S1. This phenomenon is exemplified in query 1, where versions

executed on S2 outpace their S1 counterparts by a notable 50% margin across various

scales. This result aligns with expectations, as q traverses a more compact dataset

in S2.

In scenarios where q employs the UNNEST operation to extract fields from the

deepest objects within S1 documents, its execution tends to be swifter in S2 or S3.

This effect is substantiated by the outcomes of query 4, wherein the utilization of S2

resulted in a reduction in execution time by up to 22.4%, and S3 achieved an even

more substantial reduction of up to 56% (both observed at the 100GB scale).

Notably, Couchbase’s performance bottleneck primarily resides in the retrieval of
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documents, a trend observable in all Couchbase queries lacking manual optimization,

where the pattern of S1 surpassing S3, which in turn surpasses S2 in terms of speed

prevails. Consequently, employing in-memory operators such as UNNEST proves ad-

vantageous, as these operators harness nested structures to accelerate performance

by minimizing the need for document retrieval.

In a purely relational approach, the order of selections is contingent upon the

sequence of joins. Conversely, in the document paradigm, it hinges on the structure

of the document itself. While one can enforce a “top to bottom” data traversal

pattern within the document structure without apparent performance degradation,

this typically necessitates manual query optimization.

The selection between employing nesting (embedding) or linking in a database

design hinges upon the database’s specific workload. Utilizing simpler objects dis-

tributed across multiple collections is advantageous for queries that exclusively access

one collection but can lead to suboptimal performance when joins become necessary.

Conversely, consolidating complex objects within a single collection eliminates the

need for joins but can incur performance penalties, particularly when dealing with

selective access to only specific segments of the object, particularly nested portions. In

either case, meticulous schema design plays a pivotal role in optimizing performance.

In a database designed with multiple collections, it’s essential to accommodate

join-like operations. This approach offers the advantage of enabling document-based

databases to handle many-to-many relationships without excessive data duplication.

However, it also introduces the challenge of efficiently supporting such operations.

Unlike relational databases, document stores have inherent limitations and some-

times even bugs when it comes to joins (see https://forums.couchbase.com/t/

correlated-subquery-with-two-buckets/25160/12). Thus, the choice of schema

should carefully consider these factors. In a navigational query language, the order

of joins is often dictated by the query’s structure, resulting in significant challenges

when attempting to optimize queries with reordered operations.
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For databases designed around a single collection of complex objects, particular

attention must be paid to how the query language facilitates access and manipulation

of object components.

In situations where a collection contains documents with one or more arrays of

JSON objects, projecting a subset of these objects and then flattening them can be

approached in two ways:

1. Deconstruct the array field(s) and discard documents that don’t meet a specified

condition, denoted as c.

2. Evaluate c against the objects within the array field during projection, creating

new documents that include an array containing only the elements that satisfy

the condition. Subsequently, deconstruct this refined array.

Option 2 offers an advantage by reducing the load during the array deconstruction

phase, as it passes subsets of the original arrays. The experiment found that option

2 outperformed option 1.

When dealing with complex object selections, such as choosing customers based

on specific embedded order conditions, there can be ambiguity. Depending on the

query, two distinct output types may be desired: the customer object as-is (with

all embedded orders) or the customer object with only those orders that meet the

condition. Implementing separate operators for each case could potentially improve

performance. In document stores, optimization largely relies on the query writer, as

MongoDB and Couchbase, both representative of document stores, illustrate the lack

of an effective optimizer capable of reordering predicates.

The optimal sequence of operations for collections is heavily contingent on the

specific schema of those collections, as exemplified by Query 22. Interestingly, one

particular ordering of operations led to reduced query runtimes on S2 but had the

opposite effect on S1. Two potential optimizations, although not currently employed,

could significantly enhance query performance:
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1. In instances where the query selects elements after their deconstruction from

an array, the query planner could potentially reorganize the sequence. It might

transform this sequence into a projection that first filters the elements within

the array, followed by the deconstruction process.

2. When a query involves a join, the query planner could explore the possibility

of changing the direction of the join operation. However, it’s important to

note that transforming a left outer join into a right outer join (or vice versa)

can be complex, often necessitating a complete query rewrite in the worst-case

scenario.

Certain query patterns pose unique challenges in a document-oriented context.

Consequently, advanced operators without direct SQL equivalents become indispens-

able. Queries originating from S1, S2, or S3 may require self-joins; for example, Query

22 in MongoDB involves an uncorrelated sub-query that essentially translates into

a self-join. In Couchbase’s recommended setup, every join operation is essentially a

self-join. The experimental results have demonstrated that this approach negatively

impacts schemas S2 and S3.

These observations highlight two key points:

1. The concept of a “self-join”, a well-known technique in relational databases,

does not seamlessly translate to document-oriented systems, particularly within

navigational query languages.

2. The process of translating complex SQL queries into these document-oriented

systems can be fraught with challenges.

Experiment 2: Schema-less does not imply schema-free

This experiment underscores the importance of database design in enhancing perfor-

mance, even when working with schema-less data. It is evident that not all designs
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are universally optimal for complex, ad-hoc queries. Rather, a specific schema can im-

prove the performance of one query at the cost of another, as implied in Section III.1.

The prior experiment provided insights into how MongoDB performs compared

to traditional relational databases in an analytical query environment, a domain

traditionally dominated by RDBMSs. However, the rise of column-oriented RDBMSs

for analytical querying, with their efficient access to data when only a subset of

columns is needed, merits exploration. MongoDB, Couchbase, and other prominent

JSON DBMSs typically store records contiguously, akin to the row-wise storage of

traditional RDBMSs. This experiment also shows the performance gap that document

stores like MongoDB need to bridge compared to column-oriented RDBMSs.

In this context, MongoDB is compared against MariaDB Column Store, with Post-

greSQL also included for comprehensive evaluation. Notably, Couchbase is excluded

from this experiment due to its subpar performance in the previous analysis.

This experiment retains the three schemas from the previous study and addition-

ally addresses the M-N case (TPC-H queries involving tables Part, Supplier, and

PartSupp).

Consequently, the analysis encompasses the following queries:

• Queries 1, 3, 4, 6, 12, 13, 18, and 22, examining the design of hierarchical data

(i.e., 1-M relationships).

• Queries 2 and 11, delving into design choices for M-N data.

• Queries 5 and 9, offering insights into a combination of both 1-M and M-N

scenarios.

As in the previous experiment, query parameters are adjusted to enhance selectiv-

ity. The queries are named following the convention q<num>[v<ver>]_<engine>[_-

<schema>]:

• <num> corresponds to the relevant TPC-H query number.
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• <ver> represents the query version.

• <engine> is either “mgo” (MongoDB), “psql” (PostgreSQL), or “mcs” (Mari-

aDB Column Store).

• <schema> refers to queries executed on S1, S2, or S3.

Results The results are categorized into three groups: queries involving hierarchical

data (Customers, Orders, and Lineitems), queries pertaining to M-N data (Suppliers,

Parts, and PartSuppliers), and mixed queries that encompass both hierarchical and

M-N data. Each query description corresponds to its original SQL formulation.

It is worth noting that the test design deliberately pushed the data to sizes where

it no longer fit into memory, albeit at varying points for different systems. MariaDB,

thanks to its columnar approach, exhibited consistent performance across all sizes.

In contrast, data stored in JSON format, as utilized by MongoDB, proved notably

larger than the standard row-based relational storage in PostgreSQL. Consequently,

it necessitated disk spillover in some of the tests.

For a detailed presentation of the results, please refer to Figures 25 and 26.

Hierarchical data Some of these results have been previously discussed in the earlier

experiment, but the present study expands upon them by introducing additional

queries (6 and 18) and a new system (MariaDB with columnar storage). A summary

of these findings is provided here.

In this summary, MongoDB query versions retain the same meaning as in Table 2,

but only the fastest query version for each schema is presented in Figure 25. It

is essential to note that, due to time constraints, the newly included queries were

executed with a time limit of 10 hours instead of the 24-hour limit applied in the

previous experiment. Consequently, MongoDB versions at the 50G and 100G scale

factors are not depicted in Figures 25d and 25g.

The columnar approach, represented by MariaDB, outperformed other systems

in all cases. This outcome aligns with expectations, as the TPC-H queries exhibit
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Figure 25. Running times (in log scale) of queries over 1-M data
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a relatively “narrow” nature, i.e., they utilize only a few attributes from each refer-

enced table. This characteristic benefits the columnar approach, as it circumvents

the retrieval of entire records when only a subset of values is required. In contrast,

MongoDB’s performance consistently fell behind that of both MariaDB and Post-

greSQL. As discussed in the subsequent analysis, the experiment has highlighted the

cost associated with avoiding joins by consolidating all data into a single collection.

This approach results in increased scanning, even when only a small portion of the

data is needed. Moreover, accessing the nested components of complex objects, and

potentially restructuring them, proved to be an expensive operation for MongoDB.

This is vividly illustrated in Figures 25a and 25d, where queries 1 and 6, operating

primarily on deeply nested schemas (S1 and S3), encountered performance issues due

to their extensive interaction with lineitems located at the deepest level. Additionally,

the MongoDB query optimizer missed several opportunities to enhance performance,

especially in cases involving left joins and sub-queries, as exemplified by queries 13

and 22 (Figures 25f and 25h).

A noteworthy observation pertains to MariaDB’s query processing approach. It

systematically executes sub-queries within the WHERE clause before assessing selec-

tions. Furthermore, when multiple sub-queries are present within the WHERE clause,

they are evaluated in the order they appear.

M-N data Queries 2 and 11 are illustrated in Figures 26a and 26b. Query 2 is

presented in various versions. Notably, MariaDB necessitates a distinct approach due

to its inability to perform a semi-join and scalar filter from different tables (or joined

tables). As a result, the query is redefined using two approaches: one version unnests

the subquery in the WHERE clause (q2v1_mcs), and the other version defines a common

table expression (CTE) in the unnested version (q2v2_mcs). Note that MariaDB does

not inherently unnest this query. Furthermore, the unnested and CTE versions of

query 2 are also provided for PostgreSQL: q2v1_psql (original TPC-H query), q2v2_-

psql (unnested), and q2v3_psql (CTE). In the case of MongoDB, two versions of
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Figure 26. Running times (in log scale) of queries over M-N data (Q2, Q11) and
mixed; 1-M and M-N (Q5, Q9)

query 2 are provided. One “navigates” from Supplier to Part (initiating the query

at collection MS), while the other navigates from Part to Supplier (initiating the

query at collectionMP). After determining the more efficient version, an additional

iteration is created that introduces extra projections to reduce the document size

before each $unwind and $lookup operation.

As usual, the columnar approach proves to be the fastest. Notably, q2v2_mcs

showcases that utilizing the CTE in MariaDB enhances performance as less work

is involved. The CTE’s impact on PostgreSQL is adverse because (1) the query

planner does not extend optimizations to the CTE, and (2) the system materializes it,

subsequently applying the filters. q2v1_mongo and q2v2_mongo compete with q2v1_-

psql (the fastest PostgreSQL version of query 2). This can be attributed to several

factors. Firstly, the sizes ofMS andMP are sufficiently small to be stored in memory
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across all scale factors, reducing the size disparity between datasets in relational

and JSON formats. Secondly, the schema allows for the selective push of MP ’s

selection up in the pipeline (i.e., pushing down the selection over table Parts). Both

of MongoDB’s top-performing versions of this query commence from MP , utilizing

a projection with the $min operator to identify the minimum supply cost per part

without performing an unnest operation. This strategy diminishes the number of

documents to process and circumvents a costly $group operation that might otherwise

exceed the 100MB RAM limit per operation as the dataset size expands. It was

confirmed that the performance substantially deteriorates if attributes from PS are

absent in MP , necessitating additional lookups for the aggregated attribute. It is

worth noting that q2v2_psql exhibits anomalous behavior between the 10G and 25G

scale factors because the query planner utilizes a resource-intensive sequential scan

over Supplier at 10G, but transitions to an index scan on Supplier’s primary key at

25G, resulting in an improved runtime. This was rectified by enforcing the mentioned

index scan, making this query version faster than MongoDB’s and q2v1_psql.

Query 11 originates fromMS in MongoDB and filters documents based on the na-

tion name constraint from the original query. It subsequently joinsMP and employs

the $facet operator to process multiple aggregations from the same input docu-

ments, one for the uncorrelated subquery in the HAVING clause and another for the

outer query. An alternative approach would involve using $lookup’s special “pipeline”

argument, designed for such cases. However, this approach currently exhibits per-

formance issues, as of the time of this writing1. Unlike query 2, the schema choice

hinders query 11 as it necessitates the merging ofMS andMP , which would be un-

necessary if attributes from PS had been embedded in MS. It was confirmed that

transferring attributes from PS toMS can significantly enhance query performance.

Nonetheless, this would involve altering the database’s schema to accommodate each

query’s requirements.
1https://jira.mongodb.org/browse/SERVER-41171
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Mixed 1-M and M-N data Queries 5 and 9 are depicted in Figures 26c and 26d,

respectively. In the case of MongoDB, schemas S1, S2, and S3 were explored within

the hierarchical component, while the same schema was used for M-N data.

In the context of MariaDB, a modification was made to the join condition of query

5, specifically, the condition was adjusted as “and c_nationkey = s_nationkey +

0” due to a restriction disallowing circular joins2.

Across both queries, columnar storage consistently exhibits the best performance,

closely followed by PostgreSQL.

Query 5 involves the computation of an aggregate over table Lineitems, with filter-

ing based on o_orderdate in the Orders table and r_name in the Region table. This

structure benefits q5v[1,2]_mongo_s1 in MongoDB because the join between MS

and MCOL can be facilitated through the c_nation attribute. However, initiating

the pipeline from MS instead of MCOL (q5v2_mongo_s1) results in performance

degradation, due to the substantial document size in the latter. q5_mongo_s2 and

q5_mongo_s3 apply a filtering step to orders but need to perform lookups for MC

before MS—an additional join compared to the S1 versions. The queries on S2 and

S3 encompass the same steps as q5v1_mongo_s1, plus the added lookups, render-

ing them slower. The rationale for this performance difference lies in the fact that

S1 allows for the traversal of all hierarchical data from outer to innermost nested

documents without unnecessary intermediary steps.

Query 9 bears resemblance to query 5 in that it computes aggregates over table

Lineitem, but with the sole selection on p_name over table Parts. Consequently, q9_-

mongo_s1 necessitates an additional unnest operation. Furthermore, as there is no

join condition based on customer attributes, the pipeline is compelled to commence

from MCOL. In the case of q9_mongo_s3, the pipeline must initiate from MOL as

lineitems need to be unnested for the MS join. Notably, q9_mongo_s2 outperforms

the other two versions due to its initiation from MP and preliminary part filtering,
2https://jira.mariadb.org/browse/MCOL-1205
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effectively reducing the documents to be joined from ML and MS.

Analysis The database’s design significantly impacts performance and can sub-

stantially constrain query composition depending on the query language’s design.

Queries involving hierarchical data dispel the notion that an arbitrary query will

always perform more efficiently in a single collection compared to multiple collections,

despite the absence of joins. In both document stores and traditional RDBMSs, the

storage is row-wise, meaning that queries necessitating only a subset of attributes at

any hierarchy level must retrieve all nested data from disk, leading to unnecessary

data retrieval. This problem is exacerbated in document stores when dealing with

queries that access deeply nested attributes and require multiple unnest operations.

These unnests can generate numerous intermediate results that quickly overwhelm

memory. In contrast, column-based storage, where data is decomposed into minimal

units (single attribute values) and assembled as needed by the query[75], exhibits

superior performance.

Queries 2 and 11 illustrate the considerable performance gains when attributes are

accessible in a navigational data path. For example, the storage location of attributes

from PartSupp (analogous to either the Part or Supplier table) makes a significant

difference: when navigating from Part to Supplier, the aggregated attribute (supply-

cost) is available for computing aggregation and further constraining data retrieval,

leading to better MongoDB performance than Postgres (the only scenario where Mon-

goDB outperforms Postgres). However, the performance significantly degrades when

queries navigate from Supplier to Part. Since different queries favor different access

patterns, no single design can be deemed superior to others.

Irrespective of the chosen design, operators required for navigating any design

must be efficiently supported. Specifically, if a database is designed using several

collections, efficient support for join-like operations is necessary, encompassing full

support for all types of operations. Unlike joins in relational databases, CouchBase
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ANSI JOINs exhibit several limitations, including system bugs3. MongoDB’s $lookup

operations must be performed in specific orders. In a navigational language, the

query structure’s order is constrained by how the query is written, making order

inversion necessitate a total query structure reconstruction, which can lead to missed

optimization choices like selection push-down.

CouchBase’s case is particularly instructive; despite offering a declarative, SQL-

like language, it performed significantly worse than other systems. The analysis

reveals that CouchBase’s query optimizer struggles to translate SQL-like queries into

optimal access paths, requiring efficient algorithms for inter-document and intra-

document operations as well as their efficient combination.

This also elucidates why “no join” is not always the best strategy. When a

database is designed using a single collection of complex objects, careful consider-

ation must be given to how the query language allows access and manipulation of

object “parts”. The experiment demonstrates that selecting a subset of JSON Ob-

jects from an arbitrary collection containing documents with one or more arrays can

be achieved through two approaches: (1) Deconstructing the array field, generating

a new document for each object within it, followed by a selection to discard non-

compliant documents. (2) Evaluating the given condition against the objects within

the array field in a projection and returning new documents with an array containing

only matching elements, followed by deconstructing the projected array. Option (2)

outperformed option (1) in MongoDB, reducing running times by more than 35%, as

exemplified by query 12 over S1. Ideally, the system should determine which plan best

suits a particular query, as both options implement the same conceptual operator.

It is worth noting that in several instances MongoDB can achieve good perfor-

mance when everything is “lined up” its way, like in query 2. However, in general its

optimizer is not flexible enough to take advantage of possible optimizations: it does

not achieve optimal ordering of operations (which may depend on the schema of the
3https://forums.couchbase.com/t/correlated-subquery-with-two-buckets/25160/12
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collection); in its navigational language, choosing the order in which to access the

data is crucial, as query 2 and query 5 results show. In a complex data model (like

the one used by document stores), designing an optimization engine that can consider

several alternative plans for a query is very challenging, but also (as our results show)

very necessary.

Based on this analysis, query optimization for document databases can be ad-

vanced by improving:

• the ability to rewrite entire queries to select the most efficient data access path

in navigational languages (e.g., MongoDB).

• the mapping of relational operators to object and collection-based operations

for declarative languages (e.g., Couchbase).

To support both of these objectives, it is advisable to develop a formally defined

algebra for objects. This algebra should encompass intra and inter-object operations,

and its properties, such as operator commutativity, should be formally studied. This

foundation would enable the establishment of legal optimization strategies for the

query optimizer. Existing research, like that of [28], can offer valuable insights in this

context.

Additionally, it is important to acknowledge that schema design in document

stores directly impacts physical data layout. This introduces a challenge, as the cho-

sen storage structure may not be optimal for certain queries. Considering whether

the storage engine should be granted more flexibility is a thought-provoking perspec-

tive. For instance, breaking down complex objects with deeply nested components

into separate storage units may enhance query performance.

2 Proposed framework

As previously noted, many approaches to query optimization in document stores

follow the traditional relational framework. This framework includes the conversion
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Figure 27. Proposed framework’s query processing workflow

of queries into an internal representation, the establishment of transformation rules

or equivalences, the development of query plans for these expressions using abstract

operators, and for systems employing cost-based optimization, assigning associated

costs.

This thesis proposes an instance of this framework tailored to JSON data, with

the query processing flow illustrated in Figure 27. Each component of the flow is

described as follows:

Parser and query translator: In an RDBMS, the parser generally performs

minor query adjustments. This includes rewriting table names in the format

<database>.<schema>.table, replacing table aliases with the rewritten name, and

validating references to tables and attributes. The system catalog helps the parser

check if a referenced table exists and if the attributes referenced are correct. It

also ensures schema compatibility between tables for set operations like union or
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intersection.

For JSON databases, the existence of attributes in a table is determined by the

presence of paths in the structural summary provided by the DataPilot structure

inside the Catalog. Schema compatibility for operations like joins is checked based

on the DataPilot. Unlike RDBMSs, JSON databases typically do not enforce schema

compatibility for operations like union.

After these checks, the query is converted into a parse tree structure. For example,

an SQL parse tree structure is illustrated in Figure 28. The query is pre-optimized

through techniques such as constant arithmetic simplification (e.g., WHERE age > 25

+ 10 is converted to WHERE age > 35), subquery flattening, where the query is rewrit-

ten to eliminate subqueries if possible (e.g. see Figure 29), and other heuristic-based

optimizations. In JSON DBMSs, the specific syntactical optimizations depend on the

query language used. While some techniques developed for SQL can be adapted for

SQL-like languages like SQL++, navigational languages like MongoDB’s aggregation

pipeline may require approaches more akin to XML’s Xpath.

Start
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WhereClause

BinaryOP “AND”

BinaryOP “>”

NumConst
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ColumnRef

‘age’

BinaryOP “=”

CharConst

‘Jhon’

ColumnRef
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‘Employee’

ResultColList

ResultColRef

‘age’

ResultColRef

‘name’ SELECT name, age
FROM Employee
WHERE name = 'Jhon'

AND age > 25

Figure 28. Example of a SQL parse tree

This parse tree is then translated into an Abstract Syntax Tree (AST) for an

algebra belonging to the system’s data model and passed down to the algebraic query

transformer.

Algebraic query transformer: The AST is transformed by applying optimiza-

tion techniques based on semantic rules (i.e. rule-based optimization). In RDBMSs,
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SELECT Employee.*
FROM Employee
WHERE Employee.E-Dept IN (

SELECT Department.D-ID
FROM Department
WHERE Department.D-Name = 'HR'

)

(a) Before subquery flattening

SELECT Employee.*
FROM Employee, Department
WHERE Employee.E-Dept = Department.D-ID

AND Department.D-Name = 'HR'

(b) After subquery flattening

Figure 29. Example of subquery flattening in SQL

these semantic rules are properties of relational algebra. For the case of JSON, this

thesis proposes a specialized algebra designed for JSON data, featuring operators

structured into multiple levels for independence from data representation. The first

level focuses on individual JSON trees, enabling the manipulation of these trees, and

the conversion of trees into an Abstract Data Type to decouple them from the data

storage representation. The second level extends nested relational algebra, adapted

for sets, bags (i.e. multi-sets), and their ordered counterparts, to effectively handle

collections of documents. This level aims to provide a robust foundation for document

collection manipulation, establishing operator properties, and ensuring compatibility

with various query languages. The third level introduces macro-operators, combina-

tions of operators that can be efficiently implemented and are utilized in optimiza-

tion. A relational algebra equivalent of these macro-operators are derived operators

like JOIN, which is equivalent to a CARTESIAN PRODUCT followed by a SELECTION. An

example of some rule-based transformations in RA is shown in Figure 30 for illustra-

tive purposes. This separation into primitive (second level) and derived (third level)

operators simplifies property verification and expression manipulation.

System Catalog Module: In RDBMSs, this module stores essential table and

index metadata, such as schema details and statistical information, including sum-

mary structures like histograms. The algebraic query transformer and estimator

modules request metadata as needed.

For JSON databases, this thesis introduces the concept of a DataPilot. Essentially,
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Figure 30. Example of SQL rule-based transformations

it is an adaptation of an XML DataGuide structure tailored to JSON, serving as a

repository for structural insights about collections and associated statistics. While

previous work by Klettke ([46]) and Baazizi ([10]) has explored the utilization of

DataGuides adapted for JSON, this thesis employs this metadata for both rule-based

and cost-based query optimization.

To enable this, an algebra specifically for DataPilots is formulated. This algebra

features operators analogous to those in the second and third level algebras men-

tioned earlier. These DataPilot operators work in conjunction with the structure and

metadata of the DataPilot, offering estimations of the DataPilot generated from the

collection after applying the corresponding collection operator to the data.

For instance, consider an arbitrary collection, denoted as C, the DataPilot com-

puted from this collection as dpC, and OP representing a unary algebraic operator

applied to C, then within the DataPilot algebra, OP (dpC) approximates dpOP (C). This
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ensures that the following diagram commutes:

C dpC

OP (C) dpOP (C)

OP OP

Estimator and Plan generator: The estimator leverages DataPilot statistics

and available indexes to predict the cardinality of each operator in the AST, providing

an estimate of the expected number of records returned by each operator. If a relevant

index is available, it takes precedence over the DataPilot.

The estimator can source information from both indexes and the DataPilot. Once

it receives the AST from the algebraic query transformer, it augments the AST with

appropriate estimates and passes it to the Plan Generator. The Plan Generator

then explores various logical and physical plan alternatives using plan enumeration

algorithms, primarily focused on join reordering and often employing dynamic pro-

gramming.

For each operator, there exist multiple physical-level code implementations that

realize the operator’s logical-level behavior. Each implementation is associated with

its own cost function, which the plan enumeration algorithm employs to select the

optimal plan. In the selected plan, the algebraic operators in the AST are substituted

with nodes representing the specific physical implementations for each operator.

Executor: The plan generator’s chosen optimal plan is forwarded to the ex-

ecutor, which consolidates all the physical operator templates from the AST into a

compilable program using its code generator module. This program is then com-

piled and executed to perform the query. In systems with multiple storage engines,

the storage module typically offers an API to access the underlying data and collect

information regarding the capabilities of the storage backend (e.g., scanning, range

access, point access, indices) where the data is located. The executor leverages this

information to customize the code accordingly. Take, for instance, the two physical

plans exemplified in Figure 31. These plans illustrate two distinct (pseudo-code) im-
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plementations of the join logical operator: Hash Join and Nested-loop Join. Note

how various logical operators on the right side of the join are coalesced together:

Selections are transmuted into if statements nested within for loops that iterate

through the in-memory representation of tables. Implicitly intertwined in these for

loops is the access method employed to fetch each record from the disk. This access

method, along with the functions getAttribute and getValue, is part of the API

provided by the storage module.

Figure 31. Example of two SQL physical plans derived from Figure 30

3 Thesis contribution

The undertaking of this framework is ambitious. The thesis primarily focuses on the

DataPilot module, specifically its statistics and their application in query optimiza-

tion. In subsequent chapters, the thesis presents formal models for JSON trees and

the DataPilot module.

In summary, the thesis:

• Develops an algebra for JSON trees and collections, comprising operators dis-
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tributed across three levels. (1) Operators that manipulate individual JSON

trees, (2) operators that manipulate collections of JSON trees, and (3) operators

derived from level (2) that can be efficiently executed at the code level.

• Introduces a method to generate indices over heterogeneous data by extending

the idea of XML DataGuides ([35]) to determine when attributes have differ-

ent data types and the cardinality of each. It further demonstrates how to

incorporate this information into the optimization process.

• Establishes a formal model for the DataPilot structure and the structural and

statistical data it encompasses.

• Introduces an algebra for DataPilots, where each algebraic expression yields

a DataPilot approximation. This approximation mirrors the DataPilot result-

ing from the collection produced following the execution of the corresponding

collection algebraic expression.

• Explores properties in the DataPilot algebra for rule-based query optimization

over collections of JSON trees.

• Investigates the use of DataPilot statistics and algebraic properties for cost-

based query optimization over collections of JSON trees.

• Introduces a two-step approach, encompassing both rule-based and cost-based

methods, to convert and enrich a logical query plan derived from a given alge-

braic expression into an “optimization hint”. This hint serves as the foundation

for query optimization within a JSON document store when a more suitable

index is absent.

• Conducts an experimental investigation to confirm the viability of the proposed

framework.
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CHAPTER IV

DOCUMENTS

1 Notation and terminology

This chapter commences with an introduction to the pertinent terminology and no-

tation employed for elucidating the concept of a data pilot.

Recalling nomenclature from E.F. Codd’s relational model: Data finds its rep-

resentation in the form of tables, also referred to as relations. The designations of

columns within a table are denoted as attributes, which, when aggregated into a set,

constitute what is termed a relation schema, encapsulating the structure of the rela-

tion. Rows within a table are commonly known as tuples, and their cardinality must

align with that of the relation schema.

In contrast, within the domain of a JSON document database, JSON objects find

their analogue in tuples, collections in tables, and columns correspond to sequences

of JSON fields. A comprehensive definition of each of these concepts is subsequently

presented at the end of this section.

Diverging from relations, documents within a collection are not bound by a pre-

determined schema. Consequently, a distinction emerges between a JSON document

schema and a collection schema: The schema of a JSON document encompasses sets

of field sequences, where each sequence signifies a parent-child relationship. On the

other hand, the collection schema is an amalgamation of the schemas of all JSON doc-

uments housed within the collection. A conspicuous disparity surfaces in the nature
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of these schemas. A relational schema remains fixed and ascertainable even before

any data is introduced to a relation. In contrast, a collection schema is dynamic,

capable of changing with each novel document incorporation.

Having (approximately) delineated the parallelism between key concepts within

relational algebra and the foundational notions explored in this chapter, the subse-

quent portion furnishes formalisms that lay the groundwork for the theoretical model

expounded upon in subsequent sections.

The symbol N0 denotes the set of natural numbers with zero. i.e., N0 = Z+∪{0}.

For a function f : A → B and a subset C ⊆ A, the notation f ↾C denotes the

function f restricted to the elements of C. When referring to partial functions, the

notation f(a) ↓ indicates that f is defined at a and that f(a) exists, while f(a) ↑

indicates that f is not defined at a.

An alphabet Σ is a non-empty set of symbols, which are called labels. A labeling

function is a function whose range is an alphabet.

A rooted tree T = (N,E) is a connected acyclic graph identified by its set of

nodes N and leaves Lf(T ) ⊆ N , its set of edges E = N × N , and a distinguished

node r(T ) called the root. As usual, the notation N(T ), E(T ) and Lf(T ) refers to

the nodes, edges and leaves of T respectively, any two nodes are adjacent if they are

connected by and edge, and any two edges are adjacent if they are connected by a

node.

A path refers to a sequence p of adjacent nodes or edges in T (e.g. a, b, c, d, or

(a, b), (b, c), (c, d)). p is simple if each edge appears only once and elementary if each

node appears only once. Paths are always assumed to be simple or elementary unless

stated otherwise, which implies there is a unique path from r(T ) to any other node.

p is said to lead to a node x if p starts at r(T ) and ends at x. p is said to be complete,

denoted p
c∽ T , if it leads to a leaf.

A labeled tree (N,E, κ, ϕ) is a rooted tree with mappings κ : E ′ ⊆ E → ΣE

and ϕ : N ′ ⊆ N → ΣN , where (N,E, κ) is an edge-labeled tree and (N,E, ϕ) a
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node-labeled tree.

A type is fundamentally a classification or categorization of a variable. In mathe-

matics, the term “type” often denotes the domain of discourse pertaining to a math-

ematical object or value. For instance, if a variable x is confined to integer values,

then x belongs to the type of integers (i.e., x ∈ Z). In this context, a type can be

conceptualized as a set of values. However, the concept of type in this chapter alludes

to data types in the programming domain, distinguishing it from purely mathematical

objects.

Formally, a type system, as relevant to this thesis, is characterized by the 4-tuple

(A,C, V all,Ξ), where A and C represent disjoint sets of labels denoted as types, V all

constitutes a set encompassing sets of values, and Ξ constitutes a bijection from A∪C

to V all. Specifically, set A encompasses the names of data types regarded as atomic

by a given system, while set C includes names of data types considered complex by

the same system. The comprehensive set of types within a datbase type system is

denoted as T = A ∪ C.

In a JSON Type System, each type in T corresponds to a data type in a JSON

or JSON-like specification. Every type in the specification is represented by a type

in T, and the classification into A and C aligns with the distinction between atomic

and complex types in the specification.

Definition 1.1 (Document). Let ΣE be an alphabet and V atoms = ⋃
t∈A Ξ(t). A

document is the triplet (N,E,M) such that M = {κ : E → ΣE, ϕ : Lf(T ) →

V atoms, τ : N → T} and (N,E, κ, τ) is a labeled tree. Functions κ, τ and ϕ are called

key function, type function and value function respectively.

Theorem 1.1. Let T be a document, z an arbitrary node other than r(T ), and

r(T ), y1, y2, . . . , yn, z a path. If for all nodes u, v ∈ children(r(T ), T ), κ(r(T ), u) ̸=

κ(r(T ), v), then the sequence κ(r(T ), y1) · κ(y1, y2) · . . . · κ(yn, z) is unique.

Proof. Assume a document T where for all nodes u, v ∈ children(r(T ), T ), κ(r(T ), u) ̸=
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κ(r(T ), v). Suppose Theorem 1.1 is false, then there exists two distinct nodes z, w

with sequences r(T ), y1, y2, . . . , yn, z and r(T ), x1, x2, . . . , xn, w respectively such that

κ(r(T ), y1) · . . . · κ(yn, z) = κ(r(T ), x1) · . . . · κ(xn, z). This implies that κ(r(T ), y1) =

κ(r(T ), x1), which is a contradiction.

Definition 1.2 (JSON Array). Let A be a document with key function κ and type

function τ such that r(A) has k children. A is a JSON array if τ(r(A)) = arr ∈ C and

for all children x of r(A), the edge (r(A), x) is labeled with a number in the interval

[0, k) ∈ N0 such that κ(r(A), x) ̸= κ(r(A), y) for all siblings y of x.

Definition 1.3 (Empty JSON Array). Let A be a document with type function τ .

A is an empty JSON Array if τ(r(A)) = arr and r(A) has no children.

Definition 1.4 (JSON Array concatenation). Let A1 and A2 be JSON arrays with
key functions κ1 and κ2 respectively, and children(D, x) denote the set of children
of a node x in the underlying tree of a document D. The concatenation of A1

and A2 denoted A1 · A2 is a document with nodes N(A1) ∪ N(A2), edges E(A1) ∪
(E(A2)− {(r(A2), x) | x ∈ children(r(A2), A2)})∪{(r(A1), x) | x ∈ children(r(A1), A1)}
and key function κ, type function τ and value function ϕ defined as follows:

τ(x) =


τ1(x) if x ∈ N(A1)

τ2(x) if x ∈ N(A2)
, ϕ(x) =


ϕ1(x) if x ∈ Lf(A1)

ϕ2(x) if x ∈ Lf(A2)
,

κ(x, y) =


κ1(x, y) if (x, y) ∈ E(A1)

κ2(x, y) + max{κ1(r(A1), z) | z ∈ children(r(A1))}+ 1 otherwise

Definition 1.5 (JSON Document). A JSON document D = (N,E,M) adheres to

the following conditions:

1. All types in the range of the mapping τ correspond to the set T of a JSON type

system. The range of the mapping ϕ corresponds to ⋃t∈A Ξ(t), with set A in

the same type system.
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2. τ(r(D)) = obj, where “obj” refers to the equivalent of a JSON Object in any

JSON or JSON-like specification.

3. For any pair of children u, v of a node x with τ(x) = obj, κ(x, u) ̸= κ(x, v).

That is, ⋂z∈children(D,x){κ(x, z)} = ∅.

4. If a node x has τ(x) = arr, then the subtree rooted at x is a JSON Array as

per Definition 1.2.

5. For any leaf x ∈ Lf(D), if τ(x) /∈ {arr,obj} then ϕ(x)↓ else ϕ(x)↑.

Definition 1.6 (Empty JSON Document). Let D be a document with type function

τ . D is an empty document if τ(x) = obj and r(D) has no children.

A path expression of length n is a finite sequence of n labels from a finite alphabet

Σ. The notation pi is used to refer to the i-th label in a path expression p, and |p|

denotes the length of p (i.e., |p| = n). When p is referred to explicitly by its labels,

the notation p1 · p2 · . . . · pn is used, where · denotes concatenation. An empty path

expression with no labels is denoted by ϵ.

Let p and q be two path expressions. q is said to be a prefix of p if either q is

the empty path ϵ, or q is a shorter sequence than p and each label in q matches the

corresponding label in p. The relation is denoted as q ⪯ p. ≺ is defined as usual.

For convenience, any node x of a JSON document D = (N,E, {κ, ϕ, τ}) is often

referenced to by the path expression formed by concatenating the labels of edges in

the path leading to x. By addressing nodes this way, the hierarchical structure of D

can be described under a new context (distinguished by using serif font), in terms of

path expressions and the prefix relation, as follows:

1. Each node x ∈ N is assigned a unique identifier through the bijection idD: Let

z be an arbitrary node other than r(D) and r(D), u1, u2 . . . , un, z a path, then
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idD(r(D)) = ϵ and idD(z) = κ(r(D), u1) · κ(u1, u2) · . . . · κ(un, z); note that

idD(z) is guaranteed to be unique by Theorem 1.1.

2. Let N ′ = {idD(x) | x ∈ N}, E ′ =≺, τ ′ : x ∈ N ′ 7→ τ ◦ id−1
D (x), ϕ′ : x ∈ N ′ 7→

ϕ ◦ id−1
D (x), and D = (N ′, E ′, {ϕ′, τ ′}) where id−1

D is the inverse of idD. Then,

D is equivalent to D in this new context.

When explicitly denoting a JSON array as a set of paths, the notation ⟦p1 :

v1, p2 : v2, . . . , pn : vn⟧ is employed, where v1, v2, . . . , vn represent the values that

paths p1, p2, . . . , pn evaluate to in the tree, respectively. It’s required that the first

labels of all paths are unique and fall within the interval [0, n) ∈ N0.

When explicitly denoting a JSON document as a set of paths, the notation ⦃p1 :

v1, p2 : v2, . . . , pn : vn⦄ is used, with v1, v2, . . . , vn being the corresponding values of

paths p1, p2, . . . , pn in the tree.

Notably, when a path p consists of more than one label, the presence of nested

documents and arrays at each prefix of p (excluding p itself) is implicit. Alternatively,

a path can be decomposed into its constituent labels to make the presence of these

nested documents and arrays explicit. For example, consider a path l1 · l2 · . . . · lk

evaluating to a value v. If each label in the path is not in N0, then the expressions

⦃l1 · l2 · . . . · lk : v⦄ and ⦃l1 : ⦃l2 : ⦃. . .⦃lk : v⦄ . . .⦄⦄⦄ are equivalent. However, if

there exists a label lj in N0, then ⦃l1 · l2 · . . . · lk : v⦄ and ⦃l1 : ⦃l2 : ⦃. . .⦃lj−1 : ⟦lj :

⦃. . .⦃lk : v⦄ . . .⦄⟧⦄ . . .⦄⦄⦄ are equivalent.

Figures 32a and 32b show an example of a JSON document as a tree and as defined

in the JSON specification respectively; types mapped to by τ and declarations of ϕ

are colored according to the color of the respective node, dotted lines represent the

value in V all mapped to by ϕ.

Furthermore, the parents of a node x in D can be determined from x itself and

the entire tree structure from its leaves, thus allowing for a recursive definition of the

tree consisting of r(D) and a regression rule explaining how, given a node, to derive

88



τ(ϵ) = obj

τ("hobbies") = arr

τ("hobbies".1) = obj

8

τ("hobbies"·1·"level") = int

"soccer"

τ("hobbies"·1·"name") = str

name level

τ("hobbies"·0) = obj

5

τ("hobbies"·0·"level") = int

"snorkel"

τ("hobbies"·0·"name") = str

name level

0 1

"502-225-1111"

τ("phone") = str

τ("name") = str

"Jim"

name

phone

hobbies

ϕ("name") ϕ("phone")

ϕ("hobbies"·0·"name") ϕ("hobbies"·0·"level") ϕ("hobbies"·1·"name") ϕ("hobbies"·1·"level")

(a) JSON Document as a tree

{"name":"Jim",phone:"502-225-1111",
"hobbies": [

{"name":"snorkel","level":5},
{"name":"soccer","level":"

amateur"}
]

}

(b) JSON document as indicated in the
JSON specification

⦃

"name":"jim", "phone":"502-225-111",
"name"·"hobbies"·1·"name":"snorkel",
"name"·"hobbies"·1·"level":5,

"name"·"hobbies"·2·"name":"soccer"
"name"·"hobbies"·2·"level":"amateur"

⦄

(c) JSON document using generic docu-
ment notation

Figure 32. Example of a JSON document viewed as a tree and as indicated in the
JSON specification

its parent:

root: x0 = ϵ

rule: (x)n
parent−−−→ x0 · . . . · xn−1

Equipped with this recursive definition, any operation or map referring to nodes in

D can be expressed in terms of Lf(D)1. Commonly used operations throughout the

chapter are:

Definition 1.7 (Path suffix extraction). Let T be a document and p a path expres-

sion. This operation treats p as a prefix of one or more paths in T to extract the suffix
1This recursive definition leverages the notion of a generating tree, employing a regression rule

instead of the more customary succession rule found in generating tree definitions. The rule consti-
tutes the inductive step, with the root serving as the foundation for induction.
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q of all paths of the form p.q in T. The restriction q ̸= ϵ ensures the result equals ∅ in-

stead of {ϵ} when p ∈ Lf(T) and thus suf(T, p) ̸= ∅ ii and only if p ∈ N(T)−Lf(T).

Note that when p = ϵ, suf(Lf(T), p) = Lf(T).

suf(T, p) = {q | ∃ q ̸= ϵ ∧ p.q ∈ Lf(T)}

Definition 1.8 (Path projection). Let T be a document and p a path expression.

This operator filters out paths in Lf(T) where p is not a prefix. In other words, it

projects all branches of T where node p is present.

proj(T, p) = {p.q | ∃q p.q ∈ Lf(T)}

Definition 1.9 (Children extraction). Let T be a document and p a path expression.

children(T, p) = {p.l | p.l ∈ N(T) ∧ |l| = 1}

Definition 1.10 (Subtree extraction). Let T be a document and p a path expression.

subtree(T, p) = T′ such that Lf(T′) = suf(T, p), id−1
T′ : q ∈ N(T′) 7→ id−1

T (p.q) and

for all λ ∈M(T) there exists a ι ∈M(T′) such that ι : q ∈ N(T′) 7→ λ(p.q)

Definition 1.11 (Branch extraction). Let T be a document and p a path expression.

branch(T, p) = T′ such that Lf(T′) = proj(T, p), id−1
T′ = id−1

T ↾N(T′) and for all

λ ∈M(T) there exists an ι ∈M(T′) such that ι = λ↾N(T′).

Definition 1.12 (Tree difference). Let T1 and T2 be documents. The difference

between T1 and T2, denoted T1 − T2, is the document T with Lf(T) = Lf(T1) −

Lf(T2), id−1
T = id−1

T1↾N(T) and for all λ1 ∈ M(T1) there exists a λ ∈ M(T) such that

λ = λ1↾N(T).

Definition 1.13 (Subtree replacement). Let T1, T2 be documents and p a path

expression. replace(T1,T2, p) = T such that Lf(T) = (Lf(T1)− proj(T1, p)) ∪ {p.q |

q ∈ T2} and for all λ1 ∈ M(T1) and λ2 ∈ M(T2), there exists a λ ∈ M(T) that

maps paths as follows: for any path x ∈ T2, λ(p.x) = λ2(x), and for any path

y ∈ T1 − branch(T1, p), λ(y) = λ1(y).
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Definition 1.14 (Union compatible documents). Two documents T1, T2 are said to

be union compatible if id−1
T1 (ϵ) = id−1

T2 (ϵ), id−1
T1↾N(T1)∩N(T2)= id−1

T2↾N(T1)∩N(T2), and there

exists a bijection ι : M(T1) → M(T2) such that for all λ1 ∈ M(T1), λ1↾N(T1)∩N(T2)=

ι(λ1)↾N(T1)∩N(T2)

Definition 1.15 (Document union). Let T1, T2 be union compatible documents

and ι : M(T1) → M(T2) a bijection such that for all λ1 ∈ M(T1), λ1↾N(T1)∩N(T2)=

ι(λ1)↾N(T1)∩N(T2). T1 ∪ T2 = T such that Lf(T) = Lf(T1) ∪ Lf(T2), for all λ1 there

exists a λ ∈M(T) such that λ = λ1 ∪ ι(λ1), and

id−1
T (x) =


id−1

T2 (x) if x ∈ N(T2)− (N(T1) ∩N(T2))

id−1
T1 (x) otherwise

Corollary 1.16. Let T1, T2 be union compatible documents. For any λ ∈M(T1∪T2),

λ is always a function.

Proof. Let λ1 ∈M(T1). Since T1 and T2 are union compatible, there exists a mapping

λ2 ∈ M(T2) such that λ1↾N(T1)∩N(T2)= λ2↾N(T1)∩N(T2). Thus, by the pasting lemma,

λ1 ∪ λ2 is a function.

Definition 1.17 (Path expression realization). Let T be a document and p a path

expression. p is realized in T, denoted p
r∽ T, if and only if p ∈ N(T)

Definition 1.18 (Path expression completeness). Let T be a document and p a path

expression. p is complete in T, denoted p
c∽ T, if and only if p ∈ Lf(T).

Definition 1.19 (Value extraction of a JSON Document). Let T be a JSON docu-

ment, ϕ its value function, τ its type function, and p a path expression.

T ↪→ p =



ϕ (p) if p ∈ Lf(T) and ϕ(p)↓

subtree (T, p) if p /∈ Lf(T) and ϕ(p)↓

⦃⦄ if p ∈ Lf(T), ϕ(p)↑, and τ(p)=obj

⟦ ⟧ if p ∈ Lf(T), ϕ(p)↑, and τ(p)=arr
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Moreover, for any type t, T t
↪−→ p = T ↪→ p if τ(p) = t.

Example 1.1 (subtree). Assume edge labeled trees A and B as depicted in Figure 33,

such that B = subtree(A, "hobbies"). A has mapping λA : N(A) → N0 while B has

λB : N(B) ⊂ N(A) → N0. Paths colored light blue in N(A) mark nodes making the

subtree rooted at "hobbies", the symbol X indicates paths in N(A) that no longer

exist in N(B), the diagonal lines drawn through labels within paths in N(B) indicate

labels no longer in the path—that is, ((((("hobbies" becomes ϵ, ((((("hobbies"· 0 becomes 0

and so on; the end result being N(B) = {ϵ, 0,0·"name",0·"level"}. Observe that:

• λB(ϵ) = λA("hobbies".ϵ)

• λB(0) = λA("hobbies"·0)

• λB(0·"name") = λA("hobbies"·0·"name")

• λB(0·"level") = λA("hobbies"·0·"level")

which complies with the definition of subtree as λB(q) = λA("hobbies" · q) | ∀q ∈

N(B).

Definition 1.20 (Collection). A collection C = (K,multK) is a multiset of JSON

documents where K is the underlying set of JSON documents and function multK :

K → Z+ gives the multiplicity (i.e. number of occurrences) of any document D ∈ K

as the number multK(D) such that multK(D) > 0. The cardinality of C is expressed

as |C| = ∑
multK(D) | D ∈ K and its support as supp (C) = K.

Definition 1.21 (Collection Cover). Given a collection C, the cover of C is the set

of paths present in any document of C. Formally,

cover (C) =
⋃
d∈C

N(d)
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ϵ

"hobbies"
"hobbies"·0

"name"
"phone"

"hobbies"·0·"name"
"hobbies"·0·"level"

A

"name" "level"
0

"name"
"phone"

"hobbies"

10
2
3
6
7
3
1

ϵ

((((("hobbies"
((((("hobbies"·0

"name"
"phone"

((((("hobbies"·0·"name"
((((("hobbies"·0·"level"

x

xx

B

"name" "level"
0

λA λB

N(A) range(λA) N(B)

subtree(A, "hobbies")

Figure 33. Example of the subtree function applied to a tree A with node labeling
function λA : A(N) → N0. The new tree and node labeling function are B and λB

respectively.

2 JSON Document Algebra

Given the inherent capacity of JSON documents to facilitate nested structures, it

becomes apparent that the ambit of operations performed on collections cannot be

entirely encapsulated by conventional relational algebra. The prospect of nested rela-

tional algebra, though considered, is inadequate in addressing both the multifaceted

diversity inherent in JSON arrays and the dynamic nature of collection schemas.

There are multiple JSON formalisms in the literature, each offering a distinct avenue

for articulating JSON queries. Within the scope of this manuscript, a specific for-

malism is adopted, one that takes the fundamental tenets of relational algebra and

extends them, while mirroring the behavior of some operators from [14].
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Selection

Represented as σφ(C), a selection filters out documents in C for which the expression

φ is false.

An expression φ follows the semantics below, where “Expr” denotes an expression

itself, “Const” a constant (or literal), “PathExpr” a path expression as defined in

Section IV.1 and θ a comparison operator that may be defined for multiple types,

but always assumes operands of the same type.

Expr := SimpleExpr | (Expr) | Expr ∧ Expr | Expr ∨ Expr

SimpleExpr := PathExpr θ PathExpr | PathExpr θ Const | ∃PathExpr

| isType(PathExpr, t ∈ T)

expressions are of types: Path-Path (PathExpr θ PathExpr), Path-Const (PathExpr

θ Const), existence (∃PathExpr), data type inquiry (isType(PathExpr, t ∈ T)), con-

junctive (Expr ∧ Expr), disjunctive (Expr ∨ Expr) and prioritized ((Expr)). The first

four are of the simple expression kind and the last three of the complex expression

kind.

Throughout the rest of the thesis, selection expressions are referred to as selection

predicates, or just predicates when context allows, as a way to keep the concept

familiar to relational database theory.

Projection

project is a unary operator written as πP (C), where P is a set of path expressions.

Let d be an arbitrary JSON document in C; the operator filters out paths in Lf(d)

that do not have as prefix at least one path in P . Any path having a prefix in P is

said to be projection idempotent with respect to P , which is shown in more formal

terms in Definition 2.1.

Definition 2.1 (Projection idempotent path). For any path q ∈ Lf(d), q is projection

idempotent with respect to P if there exists a path p ∈ P such that p ⪯ q.
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Definition 2.2 (Projection idempotent set). All projection idempotent paths in

Lf(d) with respect to P form a projection idempotent set with respect to d and

P . Elements of such set become the new leaves of d after a projection over C.

Lemma 2.1 (Projection idempotence). πP (πP (C)) = πP (C)

Proof. Let d be an arbitrary document in collection C and S be a projection idem-

potent set with respect to d and P . Suppose d becomes d′ after πP (C), which means

Lf(d′) = S. Then, by definition, all paths in S are projection idempotent with re-

spect to P , thus a second projection over πP (C) leaves d′ unchanged as Lf(d′) is

already projection idempotent with respect to P .

For any path s resolving to an array, projecting specific array elements of s in the

data by using positional indexes (e.g. s · 0) filters out any element whose index is not

specified. Projecting fields of objects within arrays (e.g. s · 0·"c") has a similar effect,

but removes array instances of s where the specified object field does not exist. An

example of both cases is shown in Examples 2.1 and 2.2.

Example 2.1 (Projection of array element in the data). Consider a collection K with

the following documents in JSON format:

1 {"a":1,"b":[{"c":1,"d":2},{"e":3,"f":4}]}

2 {"a":2,"b":[{"e":5,"d":6},{"c":7,"g":8}]}

3 {"a":3,"b":[5]}

4 {"b":{"0":{"c":1,"d":2},"1":{"e":3,"f":4}}}

The projection π"b"·0(K) removes all paths but "b" from all documents as long as

"b" resolves to an array. Only the first element of "b" is kept. This is depicted in

Figure 34, where the structure of each document is shown and tree branches in red

are the only ones remaining after project.

The resulting collection after the projection is:
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d1

"e" "f""c" "d"
0 1

"a" "b"
d2

"c" "g""e" "d"
0 1

"a" "b"
d3

0

"a" "b"
d4

"c" "g""e" "d"
"0" "1"

"b"

Figure 34. Projection π"b"·0(K) over collection K with documents d1, d2, d3, and
d4

1 {"b":[{"c":1,"d":2}]}

2 {"b":[{"e":5,"d":6}]}

3 {"b":[5]}

4 {}

Notice that "b" resolves to an object in the document at line 4 and is thus removed.

The key distinction between the path to project ("b"·0) and path "b"·"0" from the

document at line 4 is that the symbols 0 and "0" are different as the former belongs

to N0, while the latter does not.

Example 2.2 (Projection of object field within array in the data). Consider the

same collection K from Example 2.1. The projection π"b"·0·"c"(K) removes all paths

but "b" from all documents as long as "b" resolves to an array and the first position

of such array contains an object with field "c". This is depicted in Figure 34, where

the structure of each document is shown and tree branches in red are the only ones

remaining after project.

d1

"e" "f""c" "d"
0 1

"a" "b"
d2

"c" "g""e" "d"
0 1

"a" "b"
d3

0

"a" "b"
d4

"c" "g""e" "d"
"0" "1"

"b"

Figure 35. Projection π"b"·0·"c"(K) over collection K with documents d1, d2, d3, and
d4

Unlike Example 2.1, all documents except d1 are empty in the resulting collection:

1 {"b":[{"c":1}]}
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2 {}

3 {}

4 {}

A variation of project called a non-preserving project is shown in Equation 1.

Their behavior is similar, but the latter filters out empty documents. If applied to

the resulting collection in Example 2.1, document d4 is removed, while documents d2

to d4 in Example 2.2 are removed.

π⊘P (C) = σ∃p1∨···∨∃pk
(πP (C)) (1)

Cartesian Product

Let C1,C2 be collections and l be the empty path or a label not realized in neither

collection. The cartesian product of C1 and C2, denoted as C1×l C2, is the merging of

all pairs of documents c1, c2 such that c1 ∈ C1, c2 ∈ C2 and all keys at the first level

of both documents are different. Merging occurs in one of two ways:

• if l = ϵ, a new document is created with copies of all first level fields (and their

values) from c1 and c2.

• else a new document is created with copies of all first level fields (and their

values) from c1 and the extra field l added such that the value of l is c2.

A formal definition is given in Definition 2.3.

Definition 2.3. Let C1 and C2 be collections, and l a label such that either l = ϵ or

l /∈ cover (C1).

C1 ×l C2 =


⟨c1 ∪ c2 | c1 ∈ C1 ∧ c2 ∈ C2⟩ if l = ϵ

⟨c1 ∪ ⦃l : c2⦄ | c1 ∈ C1 ∧ c2 ∈ C2⟩ otherwise

97



When l = ϵ, the cartesian product of C1 and C2 is written as C1 × C2 instead of

C1 ×ϵ C2 for simplicity.

Unnest

Given a path expression p, unnesting p can be understood as unwinding the array p.

This process comprises two steps: filtering—all documents where p does not exist,

resolves to a non-array type or an empty array are removed—and deconstruction—on

all documents where p resolves to an array a, a is deconstructed such that for each

element x ∈ a, unnest outputs a new document where p resolves to x.

Let d be an arbitrary document in some collection C. unnest has 3 invariants d

must comply with to be deconstructed:

1. p must be realized in d.

2. p must point to an array.

3. the array p points to must not be empty.

There are two distinct unnest operators: preserving (Definition 2.5) and non-

preserving (Definition 2.4). Unnest is preserving when only deconstruction is applied

on C and non-preserving when filtering and deconstruction are (both) applied con-

secutively on C.

Definition 2.4 (Non-preserving Unnest). Let C be a collection and p a path. The

non-preserving unnest of documents in C regarding to p is defined as follows:

µ⊘p (C) = ⟨replace(d, subtree(d, p · x) , p) | ∀d ∈ C ∀x ∈ children(d, p) ∧ τ(d, p) = arr⟩
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Definition 2.5 (Preserving Unnest). Let C be a collection and p a path. The pre-

serving unnest of documents in C regarding p is defined as follows:

µp(C) = µ⊘p (C) ∪ ⟨d ∈ C | τ(d, p) ̸= arr⟩

Aggregate functions

Within the manuscript, aggregate functions, akin to those found in relational databases,

are mechanisms that process multiple values concurrently to yield a single result. In

the context of documents, these functions operate on three inputs: a label, a path, and

a collection. Definition 2.6 provides a generalized abstraction of aggregate functions.

Definition 2.6 (Aggregate function). Let C represent a collection, p a path, (⊙, S)

denote a monoid derived from elements in a generic set S with an operation ⊙, and

δ be a mapping assigning a value within the domain of ⊙ to each document based on

p. The aggregate function f , which reduces all values p refers to in documents from

C, is defined as:

f (C, p) =
⊙
d∈C

δ(d, p)

In Definition 2.6, the usage of a monoid implies the existence of an identity ele-

ment. This identity is employed in the definition of specific aggregate functions to

substitute any non-existent or incompatible values extracted from a JSON document.

For instance, the well-known sum aggregate function, restricted to numbers, utilizes

0 as the identity. When encountering a non-numerical element, it simply replaces it

with this identity (e.g., 1 + "a" is treated as 1 + 0). The extraction of these numbers

from each document and the appropriate use of the monoid’s identity element are

delegated to the δ mapping for each particular aggregate function.

Aggregate functions are categorized in two types based on how their result is

affected by the presence of duplicates. If the result of the aggregate function agg
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does not change in the presence of duplicates (e.g. min and max), agg is called

duplicate-agnostic, else, if the result does change, agg is called duplicate-sensitive

([27]).

Examples of specific aggregate functions based on Definition 2.6 include:

sum (C, p) =
∑
d∈C

δ(d, p) with δ(d, p) =


d ↪→ p If d num

↪−−→ p ↓

0 otherwise

count (C, p) =
∑
d∈C

δ(d, p) with δ(d, p) =


1 If p r∽ d

0 otherwise

avg (C, p) = sum (C, p)
count (C, p)

It is noteworthy that there exist operators over numbers, like min and max, that

do not constitute a monoid on the set of real numbers R. However, this is not

problematic as database systems handle subsets of R that are bounded below and

above, primarily due to hardware limitations. For example, 64-bit integers have lower

and upper bounds of −263 and 263 − 1, respectively.

In traditional SQL-based systems, non-aggregate functions can operate within

aggregate functions, thereby transforming the input to the aggregate function on a

per-document basis. To support such behavior, Definition 2.6 can be extended as

follows:

Definition 2.7 (Higher order aggregate function). Let C represent a collection, p

a path, (⊙, S) denote a monoid derived from elements in a generic set S with an

operation ⊙, δ be a mapping assigning a value within the domain of ⊙ to each

document based on p, and g a non-aggregate function whose domain matches that of

⊙. The higher-order aggregate function f is defined as:

f (C, p, g) =
⊙
d∈C

δ(d, g, p)
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In Definition 2.7, the non-aggregate function g is responsible for transforming

the individual values extracted from a document within the specific δ mapping of a

particular aggregate function. For instance, defining the sum aggregate function as a

higher-order aggregate function would look as follows:

sum (C, p, g) =
∑
d∈C

δ(d, p, g) with δ(d, p, g) =


g (d ↪→ p) If d num

↪−−→ p ↓

0 otherwise

This allows for representations of operations akin to SQL’s sum (2 ∗ p) by defining

the g function as g : x 7→ 2 ∗ x.

Compared to aggregate functions in a purely relational context, Definitions 2.6

and 2.7 are sufficiently general to allow aggregate functions in this context to generate

not only scalars but also other types of mathematical objects. While these may not

have an explicitly defined data type in a JSON-like standard, their utilization can aid

in replicating the behavior of SQL’s json_arrayagg or MongoDB’s $push aggregate

functions, which entail introducing order to an unordered collection of values.

Consider the aggregate function msetagg, which simply utilizes the multiset union

operator and the empty multiset as the identity element to form a single multiset

comprising all values a path p resolves to in documents from a collection C:

msetagg (C, p, g) =
⋃
d∈C

δ(d, p) with δ(d, p, g) =


{g (d ↪→ p)} If p r∽ d

∅ otherwise

If there exists a bijection h : msetagg (C, p) → [0, k) ⊂ N0 that can be declared

on-demand in the database system whenever the msetagg aggregate function is

used, with k = |msetagg (C, p, g)|, then the values in msetagg (C, p, g) and h can

be employed to construct an array. This can be achieved by pairing values from

msetagg (C, p, g) into a tree and utilizing h to label its edges. For instance:

arragg (C, p, g) =
⋃

x∈msetagg(C,p,g)
⟦h(x) : x⟧
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Aggregate functions can be decomposed like they are in relational databases

([78],[27]). In this context, the property of decomposability is described in Defini-

tion 2.8.

Definition 2.8 (Decomposability). Let C, C1 and C2 be a collections such that

C = C1 ∪ C2, p a path and g a non-aggregate function. An aggregate function

agg is decomposable if there exist two aggregate functions agg1 and agg2 such that

agg(C, p, g) = agg2(⟨⦃p : agg1(C1, p, g)⦄,⦃p : agg1(C2, p, g)⦄⟩, p, g).

Amongst aggregate functions, some of the most notorious decompositions listed

in [27] are adapted to JSON documents as follows:

min (C2 ∪ C2, p, g) = min (⟨⦃p : min (C1, p, g)⦄,⦃p : min (C2, p, g)⦄⟩, p, g)

max (C2 ∪ C2, p, g) = max (⟨⦃p : max (C1, p, g)⦄,⦃p : max (C2, p, g)⦄⟩, p, g)

count (C2 ∪ C2, p, g) = sum (⟨⦃p : count (C1, p, g)⦄,⦃p : count (C2, p, g)⦄⟩, p, g)

sum (C2 ∪ C2, p, g) = sum (⟨⦃p : sum (C1, p, g)⦄,⦃p : sum (C2, p, g)⦄⟩, p, g)

avg (C2 ∪ C2, p, g) = sum (⟨⦃p : sum (C1, p, g)⦄,⦃p : sum (C2, p, g)⦄⟩, p, g)
sum (⟨⦃p : count (C1, p, g)⦄,⦃p : count (C2, p, g)⦄⟩, p, g)

Note that the arragg aggregate function introduced earlier is not easily decom-
posable as it would create an array per collection and then nest these arrays inside
another array. To solve this, a new aggregate function that concatenates arrays using
the operator in Definition 1.4can be defined as follows:

arrconcat (C, p) = ·
d∈C

δ(d, p) with δ(d, p) =


d ↪→ p If d arr

↪−→ p ↓

⟦⟧ otherwise

Note that commutativity is sacrificed with arrconcat, but associativity is maintained

and thus the monoidal property is preserved. The decomposition would then look as

follows:

arragg (C2 ∪ C2, p, g) = arrconcat (⟨⦃p : arragg (C1, p, g)⦄,⦃p : arragg (C2, p, g)⦄⟩, p)
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Group

A group operation consists of five elements: (1) a collection C to partition, (2) a set P

of j path expressions used to partition C so that documents sharing the same values

for all p ∈ P are placed in the same partition, (3) a set Q of k paths to combine, (4)

a proper class F of k aggregate functions used to combine values from paths in Q,

and (5) a set R of k labels. Elements (1) and (2) constitute the partitioning step, and

elements (3), (4), and (5) form the merging step.

Let P = {p1, p2, . . . , pj} (where indexes 1 through j are used only to differentiate

elements and have no inherent order). During the partitioning step, all documents

in C with the same values for path expressions p1, p2, . . . , pj are placed in the same

partition. For any document, the values of these path expressions can be of some

type in T or null. For any two documents, if a path expression p ∈ P is not realized,

then p is considered undefined for both and assumed to resolve to the same value,

although one that is different from any type in T or null.

Let Q = {q1, q2, . . . , qk}, R = {r1, r2, . . . , rk} and f1, f2, . . . fk be elements of

F . During the merging step, documents in the same partition are combined into

a single document as follows: fi combines all values of qi based on some database-

defined behavior. The new document has all realized path expressions in P , each one

evaluating to the same value they evaluate to in all documents in the partition, and

path ri resolves to the result of the combination fi produces.
Group has the form shown in Formula 2, where each term ri : fi(qi) on the left-

hand side of the equality is called an aggregate.

p1,...,pj
γr1:f1(q1),r2:f2(q2),...,rk:fk(qk)(C) =〈
⦃p1 : v1, . . . , pj : vj⦄ ∪

⋃
1≤i≤k

⦃

ri : fi

(
σp1=v1∧···∧pj=vj

(C) , qi

)⦄
∣∣∣∣∣⦃p1 : v1, . . . , pj : vj⦄ ∈ supp

(
πp1,...,pj (C)

)〉
(2)

Group supports the fundamental scalar aggregate functions in SQL, including

avg, count, max, min, and sum. Alternative query languages such as SQL++ and
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MongoDB’s aggregation pipeline introduce compatibility for various other aggregate

functions that can also be supported, but are not covered. Standardization of array

aggregate functions is less prevalent; however, the prevalent one, albeit named dif-

ferently in the aforementioned query languages, is arragg. This aggregate function

behaves analogously to SQL’s json_arrayagg, MongoDB’s $push, and is akin to a

non-scalar subquery integrated within the select clause in SQL++.

In various query languages, multiple aggregates can often be employed. To sim-

plify the explanation of certain concepts and relationships in subsequent sections,

the adopted approach follows the use of aggregate vectors as outlined in [27]. An

aggregate vector is represented as F̃ = ⦅r1 : f1(q1), r2 : f2(q2), . . . , rk : fk(qk)⦆. The

set of paths that are referenced within F̃ is denoted as paths(F̃ ). The combination

of two distinct aggregate vectors, F̃1 and F̃2, is indicated by F̃1 · F̃2. Formula 2 can

then be reformulated in the following manner:

PγF̃ (C) with F̃ = ⦅r1 : f1(q1), r2 : f2(q2), . . . , rk : fk(qk)⦆ (3)

Aggregate vectors support the splittability property outlined in [27]:

Definition 2.9 (Aggregate vector splittability). Let A,B be collections and F̃ a

vector of aggregates. F̃ can be split into vectors F̃A and F̃B with respect to A and B

if F̃ = F̃A · F̃B, paths(F̃A) ∩ cover (B) = ∅, and paths(F̃B) ∩ cover (A) = ∅.

Aggregate vector splittability together with the decomposability of aggregate func-

tions are particularly useful properties when rewitting queries as they allow to break

down aggregations and perform groupings earlier in a query when doing so benefits

performance.

Example 2.3. Assume collections O and L analogous to tables Orders and Lineitem

in the TPC-H Benchmark and the query: Find the total loss of revenue on orders

handled by each clerk due to parts being returned by customers. This query looks as
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follows in the algebra:

o_clerkγloss:sum(l_extendedprice ∗ (1−l_discount))(σl_returnflag=’R’(O ▷◁o_orderkey=l_orderkey L))

In the TPC-H schema, each order is handled by one clerk, thus the loss of revenue from

each particular order can be eagerly computed and all losses subsequently aggregated

to compute the total loss. This involves breaking the group operator into two as

follows:

o_clerkγloss:sum(order_loss)(

O

▷◁o_orderkey=l_orderkey

l_orderkeyγorder_loss:sum(l_extendedprice ∗ (1−l_discount))(σl_returnflag=’R’(L))

)

When rewriting queries, decomposition of duplicate-sensitive aggregate functions

may require amendments to take into consideration any values grouped earlier in the

decomposed aggregates.

Example 2.4. Assume collections O and L analogous to tables Orders and Lineitem

in the TPC-H Benchmark and the query: Find the total number of lineitems returned

per customer. The query can be written in the algebra as follows:

o_custkeyγreturned:count(∗)(σl_returnflag=’R’(O ▷◁o_orderkey=l_orderkey L))

In the TPC-H schema, an order can have multiple lineitems, thus the number of

returned lineitems per order can be computer early on. Then, the grouping performed

after the join would simply add up these numbers for orders that belong to the same
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customer.

o_custkeyγreturned:sum(order_returned)(

O

▷◁o_orderkey=l_orderkey

l_orderkeyγorder_returned:count(∗)(σl_returnflag=’R’(L))

)

Note that unlike with Example 2.3, here the aggregate used (i.e. count) must be

amended in the outer group to keep the query coherent.

In more general terms, this transformation, or amendment, is formalized as fol-

lows:

Definition 2.10 (Aggregation amendment). Let agg be an aggregate, q a path and

c a label. Amending agg by c is denoted agg⊗ c and defined as follows:

(agg⊗ c)(q) =



agg(q) if agg is duplicate-agnostic

agg(q ∗ c) if agg is sum

sum (c) if agg(q) = count (∗)

Definition 2.11 (Aggregate vector amendment). Let F̃ = ⦅l1 : agg1(q1), . . . , lk : aggk(qk)⦆

be an aggregate vector and c a label. Amending F̃ by c, denoted F̃ ⊗ c, is defined as

follows:

F̃ ⊗ c = ⦅l1 : (agg1 ⊗ c)(q1), . . . , lk : (aggk ⊗ c)(qk)⦆

Inner Join

Let A,B be collections, α a predicate and l the empty path or a label not realized

in neither collection. The inner join of A and B, denoted A ▷◁lα B, is the merging of

all pairs of documents a, b such that a ∈ A, b ∈ B, and all keys at the first level of

both documents are different; if a and b satisfy condition α. Merging behaves as in

the cartesian product.
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Note that similarly to the relational case, the join of A and B when l = ϵ can

be considered as a derived operator equivalent to a cartesian product followed by a

selection: A ▷◁α B = σα(A×B). When l ̸= ϵ, α must be rewritten into some α′ such

that all paths from B involved in α are prepended l. Formally, A ▷◁lα B = σα′(A×lB)

if {l · p|p ∈ exprpaths (α) ∧ p r∽ dpB} ⊆ exprpaths (α′).

Other relational join variants are supported as well:

Definition 2.12 (Left Semijoin). Let C1 and C2 be collections, and α a predicate.

C1 ⋉α C2 = ⟨d ∈ C1 | ⟨d⟩ ▷◁α C2 ̸= ∅⟩

Corollary 2.13 (Projection of Inner Join as Left Semijoin). Let C1 and C2 be collec-

tions, and α a predicate.

C1 ⋉α C2 = π⊘cover(C1)(C1 ▷◁α C2)

Definition 2.14 (Left Antijoin). Let C1 and C2 be collections, and α a predicate.

C1⋉αC2 = C1 − (C1 ⋉ C2)

Definition 2.15 (Left Outer Join). Let C1 and C2 be collections, and α a predicate.

C1 ▷◁α C2 = (C1 ▷◁α C2) ∪ (C1⋉αC2)

Generalized Outer Join (GOJ)

The definition of the generalized outer join (GOJ), first introduced in [34] by Galindo-

Legaria and Rosenthal, is adapted to the case of document databases in Defini-

tion 2.16. In the original paper, the formal definition of the GOJ involved the use of
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the outer-union operator to introduce null-padding when uniting two tables with in-

compatible schemas, but since collections do not enforce schema, the (regular) union

of collections with different schemas is valid for this case.

Definition 2.16 (Generalized Outer Join). The GOJ on predicate α of collections

A and B preserving paths P ⊆ cover (A) is defined as:

A
goj
▷◁ [α, P ]B = (A ▷◁α B) ∪ (π⊘P (A)− π⊘P (A ▷◁α B))

Nest Join and Lookup

The nest join is, essentially, a join followed by a nest operation where all matching

documents from the collection to the right-hand side of the join are nested within

matching documents from the collection to the left-hand side of the join. Defini-

tion 2.17 describes this formally.

Definition 2.17 (Nest Join). Let C1 and C2 be collections, α a predicate and l the

empty path or a label not realized in neither collection. The nest join of C1 and C2,

denoted C1 ▷̂◁
l
αC2, is defined as follows: C1 ▷̂◁

l
αC2 = cover(C1)γp:arragg(cover(C2))(C1 ▷◁αC2)

Similar to the regular join operator, other nest join variants exist. For any two

collections C1 and C2:

Definition 2.18 (Left Nest Semijoin). Let C1 and C2 be collections, α a predicate and

l the empty path or a label not realized in neither collection. The left nest semijoin

is formally defined as: C1 ⋉̂
l
α C2 = cover(C1)γl:arragg(cover(C2))(C1 ⋉α C2).

Definition 2.19 (Left Nest Outerjoin). Let C1 and C2 be collections, α a predicate

and l the empty path or a label not realized in neither collection. The left nest

outerjoin is formally defined as: C1 ▷̂◁
l
α C2 = cover(C1)γl:arragg(cover(C2))(C1 ▷◁α C2).
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Of particular interest is the nest left outerjoin, a variant of the nest join that

behaves like MongoDB’s $lookup stage from the aggregation pipeline query language.

Since $lookup is the only means MongoDB has to join collections, all inner joins in

MongoDB are typically emulated through the use of three pipeline stages: $lookup,

$match and $unwind. Figure 36a shows their interaction in more detail. These stages

db.C1.aggregate([
{$lookup:{

from: C2
localfield: p
foreignfield: q
as: r

}},
{$match:{r:{$ne:[]}}},
{$unwind:r}

])

(a) Typical MongoDB pipeline stages
emulating an inner join.

Query from Figure 36a

µr(σr ̸=⟦ ⟧

(C1 ▷̂◁
r
p=q C2))

µr(C1 ▷̂◁
r
p=q C2)

C1 ▷◁
r
p=q C2

convert unnest and nest join

into inner join

convert selection and left

nest outerjoin into nest join

Translate into algebra

(b) Simplification of MongoDB’s emu-
lated inner join into an algebraic inner
join.

Figure 36. Structure of inner join emulated in MongoDB and its algebraic equiva-
lence. Paths p and q appear in documents from C1 and C2 respectively.

are roughly equivalent to the proposed algebra operators: nest left outerjoin, select

and unnest respectively. Thus, a one-to-one translation is feasible. Furthermore,

algebraic properties discussed later in the chapter allow the simplification of this

one-to-one translation into a simpler algebraic expression, enabling more room for

optimization. Figure 36b illustrates this.

In other words, nest left outerjoin is essentially a collection lookup on the right-

hand side collection. It identifies whether one or more documents from this collection

can be grouped together based on a specific document from the left-hand side col-

lection. This operation can be conceptualized as categorizing documents from the

right-hand side collection, where each document from the left-hand side collection

acts as a category. Henceforth, this thesis adopts the term lookup to refer to the nest

left outerjoin, as it better encapsulates its behavior.
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Multiset operations

Definition 2.20 (Union). Let C1 = (K1,mult
K1) and C2 = (K2,mult

K2) be collections,

and multK1∪K2(d) = max
(
multK1(d),multK2(d)

)
for all d in K1 ∪K2 be a multiplicity

function. The union between C1 and C1 is defined as C1∪C2 = (K1∪K2,mult
K1∪K2).

Definition 2.21 (Intersection). Let C1 = (K1,mult
K1) and C2 = (K2,mult

K2) be

collections, and multK1∩K2(d) = min
(
multK1(x),multK2(d)

)
for all d in K1 ∩ K2 be a

multiplicity function. The intersection between C1 and C1 is defined as

C1 ∩ C2 = (K1 ∩ K2,mult
K1∩K2).

Definition 2.22 (Difference). Let C1 = (K1,mult
K1) and C2 = (K2,mult

K2) be col-

lections, and multK1−K2(d) = max
(
multK1(d)−multK2(d), 0

)
for all d in K1 − K2 be

a multiplicity function. The difference between C1 and C1 is defined as

C1 − C2 = (K1 − K2,mult
K1−K2).

Rename

Definition 2.23 (Rename). Let C be a collection, p and q path expressions such that

p
r∽ cover (C), ¬q r∽ cover (C) and p and q are not array path expressions. Renaming

p to q across documents in C is defined as:

ρq←p (C) = ⟨δ(d) | d ∈ C⟩ with

δ =


(d− branch(d, p)) ∪ ⦃q : subtree(d, p)⦄ if p ∈ N(d)

d otherwise

3 JSON Document Algebra Properties

Later in the section, some equivalences heavily rely on the exclusion of documents

from the result of certain operations based on the truth value of predicates involved

in the respective operator or the behavior of such operator itself when predicates do
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not apply. Specifically, Let C be a collection, α be a predicate, and OP1 and OP2 be

operators such that OP1 relies on α, and OP2 does not involve any predicate. If α

is guaranteed to be false for a sub-multiset G of C where documents in G share some

property prop1, α is said to reject prop1. Consequently, OP1 excludes documents

in G from its result and OP1 is said to reject prop1 under α. If OP2 rejects some

property prop2, the operator itself (i.e. OP2) is said to reject prop2. For instance,

π⊘P (C) excludes all empty documents from C, thus the operator π⊘ rejects empty

documents. The following types of rejections are particularly useful later on when

re-ordering and transforming operators:

Path absense rejection A predicate α is said to reject absent paths in a set of

paths P if:

• α is a simple or conjunctive expression and its truth value is false on every

document in which at least one path in P is absent.

• α is disjunctive expression and its truth value is false on every document in

which all paths in P are absent.

An operator rejects absent paths if documents where at least one path in P is ab-

sent do not affect the operator’s result. For example, Let B be a collection with

information about employees of a company with path "dept" evaluating to the name

of the department an employee belongs to. In σdept="HR"∧age>20(B) the predicate

dept="HR" ∧ age > 20 rejects absent paths "dept", "age", any subset and super-

set of N
(
branch

(
dpB, "dept"

))
∪ N

(
branch

(
dpB, "age"

))
. On the other hand, in

σdept="HR"∨age>20 (B), the predicate dept="HR" ∨ age > 20 rejects absent paths on

{"dept", "age"} and any superset ofN
(
branch

(
dpB, "dept"

))
∪N

(
branch

(
dpB, "age"

))
.

Empty object/array rejection A predicate is said to reject empty objects/arrays

in a set of paths P if its truth value is false on every document in which at least one

111



path in P evaluates to an empty object/array. An operator rejects empty objects/ar-

rays if documents in which at least one path in P evaluates to an empty object/array

do not affect the operator’s result.

Emptiness rejection A predicate is said to reject emptiness in a set of paths P

if it rejects absent paths, empty objects and empty arrays in P . An operator rejects

emptiness if it rejects absent paths, empty objects and empty arrays.

For (non-outer) joins and selection, the operator rejects emptiness if the predicate

rejects emptiness. A left outer join A ▷◁αB rejects emptiness on P if α rejects empti-

ness on P and P ⊆ dpB, as does lookup. A full outer join does not reject emptiness

as all inputs are let through.

Additionally, the following lemmas are useful to define and prove some equiva-

lences later on:

Definition 3.1 (Document extension). Given two documents a and b with value

functions ϕa and ϕb respectively, a is inclusively extended by b (represented as a ⋖− b)

if Lf(a) ⊆ Lf(b) and for every path x in Lf(a) the value of x in a and b is the same.

Formally,

a ⋖− b↔ Lf(a) ⊆ Lf(b) ∧ ∀x(x ∈ Lf(a)→ ϕa(x) = ϕb(x)) (4)

In contrast, a is exclusively extended by b (represented as a⋖b) when Lf(a) ⊂ Lf(b):

a⋖ b↔ Lf(a) ⊂ Lf(b) ∧ ∀x(x ∈ Lf(a)→ ϕa(x) = ϕb(x)) (5)

Lemma 3.1 (Reflexivity of ⋖−). For any document d, d ⋖− d.

Proof. Let ϕd denote the value function of d. Then, it is always the case that Lf(d) ⊆

Lf(d) and for any path p ∈ Lf(d), ϕd(p) = ϕd(p). Therefore d ⋖− d.
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Lemma 3.2 (Transitivity of ⋖−). For any triplet of documents a, b and c, if a ⋖− b

and b ⋖− c, then a ⋖− c.

Proof. Let ϕa, ϕb and ϕc be the value functions of a, b and c respectively. It is known

by the premise that (1) Lf(a) ⊆ Lf(b) ∧ Lf(b) ⊆ Lf(c) and (2) ∀p (p ∈ Lf(a) →

ϕa(p) = ϕb(p) ∧ ϕb(p) = ϕc(p)). Thus, (1) implies Lf(a) ⊆ Lf(c) (by transitivity of

⊆) and (2) implies ϕa(p) = ϕc(p) (by transitivity of =). Therefore, a ⋖− c.

Lemma 3.3 (Antisymmetry of ⋖−). For any pair of documents a and b, if a ⋖− b and

b ⋖− a then a = b.

Proof. Let ϕa and ϕb be the value functions of a and b. It is known by the premise

that (1) Lf(a) ⊆ Lf(b)∧Lf(b) ⊆ Lf(a), (2) ∀p (p ∈ Lf(a)→ ϕa(p) = ϕb(p)), and (3)

∀p (p ∈ Lf(b) → ϕb(p) = ϕa(p)). Thus, (1) implies Lf(a) = Lf(b) (by antisymetry

of ⊆) and (2) and (3) imply ϕa = ϕb. Therefore, a = b.

Definition 3.2 (Collection extension). Given two collections A and B, A is extended

by B (represented as A ⊆· B) if for every document a ∈ A there exists a document

b ∈ B such that a ⋖− b. Formally,

A ⊆· B ↔ ∀x(x ∈ A → ∃y(y ∈ B ∧ x ⋖− y)) (6)

Lemma 3.4 (Reflexivity of ⊆·). Let A be a collection, then A ⊆· A.

Proof. Let x be an arbitrary element of A, then prove x ∈ A → ∃x(x ∈ A ∧ x ⋖− x):

1. x ∈ A premise

2. x ⋖− x reflexivity of ⋖−

3. x ∈ A ∧ x ⋖− x conjunction

4. ∃x(x ∈ A ∧ x ⋖− x) existential generalization

therefore x ∈ A → ∃x(x ∈ A∧ x ⋖− x) and, by universal generalization, ∀x (x ∈ A →

∃x(x ∈ A ∧ x ⋖− x)), which is the definition of A ⊆· A.
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Lemma 3.5 (Transitivity of ⊆·). Let A, B and C be collections. If A ⊆· B and B ⊆· C

then A ⊆· C.

Proof. Let x, y and z be arbitrary elements from A, B and C respectively, then prove

x ∈ A → ∃z(z ∈ C ∧ x ⋖− z):

1. x ∈ A premise

2. ∀x (x ∈ A → ∃y(y ∈ B ∧ x ⋖− y)) def. A ⊆· B

3. ∀y (y ∈ B → ∃z(z ∈ C ∧ y ⋖− z)) def. B ⊆· C

4. ∃y (y ∈ B ∧ x ⋖− y) modus ponens (1,2)

5. ∃y (∃z(z ∈ C ∧ y ⋖− z) ∧ x ⋖− y) modus ponens (3,4)

6. ∃y∃z (z ∈ C ∧ y ⋖− z ∧ x ⋖− y) prenex form of 5

7. ∃y∃z (z ∈ C ∧ (x ⋖− y ∧ y ⋖− z)) associativity and commutativity of ∧

8. ∃z (z ∈ C ∧ ∃y(x ⋖− y ∧ y ⋖− z)) Aristotelian form Some P’s are Q’s of 7

9. ∃z (z ∈ C ∧ x ⋖− z) Transitivity of ⋖−
therefore x ∈ A → ∃z(z ∈ C ∧ x ⋖− z) and, by universal generalization, ∀x (x ∈ A →

∃z(z ∈ C ∧ x ⋖− z)), which is the definition of A ⊆· C.

Lemma 3.6 (Antisymmetry of ⊆·). Let A and B be collections. If A ⊆· B and B ⊆· A,

then A = B.

Proof. Let a be an arbitrary document from A. Then, there exists some document

b ∈ B such that a ⋖− b and b ⋖− a (by assumption). Therefore, a = b (by antisymmetry

of ⋖−).

Corollary 3.3. ⊆· is a partial ordering.

Proof. ⊆· is reflexive, transitive and antisymmetric.
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Projection transformations

Projections can be pushed down or introduced in a query to reduce the amount of

data that needs to be processed, particularly on these scenarios:

• Selective projection: If a projection removes significantly big subtrees of

a sub/document, it can lead to substantial savings in memory consumption,

processing time and, depending on how a document is stored in disk, I/O.

• Before joins and unwinds: Pushing down projections before a join or un-

wind operation allows the optimizer to work with smaller intermediate results

by reducing the size of elements to unnest in the case of unwind, the size of

documents to join in the case of join and sometimes even the number of input

documents passed to either operator.

• Before aggregations: Introducing projections before a group operation prunes

unnecessary subtrees from documents, which reduces the size of data being ag-

gregated.

A list of projection transformations considered in this manuscript is presented next.

Projection simplification

Lemma 3.7. Let P and Q be sets of paths, C, R, and S be collections, such that

R,S ⊆· C, S = π⊘P (C), and R = π⊘Q(C). Then S ⊆· R if and only if P ⊆ Q.

Proof. First, assume S ⊆· R and prove P ⊆ Q. Suppose, for the sake of contradiction,

that P ⊈ Q, then there exists at least one path p in P that is not in Q. Consider the

case of some document c ∈ C having path p, but no other path in P nor Q. Then,

1. There exists some document s ∈ S such that s ⋖− c (by def. S).

2. s has path p (by def. S).
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3. There exists some document r ∈ R such that s ⋖− r (by assumption).

4. r has path p (by 2 and 3).

5. Contradiction: No document in R can extend s because p /∈ Q.

Second, assume P ⊆ Q and prove S ⊆· R. Let s be an arbitrary document of S.

Then,

1. Any arbitrary path p from s is in P (by def. S).

2. p ∈ Q (by 1 and assumption).

3. All paths from s are in Q (generalization of 2).

4. There exists some document r ∈ R such that s ⋖− r (by 3 and def. R)

Lemma 3.8. Let P and Q be sets of paths, C, R and S be collections, such that

R,S ⊆· C, π⊘P (C) = S and π⊘Q(C) = R. Then π⊘P (π⊘Q(C)) = π⊘P (C) if and only if

P ⊆ Q.

Proof. First, assume π⊘P (π⊘Q(C)) = π⊘P (C) and prove P ⊆ Q:

1. π⊘P (R) = π⊘P (C) (by def. R and assumption).

2. For all document s ∈ π⊘P (C) there exists a document r ∈ R such that s ⋖− r (by

1).

3. There exists a document c ∈ C such that s ⋖− r ⋖− c (by 2 and def. R).

4. Suppose, for the sake of contradiction, that P ⊈ Q. Then there is at least one

path p ∈ P not in Q. Consider a document d ∈ C with path p, but no path in

Q.

5. There exists a document x ∈ π⊘P (C) such that x ⋖− d (by 4 and def. π)
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6. There is no document y ∈ R such that y ⋖− d (by 4).

7. Contradiction: Since x ⋖− d, (3) states there must be at least one document in

R that extends x and is, in turn, extended by d.

Second, assume P ⊆ Q and prove π⊘P (π⊘Q(C)) = π⊘P (C). The following proof shows

that π⊘P (C) ⊆ π⊘P (π⊘Q(C)):

1. Let s be an abitrary document from S

2. S ⊆· R (by lemma 3.7 and assumption).

3. There exists a document r ∈ R such that s ⋖− r (by 1,2).

4. s only has paths in P , thus a projection of P over R transforms r into s.

Therefore s ∈ π⊘P (R) (by 3 and def. π).

The following proof shows that π⊘P (π⊘Q(C)) ⊆ π⊘P (C):

1. Let s be an abitrary document from π⊘P (R).

2. There exist two documents r and c from R and C respectively such that s ⋖−
r ⋖− c (by assumption and def. π).

3. s ⋖− c (by 2 and transitivity of ⋖−).

4. s only has paths in P , thus a projection of P over C transforms c into s.

Therefore s ∈ π⊘P (C).

Lemma 3.9 (Projection simplification). Let P and Q be sets of paths, C, R and S

be collections, such that R,S ⊆· C, π⊘P (C) = S and π⊘Q(C) = R. Then π⊘P (π⊘Q(C)) =

π⊘P (C) if and only if S ⊆· R.

Proof. By lemma 3.8, π⊘P (π⊘Q(C)) = π⊘P (C) iff P ⊆ Q and by lemma 3.7, P ⊆ Q iff

S ⊆· R. Therefore, π⊘P (π⊘Q(C)) = π⊘P (C) iff S ⊆· R.
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Given a collection C and an operation O, a preserving projection in a expression

of the form O(πP (C)) can be transformed into an un-preserving projection if O rejects

absent paths. Most notably,

Lemma 3.10 (Selection makes projection non-preserving on absent path rejection).

Let P be a set of paths and α a selection predicate. If α rejects absent paths in P ,

then σα(πP (C)) = σα(π⊘P (C)).

Proof. After the projection πP (C), any document where at least one path from

exprpaths (α) is missing is filtered out by the subsequent selection. Let R be a

submultiset of C where documents have at least one path from P . The output of

πP (C) contains |C| documents: those in R, plus |C − R| empty documents. Note

that R = ∅ if no path in P is present in any document within C, in which case

|C − ∅| = |C| empty documents would be passed to the subsequent selection. The

output of σα(πP (C)) is the multiset S consisting of documents from R that have all

paths in exprpaths (α). Similarly, the output of π⊘P (C) contains documents from R,

excluding all |C −R| empty documents. Thus, σα(π⊘P (C)) outputs documents from R

with all paths in exprpaths (α), i.e., S (which is empty when R is empty). Therefore,

σα(πP (C)) = S = σα(π⊘P (C)).

Example 3.1 (Selection makes projection non-preserving on absent path rejection).

non-preserving projections can be formed by breaking down a selection through a

conjunctive expression. For instance,

σp·xθq(πp·x(µ⊘p (C))) = σp·xθq∧∃p·x(πp·x(µ⊘p (C)))

= σp·xθq(σ∃p·x(πp·x(µ⊘p (C))))

= σp·xθq(π⊘p·x(µ⊘p (C)))
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Lemma 3.11 (Unnest makes projection non-preserving based on prefixes). Let P

be a set of path expressions and q be a path expression used as a parameter for the

unnest operator. If q ∈ P , then µ⊘q (πP (C)) = µ⊘q (π⊘P (C)).

Proof. First, proof that µ⊘q (πP (C)) ⊆ µ⊘q (π⊘P (C)). Let d1 be a document in µ⊘q (πP (C)).

1. Assume d1 = ⦃q : u, p1 : v1, p2 : v2, . . . , pn : vn⦄, where p1, . . . , pn are paths in

P .

2. By the definition of unnest, there exists a document d2 ∈ πP (C) such that

d2
arr
↪−→ q ↓, for all j ∈ [1, n] d2 ↪→ pj = d1 ↪→ pj and exists a label i ∈ N0 for

which d2 ↪→ q · i = d1 ↪→ q = u.

3. By the definition of projection, there exists a document d3 ∈ C such that d2 ⋖− d3.

4. After operation π⊘P (C), d3 is transformed into a new document d4 such that

d4 ⋖− d3.

5. By steps 1-4, it is known that d4 ↪→ pj = d3 ↪→ pj = d2 ↪→ pj = d1 ↪→ pj = vj

for all j ∈ [1, n].

6. By the assumption, q ∈ P , thus, by step 4, d4 ↪→ q = d3 ↪→ q.

7. After operation µ⊘q (πP (C)), multiple documents are produced from d4. Amongst

these new documents, there exists at least one, referred to as d5, for which there

exists a label i ∈ N0 such that d4 ↪→ q · i = d3 ↪→ q · i = d1 ↪→ q = u and,

thus, d5 = ⦃q : d4 ↪→ q · i, p1 : d4 ↪→ p1, . . . , pn : d4 ↪→ pn⦄ = ⦃q : u, p1 : d4 ↪→

p1, . . . , pn : d4 ↪→ pn⦄.

8. By steps 5 and 7, d5 = ⦃q : u, p1 : v1, . . . , pn : vn⦄ = d1. Therefore, d1 ∈

µ⊘q (π⊘P (C)).

Second, proof that µ⊘q (π⊘P (C)) ⊆ µ⊘q (πP (C)). Let d1 be a document in µ⊘q (π⊘P (C)).
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1. By the definition of projection and unnest, it is known that d1 = ⦃q : u, p1 :

v1, p2 : v2, . . . , pn : vn⦄, where paths p1, p2, . . . , pn and (by the assumption) q

are in P .

2. By definition of unnest, there exists a document d2 in πP (C) and a label i ∈ N0

such that d2 ↪→ pj = d1 ↪→ pj for all j ∈ [1, n] and d2 ↪→ q · i = d1 ↪→ q = u.

3. By definition of projection, there exists a document d3 ∈ C such that d2 ⋖− d3.

4. When applying operation πP (C), a new document d4 is created such that d4 =

⦃q : d3 ↪→ q, p1 : d3 ↪→ p1, . . . , pn : d3 ↪→ pn⦄.

5. When applying operation µ⊘q (πP (C)), new documents are produced by unnest.

By steps 2 to 4, it is known that of all documents produced from d4, there is a

document d5 = ⦃q : u, p1 : d4 ↪→ p1, . . . , pn : d4 ↪→ pn⦄.

6. By steps 1 to 5, d5 = ⦃q : u, p1 : d3 ↪→ p1, . . . , pn : d3 ↪→ pn⦄ = ⦃q : u, p1 : d2 ↪→

p1, . . . , pn : d2 ↪→ pn⦄ = ⦃q : u, p1 : d1 ↪→ p1, . . . , pn : d1 ↪→ pn⦄ = ⦃q : u, p1 :

v1, . . . , pn : vn⦄ = d1.

Lemma 3.12 (Non-preserving projection dominates preserving projection). Let P

and Q be sets of paths. If Q ⊆· P , then π⊘Q(πP (C)) = π⊘Q(π⊘P (C))

Projection push-down

An unpreserving projection following an unnest can be performed beforehand if the

path (or paths) to be projected refers to a field within array elements of the array to

unnest as shown in lemma 3.13.

Lemma 3.13 (Projection push-down on unnest). Let p and x be paths. Then

π⊘p·x(µ⊘p (C)) = µ⊘p (π⊘p·∗·x(C))
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Proof. First, proof that π⊘p·x(µ⊘p (C)) ⊆ µ⊘p (π⊘p·∗·x(C)). Let d1 be an arbitrary document

in π⊘p·x(µ⊘p (C)). The goal is to proof that d1 ∈ µ⊘p (π⊘p·∗·x(C)):

1. d1 = ⦃p · x : v⦄, where v is some value.

2. By definition of projection, there exists a document d2 ∈ µ⊘p (C) such that

d1 ⋖− d2. Thus, d2 ↪→ p · x = d1 ↪→ p · x = v.

3. By definition of unnest, there exists a label i ∈ N0 and a document d3 ∈ C such

that d3 ↪→ p · i · x = d2 ↪→ p · x = v.

4. After the operation π⊘p·∗·x(C), a new document d4 is created from d3 such that

d4 = ⦃p · i · x : d3 ↪→ p · j · x | ∃j p · j · x r∽ d3⦄.

5. From steps 3 and 4 it can be inferred that d4 ↪→ p · i · x = v.

6. After the operation µ⊘p (π⊘p·∗·x(C)), new documents are created from d4. From

the definiton of unnest and step 5, it can be inferred that one of such documents

is ⦃p · x : d4 ↪→ p · i · x⦄ = ⦃p · x : v⦄ = d1. Therefore, d1 ∈ µ⊘p (π⊘p·∗·x(C)).

Second, proof that π⊘p·x(µ⊘p (C)) ⊇ µ⊘p (π⊘p·∗·x(C)). Let d1 be an arbitrary document

in µ⊘p (π⊘p·∗·x(C)). The goal is to proof that d1 ∈ π⊘p·x(µ⊘p (C)):

1. By definition of unnest, there exists a label i ∈ N0 and a document d2 ∈ π⊘p·∗·x(C)

such that d1 ↪→ p = d2 ↪→ p · i.

2. From the projection, it can be inferred that p · i · x r∽ d2.

3. From step 2 and definition of unnest, it can be inferred that d1 = ⦃p · x : v⦄,

for some value v.

4. By definition of projection, there exists a document d3 ∈ C such that d2 ⋖− d3.

5. By steps 1 and 4, it follows that there exist a label j ∈ N0 for which d3 ↪→

p · j · x = d2 ↪→ p · i · x.
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6. After the operation µ⊘p (C), multiple documents are produced from d3. Amongst

these new documents, there exists a document d4 for which d4 ↪→ p · x = d3 ↪→

p · j · x = d2 ↪→ p · i · x = d1 ↪→ p · x.

7. After the operation π⊘p·x(µ⊘p (C)), a new document d5 is produced, such that

d5 = ⦃p · x : d4 ↪→ p · x⦄ = ⦃p · x : d1 ↪→ p · x⦄ = ⦃p · x : v⦄ = d1. Therefore,

d1 ∈ π⊘p·x(µ⊘p (C)).

For the case of joins, a projection push-down is done similarly to relational algebra,

but instead of relying on the fixed schemas of tables, it relies on the collection cover.

Lemma 3.14 (Projection push-down on join). Let P be a set of paths. If there exists

a subset Q of cover (A) such that Q ⊆ P then

πP (A ▷◁α B) = πP (πQ∪exprpaths(α)(A) ▷◁α B)

Likewise, if Q ⊆ cover (B) and Q ⊆ P , then

πP (A ▷◁α B) = πP (A ▷◁α πQ∪exprpaths(α)(B))

Lemma 3.15 (Projection is distributive over join). Let C1, C2 be collections, α a

join predicate and P , Q, R sets of paths such that P ⊆ cover (C1) ∪ cover (C2). If

Q = (P ∩cover (C1))∪ (cover (C1)∩cover (C2)) and R = (P ∩cover (C2))∪ (cover (C1)∩

cover (C2)), then

π⊘P (C1 ▷◁α C2) = π⊘P (π⊘Q(C1) ▷◁α π⊘R(C2)) and πP (C1 ▷◁α C2) = πP (πQ(C1) ▷◁α πR(C2))

Lemma 3.16 (Projection push-down on lookup). Let C1, C2 be collections, α a

predicate, l a label and P a set of paths. If there exists some subset Q of cover (C2)

such that {l · ∗ · q | q ∈ Q} ⊆ P , then

π⊘P (C1 ▷̂◁
l
α C2) = π⊘P (C1 ▷̂◁

l
α π
⊘
Q∪exprpaths(α)(C2))
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Lemma 3.17 (Projection is distributive over lookup). Let C1, C2 be collections,

α a predicate, l a label and P , Q and S sets of paths such that Q ⊆ cover (C1),

S = exprpaths (α), and S can be split into S1 = {s ∈ S | s ∈ cover (C1)} and

S2 = {s ∈ S | s ∈ cover (C2)} such that S1 ⊔ S2. If there exists some subset R of

cover (C2) such that P = {l · i · r | ∀r ∈ R ∃i ∈ N0} ⊔Q, then

π⊘P
(
C1 ▷̂◁

l
α C2

)
= π⊘P

(
π⊘Q∪S1(C1) ▷̂◁lα π⊘R∪S2(C2)

)

Proof. First, proof that π⊘P
(
C1 ▷̂◁

l
α C2

)
⊆ π⊘P

(
π⊘Q∪S1(C1) ▷̂◁lα π⊘R∪S2(C2)

)
. Let d1 be a

document in π⊘P (C1 ▷̂◁
l
α C2).

1. By definition of projection, it is known that d1 = ⦃p1 : v1, p2 : v2, . . . , pn : vn⦄,

where p1, . . . , pn ∈ P and v1, . . . vn are values.

2. By assumption, there exist paths pk, pk+1, . . . , pm, all realized in d1, such that

1 ≤ k ≤ m ≤ n and l ⪯ pk, l ⪯ pk+1, . . . , l ⪯ pm.

3. By assumption, paths not preceeded by l must be in Q and since every suffix

of l starts with a number in N0, it must be true that d1
arr
↪−→ l ↓.

4. Let q1, q2, . . . , qh be paths such that {q1, q2, . . . , qh} = {p1, . . . , pn}−{pk, pk+1, . . . , pm}.

Then, by steps 2-3, q1, q2, . . . , qh ∈ Q.

5. By steps 1 and 4, d1 = ⦃q1 : w1, q2 : w2, . . . , qh : wh, pk : vk, pk+1 : vk+1, . . . , pm :

vm⦄, where w1, . . . , wh are values.

6. By step 5 and definition of JSON array, paths d1 = ⦃q1 : w1, . . . , qh : wh, l :

⟦u1, . . . , uz⟧⦄ such that u2, . . . , uz are documents and for each ui, with 1 ≤ i ≤ z,

exists at least one r ∈ R for which r
r∽ ui.

7. By definition of projection, there exists a document d2 in C1 ▷̂◁lα C2 such that

d1 ⋖− d2.
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8. By the definition of lookup and steps 6-7, there must exist a document a1 ∈ C1

and multiple documents b1, b2, . . . , bz ∈ C2 such that for all q ∈ Q, if q r∽ a1,

then a1 ↪→ q = d2 ↪→ q; and for every ui, with i ∈ [1, z], ui ⋖− bi.

9. When applying the operation π⊘Q∪S1(C1), a1 is transformed into a new document

a2 such that a2 = ⦃q1 : a1 ↪→ q1, . . . , qh : a1 ↪→ qh⦄ ∪ ⦃s : a1 ↪→ s | s ∈ S1 ∧ s
r∽

a1⦄.

10. By steps 8-9, a2 = ⦃q1 : d2 ↪→ q1, . . . , qh : d2 ↪→ qh⦄∪ ⦃s : a1 ↪→ s | s ∈ S1 ∧ s
r∽

a1⦄ = ⦃q1 : w1, q2 : w2, . . . , qh : wh⦄ ∪ ⦃s : a1 ↪→ s | s ∈ S1 ∧ s
r∽ a1⦄.

11. When applying the operation π⊘R∪S2(C2), b1, . . . , bz are transformed into new

documents c1, . . . , cz such that for all i ∈ [1, z], ci = ⦃r : bi ↪→ r | r ∈ R ∧ r r∽

bi⦄ ∪ ⦃s : bi ↪→ s | s ∈ S2 ∧ s
r∽ bi⦄.

12. By steps 6-8 and 11, it is known that for all i ∈ [1, z], ci = ui ∪ ⦃s : bi ↪→ s |

s ∈ S2 ∧ s
r∽ bi⦄.

13. When applying the operation π⊘Q∪S1(C1) ▷̂◁lαπ⊘R∪S2(C2), documents a2 and c1, . . . , cz

are merged into a new document a3 = ⦃q1 : w1, q2 : w2, . . . , qh : wh, l : ⟦ci | 1 ≤

i ≤ z⟧⦄ ∪ ⦃s : a1 ↪→ s | s ∈ S1 ∧ s
r∽ a1⦄.

14. When applying the operation π⊘P
(
π⊘Q∪S1(C1) ▷̂◁lα π⊘R∪S2(C2)

)
, a3 is transformed

into document a4 = ⦃q1 : w1, q2 : w2, . . . , qh : wh, l : ⟦ci − ⦃s : bi ↪→ s | s ∈

S2 ∧ s
r∽ bi⦄ | 1 ≤ i ≤ z⟧⦄.

15. By steps 13-14, a4 = ⦃q1 : w1, q2 : w2, . . . , qh : wh, l : ⟦u1, . . . , uz⟧⦄ = d1.

Therefore, d1 ∈ π⊘P
(
π⊘Q∪S1(C1) ▷̂◁lα π⊘R∪S2(C2)

)
.

Second, proof that π⊘P
(
π⊘Q∪S1(C1) ▷̂◁lα π⊘R∪S2(C2)

)
⊆ π⊘P

(
C1 ▷̂◁

l
α C2

)
. Let d1 be a

document in π⊘P
(
π⊘Q∪S1(C1) ▷̂◁lα π⊘R∪S2(C2)

)
1. By definition of projection, it is known that d1 = ⦃p1 : v1, p2 : v2, . . . , pn : vn⦄,

where p1, . . . , pn ∈ P and v1, . . . vn are values.
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2. By assumption, there exist paths pk, pk+1, . . . , pm, all realized in d1, such that

1 ≤ k ≤ m ≤ n and l ⪯ pk, l ⪯ pk+1, . . . , l ⪯ pm.

3. By assumption, paths not preceeded by l must be in Q and since every suffix

of l starts with a number in N0, it must be true that d1
arr
↪−→ l ↓.

4. Let q1, q2, . . . , qh be paths such that {q1, q2, . . . , qh} = {p1, . . . , pn}−{pk, pk+1, . . . , pm}.

Then, by steps 2-3, q1, q2, . . . , qh ∈ Q.

5. By steps 1 and 4, d1 = ⦃q1 : w1, q2 : w2, . . . , qh : wh, pk : vk, pk+1 : vk+1, . . . , pm :

vm⦄, where w1, . . . , wh are values.

6. By step 5 and definition of JSON array, paths d1 = ⦃q1 : w1, . . . , qh : wh, l :

⟦u1, . . . , uz⟧⦄ such that u2, . . . , uz are documents and for each ui, with 1 ≤ i ≤ z,

exists at least one r ∈ R for which r
r∽ ui.

7. By the definition of projection, there exists a document d2 ∈ π⊘Q∪S1(C1) ▷̂◁lα

π⊘R∪S2(C2) such that d1 ⋖− d2.

8. By definition of lookup, there exists a document a1 ∈ π⊘Q∪S1(C1) such that

a1 ⋖− d2 and a1 ↪→ qi = d2 ↪→ qi for all i ∈ [1, h].

9. By steps 7-8, it is implied that a1 = ⦃q1 : d2 ↪→ q1, q2 : d2 ↪→ q2, . . . , qh : d2 ↪→

qh⦄ ∪ ⦃s : d2 ↪→ s | ∃s ∈ S1⦄ = ⦃q1 : w1, q2 : w2, . . . , qh : wh⦄ ∪ ⦃s : d2 ↪→ s |

∃s ∈ S1⦄.

10. By definition of projection and step 9, there exists a document a2 ∈ C1 such

that a1 ⋖− a2.

11. By step 6 and the definition of lookup and projection, there exist documents

b1, . . . , bz ∈ π⊘R∪S2(C2) such that for all i ∈ [1, z], ui ⋖− bi.

12. By step 7 and the definition of projection, there exist documents c1, . . . , cz ∈ C2

such that for all i ∈ [1, z], bi ⋖− ci. This implies that for all s ∈ S2, if s r∽ bi

then ci ↪→ s = bi ↪→ s; and for all paths u ∈ N (ui), ci ↪→ u = ui ↪→ u.

125



13. When applying the operation C1 ▷̂◁
l
α C2, documents a2 and c1, . . . , ck are merged

into a new document a3 such that for all i ∈ [1, h], a3 ↪→ qi = a2 ↪→ qi, for all

s ∈ S1, if s ∈ a2, a3 ↪→ s = a2 ↪→ s, and a3 ↪→ l = ⟦ci | 1 ≤ i ≤ z⟧.

14. By steps 6-10 and 13, it is implied that for all i ∈ [1, h], a3 ↪→ qi = wi.

15. When applying the operation π⊘P
(
C1 ▷̂◁

l
α C2

)
, document a3 is transformed into a

document a4 = ⦃q1 : w1, q2 : w2, . . . , qh : wh, l : ⟦⦃r : bi ↪→ r | ∃r ∈ R∧r r∽ bi⦄ |

1 ≤ i ≤ z⟧⦄ = ⦃q1 : w1, q2 : w2, . . . , qh : wh, l : ⟦u1, . . . , uz⟧⦄ = d1. Therefore,

d1 ∈ π⊘P
(
C1 ▷̂◁

l
α C2

)
.

Lemma 3.18 (Projection push-down on union). Let C1, C2 be collections and P a

set of paths. Then,

π⊘P (C1 ∪ C2) = π⊘P (C1) ∪ π⊘P (C2) and πP (C1 ∪ C2) = πP (C1) ∪ πP (C2)

Lemma 3.19 (Projection push-down on selection). Let C be a collection, P a set of

paths and α a selection predicate. Then, π⊘P (σα (C)) = π⊘P
(
σα
(
π⊘P∪exprpaths(α) (C)

))
and πP (σα (C)) = πP

(
σα
(
πP∪exprpaths(α) (C)

))
if α is not a simple or conjuctive ex-

pression that selects documents with absent paths.

Projection introduction

Lemma 3.20 (Projection introduction on group). Let P be a set of paths, q1, q2, . . . qk

paths from cover (C), r1, r2, . . . , rk labels and f1, f2, . . . , fk aggregates. Then

Pγr1:f1(q1),r2:f2(q2),...,rk:fk(qk) (C) = Pγr1:f1(q1),r2:f2(q2),...,rk:fk(qk)(πP∪{q1,...,qk}(C))

Selection transformations

Lemmas 3.21,3.22,3.25 and 3.26, presented below, are typical selection transforma-

tions found in relational algebra and commonly used by RDBMSs.
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Lemma 3.21 (Implied existence of paths from selection predicate). Let α be a selec-

tion predicate with exprpaths (α) = {p1, p2, . . . , pk}. Then, α = α∧∃p1∧∃p2∧· · ·∧∃pk.

Proof. The truth value of α depends on the existence of paths within exprpaths (α).

Thus, if any of p1, p2, . . . , pk is missing from a document, α is guaranteed to be false.

If all paths exist, α can either be true or false depending on what each path evaluates

to and the comparison operators involved. As such, path existance is required for

(but does not guarantee) α to be true. The condition ∃p1∧∃p2∧· · ·∧∃pk only checks

for the existence of each path involved in α and does, therefore, not affect its truth

value:

α ∃p1 ∧ ∃p2 ∧ · · · ∧ ∃pk α ∧ (∃p1 ∧ ∃p2 ∧ · · · ∧ ∃pk)
T T T
F T F
F F F

Lemma 3.22 (Selection simplification). Let α and β be match expressions, and C,

R and S be collections, such that R,S ⊆ C, σα(C) = S and σβ(C) = R. Then

σα(σβ(C)) = σα(C) if and only if S ⊆ R.

Proof. First, assume σα(σβ(C)) = σα(C) and prove S ⊆ R. Suppose, for the sake of

contradiction, that S ⊈ R. Then, there is at least one document d in S that is not

in R. However, since S = σα(C) = σα(σβ(C)) = σα(R) (by assumption), this is a

contradiction because d is not within the input (i.e. R) passed to the selection in the

expression σα(R) and thus cannot be part of S. Second, assume S ⊆ R and prove

σα(σβ(C)) = σα(C). Note that σα(σβ(C)) = σα(R) (by def. σβ(C)) and since R ⊇ S

(by assumption), σα(R) = σα(S). Thus, σα(S) = S (by idempotency of selection)

and S = σα(C) (by def. σα(C)).
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Lemma 3.23 (Commutativity of selection). Let φ and Ψ be selection predicates.

The composition of two selections over a collection is commutative:

σφ
(
σΨ (dpC)

)
= σΨ (σφ (C))

Lemma 3.24 (Selection is conjuction collapsible). Let φ and Ψ be selection predi-

cates, then

σφ
(
σΨ (dpC)

)
= σΨ∧φ(C)

Lemma 3.25 (Selection push-down on join). Let C1 and C2 be collections, and α, ψ1

and ψ2 be predicates. If exprpaths (ψ1) ⊆ cover (C1) and exprpaths (ψ2) ⊆ cover (C2),

then

σψ1∧ψ2(C1 ▷◁α C2) = σψ1(C1) ▷◁α σψ2(C2)

Lemma 3.26 (Selection push-down on set operators). Let C1, C2 be collections, ψ a

predicate, and ⊙ an arbitrary operator from the set {∪,∩,−}. Then

σψ(C1 ⊙ C2) = σψ(C1)⊙ σψ(C2)

In certain scenarios, the interplay between two operations, such as the unpreserv-

ing project and group-by operators illustrated in Example 3.2, provides an opportu-

nity to minimize the input documents for either operation. Introducing a selection in

such cases can effectively reduce the number of input documents for these operations.

Lemma 3.27 formalizes this notion of introducing a selection before a group-by.

Example 3.2. Consider a collection C with documents:

⦃"a":1, "b":⦃"c":1⦄⦄, ⦃"a":1, "b": null ⦄, ⦃"a":1, "b":⦃"c":2⦄⦄, ⦃"a":2, "g":3⦄, ⦃"a":2,

"g":4⦄, ⦃"b": ⦃"c":2⦄⦄, ⦃"b": ⦃"c":5⦄⦄

In the query π⊘r·∗·c(aγr:arragg(b)(C)), the projection serves to filter out elements of array

r within each group that are either not subdocuments or are subdocuments lacking

the field "c". Moreover, it eliminates groups where all elements of r are candidates
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for exclusion. By introducing a selection immediately preceding the group operation,

the same desired behavior is maintained, simultaneously reducing the size of the

input passed to the grouping process. Consequently, the query can be restructured

as π⊘r·∗·c(aγr:arragg(b)(σ∃b.c(C))). The outcome of each operation is presented in Table 6.

σ∃b.c(C) aγr:arragg(b)(σ∃b.c(C)) π⊘r·∗·c(aγr:arragg(b)(σ∃b.c(C)))
⦃"a":1, "b":⦃"c":1⦄⦄,
⦃"a":1, "b": null ⦄,
⦃"a":1, "b":⦃"c":2⦄⦄,
⦃"a":2, "g":3⦄,
⦃"a":2, "g":4⦄,
⦃"b": ⦃"c":2⦄⦄,
⦃"b": ⦃"c":5⦄⦄

⦃"a":1, "r":⟦⦃"c":1⦄, ⦃"c":2⦄ ⟧⦄,
⦃"r":⟦⦃"c":2⦄, ⦃"c":5⦄ ⟧⦄

⦃"r":⟦⦃"c":1⦄, ⦃"c":2⦄ ⟧⦄,
⦃"r":⟦⦃"c":2⦄, ⦃"c":5⦄ ⟧⦄

Table 6. Example selection introduction on group operation based on the interaction
between unpreserving project and group

If the query has a preserving projection instead, such as πr·∗·c(aγr:arragg(b)(C)), groups

are retained even if they lack nested documents with the field "c"; subsequently,

these groups are transformed into empty documents. However, the removal of non-

document elements from r still persists. As a result, the query can be restated

as πr·∗·c(aγr:arragg(b)(σ∃b.c∨(¬∃b)(C))). The consequences of each operation are visually

summarized in Table 7.

σ∃b.c∨(¬∃b)(C) aγr:arragg(b)(σ∃b.c(C)) πr·∗·c(aγr:arragg(b)(σ∃b.c(C)))
⦃"a":1, "b":⦃"c":1⦄⦄,
⦃"a":1, "b": null ⦄,
⦃"a":1, "b":⦃"c":2⦄⦄,
⦃"a":2, "g":3⦄,
⦃"a":2, "g":4⦄,
⦃"b": ⦃"c":2⦄⦄,
⦃"b": ⦃"c":5⦄⦄

⦃"a":1, "r":⟦⦃"c":1⦄, ⦃"c":2⦄ ⟧⦄,
⦃"r":⟦⦃"c":2⦄, ⦃"c":5⦄ ⟧⦄,
⦃"a":2, "r":⟦⟧⦄

⦃"r":⟦⦃"c":1⦄, ⦃"c":2⦄ ⟧⦄,
⦃"r":⟦⦃"c":2⦄, ⦃"c":5⦄ ⟧⦄,
⦃⦄

Table 7. Example selection introduction on group operation based on the interaction
between preserving project and group

Lemma 3.27 (Selection introduction on group). Let C be a collection,

F̃1 =
⦅

l11 : arragg (q1
1) , . . . , l1k : arragg (q1

k)
⦆

and F̃2 =
⦅

l21 : f 2
1 (q2

1), . . . , lj : fj(qj)
⦆

vec-
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tors of aggregates, and P , L, R sets of paths such that L = {l11, . . . , l1k} ∪ {l21, . . . , l2j},

L ⊆· P , paths(F̃1) ∩ paths(F̃2) = ∅, and

R = {q.x | (∃l ∈ L)(∃q ∈ {q1
1, . . . , q

1
k})(∃x ̸= ϵ)[l. ∗ .x ∈ P ∧ ⦅l : arragg (q)⦆ ∈ F̃1]} =

{r1, . . . , rh}. Then

π⊘P (GγF̃1·F̃2
(C)) = π⊘P (GγF̃1·F̃2

(σ∃r1∨···∨∃rh
(C)))

Join transformations

Lemma 3.28 shows that, similar to traditional extensions to relational algebra, semi-

joins can be simulated by using a projection over a join.

Lemma 3.28 (Convertion from join to semijoin). Let α be a selection predicate, and

C1, C2 be collections. Then

π⊘cover(C1)(C1 ▷◁α C2) = C1 ⋉α C2 and π⊘cover(C2)(C1 ▷◁α C2) = C1 ⋊α C2

Other common transformations like converting outer joins to non-outer joins are

possible as well. This is shown in Lemma 3.29.

Lemma 3.29 (Conversion of Left Outer Join to Join). Let C1 and C2 be collections,

ψ and α predicates, and Q = exprpaths(α) ∩ cover(C2). If ψ rejects absent paths in

Q, then σψ(C1 ▷◁α C2) = C1 ▷◁α C2.

Proof. Let R be the output of C1 ▷◁α C2, S be the output of C1 ▷◁α C2, and d be an

arbitrary document from σψ(R). The goal is to prove that d ∈ S using the hypothesis

that ψ rejects absent paths in Q, implying that all paths in Q must be present in d

(i.e., Q ⊆ N(d)).

Assume, for the sake of contradiction, that d /∈ S. By the definition of left outer

join, all documents from C1 without a matching document from C2 are in R−S and

lack any path from cover (C2). Therefore, any document in R− S lacks all paths in

Q. Since ψ rejects absent paths in Q, no document from R− S is in σψ(R). Hence,
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σψ(R) = R− (R−S) = S. This, however, is a contradiction because it implies that

if d ∈ σψ(R), then d ∈ S.

Lemma 3.30 (Conversion of Extended Left Outer Join to Join). Let C1 and C2 be

collections, ψ and α predicates, and l a non-empty label. If ψ rejects empty objects

in {l}, then σψ(C1 ▷◁
l
α C2) = C1 ▷◁

l
α C2.

Proof. Let R be the output of C1 ▷◁
l
α C2, S be the output of C1 ▷◁

l
α C2, and d be an

arbitrary document from σψ(R). The goal is to prove that d ∈ S using the hypothesis

that ψ rejects empty objects in {l}, implying that l must be present in N (d) and

resolve to a non-empty object.

Assume, for the sake of contradiction, that d /∈ S. By the definition of the

extended left outer join, all documents from C1 without a matching document from

C2 are extended by a document in R − S in which path l resolves to an empty

document. Therefore, path l resolves to an empty document in any document from

R − S. Since ψ rejects empty documents in {l}, no document from R − S is in

σψ(R). Hence, σψ(R) = R− (R−S) = S. This, however, is a contradiction because

it implies that if d ∈ σψ(R), then d ∈ S.

Lemma 3.31 (Conversion of Lookup to Nest Join). Let C1 and C2 be collections, ψ

and α predicates, and l a non-empty label. If ψ rejects empty arrays in {l}, then

σψ(C1 ▷̂◁
l
α C2) = C1 ▷̂◁

l
α C2.

Proof. Let R be the output of C1 ▷̂◁lα C2, S be the output of C1 ▷̂◁
l
α C2, and d be

an arbitrary document from σψ(R). The goal is to prove that d ∈ S using the

hypothesis that ψ rejects empty arrays in {l}, implying that l must be present in

N (d) and resolve to a non-empty array.

Assume, for the sake of contradiction, that d /∈ S. By the definition of lookup,

all documents from C1 without a matching document from C2 are extended by a

document in R − S in which path l resolves to an empty array. Therefore, path l

resolves to an empty array in any document from R−S. Since ψ rejects empty arrays
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in {l}, no document from R−S is in σψ(R). Hence, σψ(R) = R−(R−S) = S. This,

however, is a contradiction because it implies that if d ∈ σψ(R), then d ∈ S.

Lemma 3.32 (Inner Join push-down on Nest Join). Let C1, C2 and C3 be collections,

and α1,2 and α2,3 be join predicates.

C1 ▷◁α1,2

(
C2 ▷̂◁

l
α2,3 C3

)
= cover(C1)∪cover(C2)γl:arragg(cover(C3))

(
C1 ▷◁α1,2

(
C2 ▷◁α2,3 C3

))

Proof. First, prove that

C1 ▷◁α1,2

(
C2 ▷̂◁

l
α2,3 C3

)
⊆ cover(C1)∪cover(C2)γl:arragg(cover(C3))

(
C1 ▷◁α1,2

(
C2 ▷◁α2,3 C3

))
. Let

d be a document from C1 ▷◁α1,2

(
C2 ▷̂◁

l
α2,3 C3

)
.

1. By definition of join, there exist two documents d1 ∈ C1 and d2 ∈ C2 ▷̂◁
l
α2,3 C3

such that d = d1 ∪ d2.

2. By definion of nest join, there exist a document d3 ∈ C2 and several docu-

ments c1, c2, . . . , ck ∈ C3 such that C3 ⋉α2,3 C2 = ⟨c2, . . . , ck⟩ and d2 = d3 ∪ ⦃l :

⟦c1, . . . , ck⟧⦄.

3. By step 2 and definition of join, when performing operation C2 ▷◁α2,3 C3, several

new documents will be produced. Amongst them, there exist a1 = d3 ∪ c1, a2 =

d3 ∪ c2, . . . , ak = d3 ∪ ck.

4. By steps 1, 3 and definition of join, when performing operation C1 ▷◁α1,2

(
C2 ▷◁α2,3 C3

)
,

several new documents will be produced. Amongst them, there exist b1 =

d1 ∪ a1, b2 = d1 ∪ a2, . . . , bk = d1 ∪ ak.

5. By steps 3-4, b1 = d1 ∪ d3 ∪ c1, b2 = d1 ∪ d3 ∪ c2, . . . , bk = d1 ∪ d3 ∪ ck.

6. By step 5 and definition of group, when performing operation

cover(C1)∪cover(C2)γl:arragg(cover(C3))
(
C1 ▷◁α1,2

(
C2 ▷◁α2,3 C3

))
, documents b1, . . . , bk are

merged into the new document d1∪d3∪⦃l : ⟦c1, . . . , ck⟧⦄ = d1∪d2 = d. There-

fore, d ∈ cover(C1)∪cover(C2)γl:arragg(cover(C3))
(
C1 ▷◁α1,2

(
C2 ▷◁α2,3 C3

))
.
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Second, prove that cover(C1)∪cover(C2)γl:arragg(cover(C3))
(
C1 ▷◁α1,2

(
C2 ▷◁α2,3 C3

))
⊆ C1 ▷◁α1,2(

C2 ▷̂◁
l
α2,3 C3

)
. Let d be a document from

cover(C1)∪cover(C2)γl:arragg(cover(C3))
(
C1 ▷◁α1,2

(
C2 ▷◁α2,3 C3

))
.

1. By definition of group, d = ⦃p1 : v1, p2 : v2, . . . pn : vn, q1 : u1, q2 : u2, . . . , qm :

um, l : ⟦c1, c2, . . . , ck⟧⦄, where p1, . . . , pn ∈ cover (C1), q1, . . . , qm ∈ cover (C2),

v1, . . . , vn, u1, . . . , um values and for all i ∈ [1, k], N (ci) ⊆ cover (C3).

2. By definition of group and step 1, there exist multiple documents d1, d2, . . . , dk ∈

C1 ▷◁α1,2

(
C2 ▷◁α2,3 C3

)
such that d1 = ⦃p1 : v1, p2 : v2, . . . pn : vn, q1 : u1, q2 :

u2, . . . , qm : um⦄ ∪ c1, d2 = ⦃p1 : v1, p2 : v2, . . . pn : vn, q1 : u1, q2 : u2, . . . , qm :

um⦄ ∪ c2, . . . , dk = ⦃p1 : v1, p2 : v2, . . . pn : vn, q1 : u1, q2 : u2, . . . , qm : um⦄ ∪ ck.

3. By definition of join and step 2, there exists a document a ∈ C1 such that

a = ⦃p1 : v1, p2 : v2, . . . pn : vn⦄.

4. By definition of join and step 2, there exist multiple documents b1, . . . , bk ∈

C2 ▷◁α2,3 C3 such that b1 = ⦃q1 : u1, q2 : u2, . . . , qm : um⦄ ∪ c1, b2 = ⦃q1 : u1, q2 :

u2, . . . , qm : um⦄ ∪ c2, . . . , bk = ⦃q1 : u1, q2 : u2, . . . , qm : um⦄ ∪ ck.

5. By definition of join and steps 1, 4, there exists a document e ∈ C2 such that

e = ⦃q1 : u1, q2 : u2, . . . , qm : um⦄ and it can be inferred that c1, . . . , ck ∈ C3

6. When performing operation C2 ▷̂◁
l
α2,3 C3, new documents are produced. By

steps 4-5, out of these documents, there exists a document e1 = e ∪ ⦃l :

⟦c1, c2, . . . , ck⟧⦄.

7. When performing operation C1 ▷◁α1,2

(
C2 ▷̂◁

l
α2,3 C3

)
new documents are produced.

By steps 2,3 and 6, out of these documents, there exists a document e2 = a∪e1 =

⦃p1 : v1, p2 : v2, . . . pn : vn⦄ ∪ e1 = ⦃p1 : v1, p2 : v2, . . . pn : vn⦄ ∪ ⦃q1 : u1, q2 :

u2, . . . , qm : um, l : ⟦c1, c2, . . . , ck⟧⦄ = d. Therefore, d ∈ C1 ▷◁α1,2

(
C2 ▷̂◁

l
α2,3 C3

)
.
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Lemma 3.33 (Projection eliminates Left Outer Join). Let C1 and C2 be collections,

an α a predicate. If C1 does not have empty documents, then π⊘cover(C1)(C1 ▷◁αC2) = C1.

Delay nesting

Fundamentally, a nest join is equivalent to an inner join followed by a group operation

that uses the arragg aggregate function to nest matching documents from the right-

hand-side of the inner join. Thus, for any two collections C1 and C2, C1 ▷̂◁
l
α C2 =

cover(C1)γl:arragg(cover(C2))(C1 ▷◁α C2). In a more complex expression with two or more

nest joins forming a right-deep nest join tree, the same principle can be applied to

convert the expression into a right-deep inner join tree. For example,

Example 3.3. Assume collections: C, O and L analogous to tables Customer, Orders

and Lineitem from the TPC-H benchmak. A typical query on a document database

joins these three collections to create documents where the top level JSON fields cor-

respond to a customer from C and an array with all corresponding orders from O such

that each order has an array with the corresponding lineitems from L. Algebraically

this query can be modeled as follows:

C ▷̂◁orders
c_custkey=o_custkey (O ▷̂◁lineitems

o_orderkey=l_orderkey L)

Alternatively, the two nest joins in the expression above can be decomposed into two

inner joins followed by two nest operations:

cover(C)γorders:arragg(cover(O)∪{lineitems})(

cover(C)∪cover(O)γlineitems:arragg(cover(L))(

C ▷◁c_custkey=o_custkey (O ▷◁o_orderkey=l_orderkey L)

)

)
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Note that as the query tree is traversed down, starting from the first group opera-

tion, the paths to group by accumulate at each group operation based on the order of

appearance of collections in the original expression, when read from left to right. For

instance, if C appears first, the set of paths to group by at the first group is denoted

as cover (C). When O appears as the second collection, the set of paths to group by

at the second group becomes cover (C) ∪ cover (O).

For a query involving an arbitrary number of collections C1, . . . , Ck, along with

k − 1 nest joins arranged in a right-deep nest join tree, the decomposed query tree

comprises k− 1 group operations. At the inner-most group (the k− 1-th group), the

grouping is done based on cover (C1)∪cover (C2)∪· · ·∪cover (Ck−1), while the k−2-th

group groups by cover (C1) ∪ cover (C2) ∪ · · · ∪ cover (Ck−2), and so on.

On the other hand, the set of paths to nest at the first k − 2 group operations

can be expressed as cover (Ci+1)∪{li+1,i+2}, where 1 ≤ i ≤ k− 2, and li+1,i+2 denotes

the label created by the nest join between collections Ci+1 and Ci+2. The k− 1 group

operation simply nests paths in cover (Ck). A generalized version of this concept is

provided in Lemma 3.34.

Lemma 3.34 (Delayed nesting on chained Nest joins). Let C1, C2, . . . , Cn be collec-
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tions, l1,2, l2,3, l3,4, . . . , ln−1,n be labels, and α1,2, α2,3, α3,4, . . . , αn−1,n be predicates.

C1 ▷̂◁
l1,2
α1,2

(
C2 ▷̂◁

l2,3
α2,3

(
. . . Cn−2 ▷̂◁

ln−2,n−1
αn−2,n−1

(
Cn−1 ▷̂◁

ln−1,n
αn−1,n

Cn
)
. . .
))

=

cover(C1)γl1,2:arragg(cover(C2)∪{l2,3})
(

cover(C1)∪cover(C2)γl2,3:arragg(cover(C3)∪{l4,5})
(

. . .

cover(C1)∪...∪cover(Cn−2)γln−2,n−1:arragg(cover(Cn−1)∪{ln−1,n})
(

cover(C1)∪...∪cover(Cn−1)γln−1,n:arragg(cover(Cn))
(

C1 ▷◁α1,2

(
C2 ▷◁α2,3

(
. . . Cn−2 ▷◁αn−2,n−1

(
Cn−1 ▷◁αn−1,n Cn) . . .

))
)

)
. . .)

)

Proof. Let n ∈ N be the number of nest joins in the expression C1 ▷̂◁
l1,2
α1,2

(
. . .
(
Cn ▷̂◁ln,n+1

αn,n+1

Cn+1
)
. . .
)
, and

P (n) = cover(C1)γl1,2:arragg(cover(C2)∪{l2,3})
(
. . .

cover(C1)∪...∪cover(Cn)γln,n+1:arragg(cover(Cn+1))
(
C1 ▷◁α1,2

(
. . .
(
Cn ▷◁αn,n+1 Cn+1

)
. . .
))
. . .
)

for every n ∈ N. Induction is used to prove that ∀n > 0.P (n).
Base case:
By definition of nest join, C1 ▷̂◁

l1,2
α1,2 C2 = cover(C1)γl1,2:arragg(cover(C2))

(
C1 ▷◁α1,2 C2

)
and

P (n) evaluates to the same when n = 1. Hence P (1) holds.
Induction step:
Let k be an arbitrary natural number such that k > 1 and assume that P (i) holds
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for all i ∈ [1, k]. Then, prove that P (k + 1) holds:

C1 ▷̂◁
l1,2
α1,2

(
. . . Ck ▷̂◁

lk,k+1
αk,k+1

(
Ck+1 ▷̂◁

lk+1,n+2
αk+1,k+2

Ck+2
)

. . .
)

=
cover(C1)γl1,2:arragg(cover(C2))∪{l2,3}

(
. . . cover(C1)∪...∪cover(Ck)γlk,k+1:arragg(cover(Ck+1))

(
C1 ▷◁α1,2

(
. . . Ck ▷◁αk,k+1

(
Ck+1 ▷̂◁

lk+1,k+2
αk+1,k+2

Ck+2

)
. . .
))

. . .
) (by hypothesis)

=

cover(C1)γl1,2:arragg(cover(C2))∪{l2,3}

(
. . . cover(C1)∪...∪cover(Ck)γlk,k+1:arragg(cover(Ck+1))

(
C1 ▷◁α1,2

(
. . . Ck ▷◁αk,k+1 cover(Ck+1)γlk+1,k+2:arragg(cover(Ck+2))

(
Ck+1 ▷◁αk+1,k+2 Ck+2

)
. . .
))

. . .
) (by Def. group)

=

cover(C1)γl1,2:arragg(cover(C2))∪{l2,3}

(
. . . cover(C1)∪...∪cover(Ck)γlk,k+1:arragg(cover(Ck+1))

(
(
C1 ▷◁α1,2 . . . ▷◁αk−1,k

Ck

)
▷◁αk,k+1 cover(Ck+1)γlk+1,k+2:arragg(cover(Ck+2))

(
Ck+1 ▷◁αk+1,k+2 Ck+2

)
. . .
)

. . .
) (by join assoc)

=

cover(C1)γl1,2:arragg(cover(C2))∪{l2,3}

(
. . . cover(C1)∪...∪cover(Ck)γlk,k+1:arragg(cover(Ck+1))

(
cover(C1▷◁α1,2 ...▷◁αk−1,k

Ck)∪cover(Ck+1)γlk+1,k+2:arragg(cover(Ck+2))

(
(
C1 ▷◁α1,2 . . . ▷◁αk−1,k

Ck

)
▷◁αk,k+1

(
Ck+1 ▷◁αk+1,k+2 Ck+2

))
. . .
)

. . .
) (by Lemma 3.32)

=

cover(C1)γl1,2:arragg(cover(C2))∪{l2,3}

(
. . . cover(C1)∪...∪cover(Ck)γlk,k+1:arragg(cover(Ck+1))

(
cover(C1)∪...∪cover(Ck+1)γlk+1,k+2:arragg(cover(Ck+2))

(
C1 ▷◁α1,2

(
. . . Ck ▷◁αk,k+1

(
Ck+1 ▷◁αk+1,k+2 Ck+2

)))
. . .
)

. . .
) (by join assoc)

Therefore, for any number n of nest joins with n > 0, P (n) holds.

Outer Join reordering through the GOJ

When first devised in [34], Galindo-Legaria and Rosenthal introduced the generalized

outer join to avoid wasteful materialization of intermediate results by changing the

order of evaluation of join and outer join operations under certain circumstances.

Example 3.4 illustrates one of such cases.

Example 3.4. Consider collections: C, O and L analogous to tables Customer,

Orders and Lineitem from the TPC-H benchmak respectively, and the query:

σc_nation·name="UK"(C) ▷◁c_custkey=o_custkey (O ▷◁o_orderkey=l_orderkey L)
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Evaluated as is, the query produces a big intermediate result: O ▷◁o_orderkey=l_orderkey

L. If the predicate c_nation·name="UK" in the selection is highly selective, then

most of the documents in this intermediate result are disposable. A better evaluation

order would be to perform the left outer join between C and O first to remove any

irrelevant orders, but as Galindo-Legaria and Rosenthal explain in their paper, such

task is not trivial because the “intuitive” ways in which to rewrite the query are not

equivalent to the original:

Way 1 Perform the left join first and the regular join last as follows:

(σc_nation·name="UK"(C) ▷◁c_custkey=o_custkey O) ▷◁o_orderkey=l_orderkey L

This, however, eliminates any customer without orders.

Way 2 Perform the left join between C and O first, then peform a left outer join

with L as follows:

(σc_nation·name="UK"(C) ▷◁c_custkey=o_custkey O) ▷◁o_orderkey=l_orderkey L

This, however, keeps orders for out-of-stock items, which would otherwise not have

been preserved in the original expression.

The order of evaluation of the original query from Example 3.4 can be transformed

to compute the left outer join between C and O first and then use the GOJ to join

the result with L:

(σc_nation·name="UK"(C) ▷◁c_custkey=o_custkey O)
goj
▷◁ [o_orderkey=l_orderkey, cover (C)]L

A generalization of this property is provided in Lemma 3.35 and extended to the case

of lookup in Lemma 3.36.

Lemma 3.35 (Left Outer Join - Inner Join Reordering with GOJ). Let C1, C2 and

C3 be collections, and α and β be predicates. If β rejects absent paths on cover (C2),

then C1 ▷◁α (C2 ▷◁β C3) = (C1 ▷◁α C2)
goj
▷◁ [β, cover (C1)] C3.
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Proof. The hypothesis for this proof is that β rejects absent paths on cover (C2).
The implication of this is that the expression (C1 ▷◁α C2) ▷◁β C3 (used in the proof)
is equivalent to (C1 ▷◁α C2) ▷◁β C3. This is because all documents in C1⋉C2 lack
paths from C2, which means that β evaluates to false whenever these documents are
considered for the inner join.

(C1 ▷◁α C2)
goj
▷◁ [β, cover (C1)] C3

= ((C1 ▷◁α C2) ▷◁β C3) ∪ (π⊘
cover(C1)(C1 ▷◁α C2)− π⊘

cover(C1)((C1 ▷◁α C2) ▷◁β C3)) (by Def 2.16)

= ((C1 ▷◁α C2) ▷◁β C3) ∪ (π⊘
cover(C1)(C1 ▷◁α C2)− π⊘

cover(C1)((C1 ▷◁α C2) ▷◁β C3)) (by hypothesis)

= (C1 ▷◁α (C2 ▷◁β C3)) ∪ (π⊘
cover(C1)(C1 ▷◁α C2)− π⊘

cover(C1)(C1 ▷◁α (C2 ▷◁β C3))) (by join associativity)

= (C1 ▷◁α (C2 ▷◁β C3)) ∪ (π⊘
cover(C1)(C1 ▷◁α C2)− (C1 ⋉α (C2 ▷◁β C3))) (by Corollary 2.13)

= (C1 ▷◁α (C2 ▷◁β C3)) ∪ (C1 − (C1 ⋉α (C2 ▷◁β C3))) (by Lemma 3.33)

= (C1 ▷◁α (C2 ▷◁β C3)) ∪ (C1⋉α(C2 ▷◁β C3)) (by Def 2.14)

= C1 ▷◁α (C2 ▷◁β C3) (by Def 2.15)

Lemma 3.36 (Lookup - Inner Join Reordering with GOJ). Let C1, C2 and C3 be

collections, and α and β be predicates. If β rejects absent paths on cover (C2), then

C1 ▷̂◁
l
α (C2 ▷◁β C3) = cover(C1)γl:arragg(cover(C2)∪cover(C3))((C1 ▷◁α C2)

goj
▷◁ [β, cover (C1)] C3)

Proof.

C1 ▷̂◁
l
α (C2 ▷◁β C3)

= cover(C1)γl:arragg(cover(C2)∪cover(C3))(C1 ▷◁α (C2 ▷◁β C3)) (by Def 2.19)

= cover(C1)γl:arragg(cover(C2)∪cover(C3))((C1 ▷◁α C2)
goj
▷◁ [β, cover (C1)] C3) (by Lemma 3.35)

Group transformations

Lemma 3.37 (Full Group push-down over Selection). Let C be a collection, l1, l2, . . . , lk

labels not realized in cover (C), q1, . . . , qk paths realized in cover (C), and α a selection
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predicate.

exprpaths(α)γl1:f1(q1),...,lk:fk(q1)(σα(C)) = σα(exprpaths(α)γl1:f1(q1),...,lk:fk(qk)(C))

Lemma 3.38 (Partial Group push-down over Selection). Let C be a collection, G a

set of paths to group by, l1, . . . , lk, l′1, . . . , l′k labels not in cover (C), q1, . . . , qk paths in

cover (C), α a selection predicate and ξ the function:

ξ(G,α) =


exprpaths (α) if G ⊂ exprpaths (α)

G ∪ exprpaths (α) if G ⊈ exprpaths (α)

then

Gγl1:f1(q1),...,lk:fk(qk)(σα(C)) = Gγl1:f1(l′1),...,lk:fk(l′
k

)(σα(ξ(G,α)γl′1:f1(q1),...,l′
k

:fk(qk)(C)))

Lemma 3.39 (Unwind simplification due to Group). Let C be a collection, G a set of

paths to group by, p a path in cover (C), l a label not in cover (C) and agg an aggregate

function. If there exists a non-aggregate function f that treats constituents of arrays

as a bag of values and performs the same operation as agg would over the same bag

of values, then Gγl:agg(p)(µ⊘p (C)) = Gγl:agg(f(p))(C).

Example 3.5. Let C be a collection, G a set of paths to group by, p a path in

cover (C) and l a label not in cover (C). Consider the query Gγl:sum(p)(µ⊘p (C)) and the

non-aggregate function arr_sum(x), designed to ascertain the sum of all numerical

constituents within the array indicated by x in cases where x resolves to an array.

Then, by Lemma 3.39, the query can be reduced to Gγl:sum(arr_sum(p))(C).

Lemma 3.40 (Partial Group push-down over Left Outer Join). Let C1,C2 be col-

lections, α a predicate, G a set of paths to group by, and F̃ a vector of scalar ag-

gregate functions such that F̃ can be split into F̃1 and F̃2; and G can be split into

G1 = G ∩ cover (C1) and G2 = G ∩ cover (C2). Then

GγF̃ (C1 ▷◁α C2) = Gγ(F̃1⊗(∃c2?c2:1))·F̃ ′
2
(C1 ▷◁α G2∪exprpaths(α)γF̃2·⦅c2:count(∗)⦆(C2))
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Union centric push-downs

The practical utility of Lemmas 3.41, 3.42, 3.43, 3.43, and 3.44 becomes evident in

scenarios where collections are fragmented into subcollections and distributed across

multiple servers within a JSON Document Store’s implementation. This partitioning

strategy, commonly known as sharding, designates each subcollection as a shard.

At a conceptual level, treating each shard as a subcollection enables the recreation

of the original collection by consolidating all of its shards. These lemmas serve as

foundational principles for a specific sharding technique known as horizontal sharding,

where documents remain intact within each shard concerning the original collection.

Lemma 3.41 (Broadband Selection). Let C1, C2, C3, . . . , Ck be collections and ψ a

predicate.

σψ

 ⋃
1≤i≤k

Ci

 =
⋃

1≤i≤k
σψ (Ci)

Lemma 3.42 (Broadband Projection). Let C1, C2, C3, . . . , Ck be collections and P a

set of paths.

πP

 ⋃
1≤i≤k

Ci

 =
⋃

1≤i≤k
πP (Ci) and π⊘P

 ⋃
1≤i≤k

Ci

 =
⋃

1≤i≤k
π⊘P (Ci)

Lemma 3.43 (Broadband Join). Let C1 and C2 be collections, and α a predicate. If

C2 is split up into subcollections C1
2 , C2

2 , C3
2 , . . . , Ck2 , then

C1 ▷◁α
⋃

1≤i≤k
Ci2 =

⋃
1≤i≤k

C1 ▷◁α Ci2

Lemma 3.44 (Broadband Unnest). Let C1, C2, C3, . . . , Ck be collections and p a path.

µp

 ⋃
1≤i≤k

Ci

 =
⋃

1≤i≤k
µp (Ci) and µ⊘p

 ⋃
1≤i≤k

Ci

 =
⋃

1≤i≤k
µ⊘p (Ci)

Lemma 3.45 (Broadband Group). Let C1, C2, C3, . . . , Ck be collections, G a set of

paths to group by, and F̃ a vector of aggregates such that F̃ can be split into vectors

F̃1, F̃2, . . . , F̃k.

GγF̃

 ⋃
1≤i≤k

Ci

 = Gγ(F̃ ′
1⊗c1)·...·(F̃ ′

k
⊗ck)

 ⋃
1≤i≤k

GγF̃i·⦅ci:count(∗)⦆ (Ci)

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CHAPTER V

DATA PILOTS

1 Collection summarization

This chapter commences by introducing the concept of a DataPilot, providing an

initial intuitive understanding before delving into formal definitions. Consider a col-

lection C of JSON Documents. A DataPilot of C, denoted as DP (C) or succinctly

as dpC, takes form as a labeled tree. This tree serves as an abstract representa-

tion, encapsulating the overarching structure present across all documents within

the underlying set K of C (i.e. the collection schema), and keeping the frequency of

appearances of every distinct pathway exhibited by JSON documents within K.

Intuitively, the reader may also visualize a DataPilot in a tabular format through

the following steps:

1. Start with a generic collection of JSON Documents.

2. Represent each document as a JSON tree and list all distinct paths. For exam-

ple, given the collection in Listing V.1:

{"name": {"first": "John", "last": "Doe" },"age": 20}

{"name": "Jane Doe", "age": 24}

{"name": {"first": "Chris", "last": "Smith" },"age": 30}

Listing V.1. Example collection of documents
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Paths are: ϵ, "name", "name"·"first", "name"·"last", "age".

3. Construct a table where rows correspond to paths, columns to types, and the

intersection of a path p and type t signifies the count of documents with p of

type t. Notably, as all documents have the empty path ϵ as the tree’s root,

the intersection of ϵ with the JSON Object type column encapsulates the total

document count in the collection. Following the example, Table 8 shows a

tabular representation of the DataPilot for the collection in Listing V.1.

Path obj arr int str
ϵ 3 0 0 0

name 2 0 0 1
name·first 0 0 0 1
name·last 0 0 0 1

age 0 0 3 0

Table 8. DataPilot from Listing V.1

Regarding arrays, numeric labels are substituted with the special label ⋆ in the

DataPilot, signifying the presence of an array. For example, in a collection C with

the two documents:

{"hobbies":[{"name":"soccer"},"tennis"]}

{"hobbies":["tennis",{"name":"soccer"}]}

Paths "hobbies"·1·"name"from the first document and "hobbies"·2·"name"from the sec-

ond document are both stored in dpC as "hobbies"·⋆·"name". Consequently, the tab-

ular representation of dpC would show the number 2 under the column referencing

the string type and the row referencing "hobbies"·⋆·"name". Additionally, since the

array in each document contains a literal (i.e., values "tennis" and "soccer" re-

spectively), the intersection between the column referencing the string type and the

row referencing "hobbies"·⋆would display the number 2.

By storing array information in this manner, for any path p, a DataPilot retains

information about the number of nested elements observed across all documents where
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p evaluates to an array, but not about the order of such nested elements or their dis-

tribution across documents. For instance, given the path "hobbies"·⋆·"name"and the

count of 2 for the string type, one can either infer that there are two documents in the

data where the path "hobbies" points to an array, and each one has a nested docu-

ment with the key "name", or that there is one document where the path "hobbies"

points to an empty array, and another document where the path "hobbies" points

to an array with two nested objects, each having the key "name".

A distinction is made between path expressions containing the label ⋆ and path

expressions without it. Definitions 1.1 and 1.3 elucidate on this.

Definition 1.1 (Array path expression). Let p be a path expression of length n. p

is said to be an array path expression if there exists some pk = ⋆ such that p =

p1 · p2 · . . . · pk−1 · pk · pk+1 · . . . · pn. That is, more succinctly, if ⋆ ∈ p.

Definition 1.2 (Set of array path expressions). Let P be a set of path expressions.

The set of array path expressions of P is arrs(P ) = {p ∈ P | ⋆ ∈ p}.

Definition 1.3 (Non-array path expression). A path expression p is said to be a non-

array path expression if it is not an array path expression. That is, more succinctly,

if ⋆ /∈ p.

Definition 1.4 (Set of non-array path expressions). Let P be a set of path expres-

sions. The set of non-array path expressions of P is noarrs(P ) = {p ∈ P | ⋆ /∈ p}.

The primary purpose of a DataPilot is to establish a data structure that records

the frequency counts of paths in C. This structure facilitates the emulation of the

behavior of operators and properties defined in Sections IV.2 and IV.3. The goal

is to mimic the manipulation and transformation of documents in C so as to esti-

mate the structure and frequency counts of documents within the collection resulting

from the application of such operators to C. The encoding of these two estimations

is expounded upon in Definition 1.5, which is elaborated upon with an illustrative

instance in Example 1.1.

144



Definition 1.5 (DataPilot). Let C be a collection, and p a path expression. A data

pilot dpC of C comprises an edge-labeled tree with a special label ⋆ not found in the

alphabet of the labels from the JSON documents in C and the two mappings:

• path occurrence counter, denoted as ct(dpC, p) = x, where x is a number

from N0 that estimates the occurrences of p in C with type t.

• empty array counter, denoted as ε(dpC, p) = x, where x is a number from N0

that estimates the number of documents where p resolves to an empty array in

C.

name level

⋆

name
phone

hobbies name phone

name

⋆

hobbies

level

⋆

hobbies name
phone

hobbies · ⋆ · name
hobbies · ⋆ · level

dpC as an edge labeled tree Complete paths of dpC dpC as a set of complete paths

(a) Correspondence between tree and set representation of dpC

name level

⋆

name
phone

hobbies ϵ

hobbies
hobbies · ⋆

name
phone

hobbies · ⋆ · name
hobbies · ⋆ · level

0 0 4 0
0 0 0 3
0 0 4 0
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(b) Path ocurrence counters of dpC in a system with 4 types: int, str, obj, arr

Figure 37. Example of a DataPilot dpC of a collection with 4 documents on a DB
system with 4 types

Example 1.1. Assume a collection C with the JSON Documents in Listing V.2 on

a DB system with the following 4 types: integer (int), string (str), object (obj) and

array (arr).
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{"name":"Jim","phone":"502-225-1111","hobbies":[

{"name":"snorkel","level":5},{"name":"soccer","level":"amateur"}

]}

{"name":"Tom","phone":"502-335-1321","hobbies":[

{"name":"swimming","level":3},{"name":"german","level":"C1"} ]}

{"name":"Carl","phone":"502-335-1321", "hobbies": []}

{"name":"Sam","phone":"502-335-1321"}

Listing V.2. Documents in collection C

Since dpC is an edge-labeled tree, it can be conceptualized as a set of complete paths,

where each complete path references a leaf of the tree, as illustrated in Figure 37a.

The recursive generating tree definition outlined in Section IV.1 is then employed

to construct the tree based on its leaves. Similarly, each path in the set N(dpC)

corresponds to a node in the tree. Figure 37b depicts this relationship and how

each path maps to a vector of counters. For instance, the path p = hobbies·*·level

is mapped to the vector (2, 2, 0, 0). This indicates that there are 2 documents

where p resolves to an integer (cpint = 2), such as ⦃"name":"snorkel","level":5⦄ and

⦃"name":"swimming","level":3⦄ from Listing V.2. Additionally, there are 2 documents

where p resolves to a string (cpstr = 2), such as ⦃"name":"soccer","level":"amateur"⦄

and ⦃"name":"german","level":"C1"⦄ from Listing V.2.

In the context of a DataPilot, similar to the relational case, the term collection

cardinality refers to an estimate of the number of elements in a collection. This

estimate is structurally stored at the root node of the DataPilot, as explained in

Definition 1.6.

Definition 1.6 (Estimated collection cardinality). Let C a collection and dpC a Dat-

aPilot of C. The estimated number of documents within dpC, also called the cardi-

nality of C, corresponds to Card(dpC, ϵ) = cobj(dpC, ϵ).
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Additionally, various types of cardinalities are defined. The estimated frequency

counts, or simply counters, serve to estimate the number of documents in a collection

that possess a specific path, irrespective of its type, or the total number of elements

observed within all arrays a path points to. Both cases involve adding up all counters,

a concept termed path cardinality. However, they differ in the type of path used. The

former case exclusively utilizes non-array paths, leading to non-array path cardinality

(Definition 1.8), while the latter case employs only array paths, resulting in array

cardinality (Definition 1.9) and array-path cardinality (Definition 1.10).

Definition 1.7 (Estimated path cardinality). Let p be a path, C a collection and dpC

a DataPilot of C. The estimated cardinality of p based on dpC is defined as:

Card(dpC, p) =
∑
t∈A

ct(dpC, p)

Definition 1.8 (Estimated Non-array-path Cardinality). For a non-array path p, a

collection C, and a DataPilot dpC of C. The cardinality Card(dpC, p) represents the

occurrences of p in the documents within C.

Definition 1.9 (Estimated array cardinality). For a path p of length n with pn = ⋆,

C a collection, and dpC a DataPilot of C, the cardinality Card(dpC, p) represents the

cumulative number of elements within the array p1 · . . . · pn−1 points to in documents

from C. Each counter ct(dpC, p) estimates the number of elements with type t across

all arrays resolved by p1 · . . . · pn−1 in C. Similarly, ε(dpC, p) estimates the cumulative

number of (nested) empty arrays within the arrays resolved by p1 · . . . · pk−1.

Definition 1.10 (Estimated array-path cardinality). For an array path p = p1, · . . . ·

pk−1 · pk · pk+1 · . . . · pn of length n with pk = ⋆ and pn ̸= ⋆, a collection C, and a

DataPilot dpC of C. The cardinality Card(dpC, p) represents the occurrences of the

path pk+1 · . . . · pn within the documents nested in the array that p1, · . . . · pk−1 points

to.
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For a DataPilot to consistently emulate the behavior of collections, it must adhere

to fundamental properties that characterize collections. One such property regards

collection cardinality, which, in terms of the data, represents the total number of

documents in the collection. Consequently, if the counter of a non-array path in

the DataPilot surpasses the estimated collection cardinality stored in the DataPilot’s

root node, it indicates an inconsistency. This is because a non-array path cannot be

present in more documents than the total number of documents in a collection.

However, this constraint does not bind array paths in the same way. Their oc-

currence is contingent upon the total number of elements within arrays across all

documents. In the case of array paths referring to a document nested within an ar-

ray, nested into another array, their occurrence is contingent upon the total number

of elements within the innermost array

These constraints imply that the cardinalities of non-array paths are linked to the

DataPilot’s root node, identified by path ϵ, while the cardinalities of array paths are

tied to DataPilot nodes identified by paths whose last label is ⋆. Thus, certain prefixes

of an array path are designated as relative roots of such path, and among these, there

is an immediate relative root. These concepts are detailed in Definitions 1.11 and 1.12.

Definition 1.11 (Immediate relative root of a path expression). For a path expres-

sion p = p1 · p2 · . . . · pn the immediate relative root of p, denoted as relroot(p), is ϵ

if p is a non-array path, else if p is an array path whose last label differs from ⋆ and

there exists two paths q and r such that p = q · ⋆ · r and ⋆ /∈ r, then relroot(p) = q · ⋆.

Succinctly,

relroot(p) =


p1 · . . . · pk if (∃pk ∈ p) (pk = ⋆ ∧ ⋆ /∈ pk+1 · . . . · pn)

ϵ otherwise

Definition 1.12 (Relative roots of a path expression). For a path expression p, the
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relative roots of p are given by the expression below:

relroots(p) =


{relroot(p)} ∪ relroots(q1 · . . . · q|q|−1) if q = relroot(p) ∧ q ̸= ϵ

∅ otherwise

These fundamental properties, essential for a DataPilot to emulate a collection,

are elucidated in Invariants 1.1, 1.2, and 1.3.

Invariant 1.1. In a DataPilot dpC for a collection C, the counters for the empty

path ϵ (root of the tree) represent the number of elements in C. Since collections

can only hold JSON documents, the inferred invariant is: ct(dpC, ϵ) = 0 for all types

t ∈ T− {obj}. Note that this also implies ε(dpC, ϵ) = 0.

Invariant 1.2. In a DataPilot dpC for a collection C, the ocurrence of non-array paths

must be less than or equal to the total number of documents. Likewise, the ocurrence

of array paths whose last label differs from ⋆ must be less than or equal to the total

number of elements estimated to be in the array containing them. Thus, the inferred

invariant is: Card(dpC, p) ≤ Card(dpC, relroot(p)) for any path p ∈ N(dpC).

Corollary 1.13. Let C be a collection and dpC a DataPilot of C. Then, Invariant 1.2

implies Card(dpC, p) ≤ Card(dpC, ϵ) for any path p ∈ noarrs(N(dpC)).

Corollary 1.14. Let C be a collection and dpC a DataPilot of C. Then, Invariant 1.2

implies Card(dpC, p) ≤ Card(dpC, relroot(p)) for any path p ∈ arrs(N(dpC))

Definition 1.15 (Set of explicit path expressions). Let P be a set of path expressions.

A set of explicit path expressions of P is a subset where none of the paths within are

considered as relative roots. Formally,

explicit(P ) = P −
⋃
p∈P

relroots(p)
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Definition 1.16 (Estimated number of non-empty documents). Let dpC be a Dat-

aPilot of collection C. The estimated number of non-empty documents in C can be

computed as follows:

NumNED
(
dpC

)
= max

p∈noarrs(explicit(N(dpC)))

(
Card(dpC, p)

)

Definition 1.17 (Estimated Number of Empty Documents). Let dpC be a DataPilot

of collection C. The estimated number of empty documents in C can be computed as

follows:

NumED
(
dpC

)
= Card(dpC, ϵ)− NumNED

(
dpC

)

Invariant 1.3. In a DataPilot dpC for a collection C, the presence of empty documents

in C implies that the estimated collection cardinality must be greater than or equal

to the maximum path cardinality of non-array paths in explicit
(
N
(
dpC

))
. Thus,

the inferred invariant is: Card(dpC, ϵ) ≥ NumNED
(
dpC

)
.

DataPilots leverage path estimation (Definition 1.18) trough the back and forth

properties (Definitions 1.19 and 1.20 respectively) to encapsulate document structure.

Path estimation involves establishing an approximation to the existence of a path in a

collection based on the existance of a path in said collection’s DataPilot. For example,

paths a·1·c and a·2·c are both estimated by a·⋆·c. A DataPilot has the back property

if all its paths estimate a path in the cover of its collection, and it has the forth

property if all paths in its collection’s cover are estimated by a path in the DataPilot.

The forth property guarantees the presence of every path in a DataPilot in at least

one document from its collection, while the back property ensures that all paths from

documents in its collection are included in the DataPilot. A DataPilot is required

to uphold the forth property, but when it adheres to both, it is labeled as faithful

to its collection (Definition 1.21). Conversely, if a DataPilot lacks both the back
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cover (C) N
(
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)
ϵ

"a"
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ϵ

"a"
"a"·⋆

"a"·⋆·"c"

(a) Faithful
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(
dpC

)
ϵ

"a"
"a"·1·"c"

"b"

ϵ

"a"
"a"·⋆

"a"·⋆·"c"

(b) Back property only

cover (C) N
(
dpC

)
ϵ

"a"
"b"

ϵ

"a"
"b"
"c"

(c) Forth property only

cover (C) N
(
dpC

)
ϵ

"a"
"b"
"d"

ϵ

"a"
"b"
"c"

(d) Unfaithful

Figure 38. Example of DataPilots categorized by adherence to the Back and Forth
properties. Paths indicated by arrows are estimated by paths at the arrow sources.
Dashed arrows originate from relative roots.

and the forth property, it is classified as unfaithful to its collection (Definition 1.22).

Figure 38 shows examples of DataPilots categorized by adherence to the Back and

Forth properties.

Definition 1.18 (Structural path estimation). A path p = p1 ·p2 · . . .·pn in dpC is said

to structurally estimate (or just estimate when context allows) a path q = q1 ·q2 ·. . .·qn

in cover (C) if pi = qi except that p has label ⋆ in terms where q has labels from N0.

Definition 1.19 (Back property). A DataPilot dpC of collection C has the back

property if for each path p in N(dpC), there exists at least one document d in C with

a path q such that p estimates q.

Definition 1.20 (Forth property). A DataPilot dpC of collection C has the forth

property if for each path p in a document d in C, there exists a path q in N(dpC) such

that q estimates p.
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Definition 1.21 (Faithful DataPilot). A DataPilot dpC of collection C is said to be

faithful to C if it has both the back and forth properties.

Definition 1.22 (Unfaithful DataPilot). A DataPilot dpC of collection C is deemed

unfaithful to C if it lacks both the back and forth properties.

Definition 1.23 (Overlap). Given two paths: p, q, an overlap OverlapC(p, q) is a

subset of C based on the existence of p and q; for any document doc in a C, if p and

q exist in doc, then doc is part of OverlapC(p, q).

Documents not in OverlapC(p, q) belong to the subset OverlapC(p, q)∁. Note that

OverlapC(p, q)∁ acts as the (set) complement of OverlapC(p, q): C = OverlapC(p, q)∪

OverlapC(p, q)∁. The number of documents in OverlapC(p, q), or |OverlapC(p, q)|,

cannot be accurately inferred from the DP, but represented as an interval on a 2-case

basis:

• Case 1: Card(dpC, p) + Card(dpC, q) > n, then

Card(dpC, p) + Card(dpC, q)− n ≤

|OverlapC(p, q)| ≤

min
(
Card(dpC, p), Card(dpC, q)

)
• Case 2: Card(dpC, p) + Card(dpC, q) ≤ n, then

0 ≤ |OverlapC(p, q)| ≤ min
(
Card(dpC, p), Card(dpC, q)

)
Both intervals can be collapsed into

max
(
0, Card(dpC, p) + Card(dpC, q)− n

)
≤

|OverlapC(p, q)| ≤

min
(
Card(dpC, p), Card(dpC, q)

)

152



2 Data Pilot creation and maintenance

When implementing a Data Pilot, its tree structure and counters are decoupled. This

is achieved by storing paths and counters in separate data structures. At a more de-

tailed level, this decoupling involves two main components: the counter store, a data

structure holding vectors of counters per path; for instance, a matrix where columns

represent types, and rows are assigned to paths; and the path store, a key-value

container, such as a trie or a hash table, to manage paths and connect them with

their corresponding vectors of counters in the counter store. This separation offers

flexibility, allowing specialization based on space and time complexity requirements.

Furthermore, it facilitates the application of Data Pilot algebra operators, as trans-

formations can be separated based on their impact on tree structure and counters.

To illustrate the benefits of this decoupling, consider two scenarios:

1. High Homogeneity of Types: Assume the path store is to be implemented

as a matrix of counters. In cases where a collection exhibits high homogeneity of

types per path in its cover, resulting in a matrix with numerous zero counters,

a sparse representation may be more efficient. Implementation options include

using a 2D array with rows indicating the indices of non-zero elements, columns

indicating the indices of non-zero columns, and the values of non-zero counters.

Other alternatives involve linked lists or hash tables. At parsing, the matrix

could be treated as sparse and transformed into a dense representation if its

size exceeds a fixed threshold.

2. Bulk Document Parsing: When parsing a bulk of documents, each one

in a depth-first manner, representing the path store as a trie can outperform

its implementation as a hash table in insertion and lookup speed. If the trie

keeps track of the node where a label was last inserted, it reduces the overhead

of repeated concatenations and hashing. In contrast, a hash table requires
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multiple concatenations and hash computations for each child in a depth-first

traversal.

These cases are independent choices, enabling the implementation of the path store

as a trie or hash table without affecting the implementation of the counter store as a

sparse or dense matrix and vice versa.

Pseudocode 1: Example implementation of a DataPilot’s counter store
1 struct {
2 uint nPaths;
3 uint nTypes;
4 uint[ ] data;
5 } CMatrix;
6 Function InitCounters(CMatrix counters, uint nPaths, uint nTypes):
7 counters.nPaths ← nPaths;
8 counters.nTypes ← nTypes;
9 counters.nInsertedPaths ← 0;

10 counters.data ← [0, 0, . . . , 0]︸ ︷︷ ︸
counters.nPaths ∗ counters.nTypes

11 end
12 Function ResizeCounters(CMatrix counters, uint nPaths):
13 CMatrix newCounters;
14 InitCounters(newCounters, counters.nPaths + nPaths, counters.nTypes );
15 idx ← (counters.nPaths ∗ counters.nTypes) − 1;
16 for uint i=0 to idx do
17 newCounters.data[i] ← counters.data[i];
18 end
19 counters ← newCounters;
20 end
21 Function CounterInc(CMatrix counters, uint pathIdx, uint typeIdx):
22 if pathIdx = counters.nPaths then
23 ResizeCounters(counters, counters.nPaths )
24 end
25 uint idx ← typeIdx + (pathIdx ∗ counters.nTypes);
26 counters.data[idx ] ← counters.data[idx ] + 1;
27 end

In Scenario 1, the choice between a sparse or dense matrix representation for the

counter store involves various considerations, encompassing ease of implementation,

size, lookup time, and expansion.

From a complexity standpoint, consider the space complexity of the counter store

within a Data Pilot dpC of a collection C. Represented as a dense matrix, the counter

store exhibits a space complexity of O(|N(dpC)| ∗ |T|). It is crucial to note that each

path p in cover (C) resolving to an array is estimated by two paths in N(dpC)—namely,

p and p·⋆. Proper Data Pilots may harbor more paths than cover (C) (excluding
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relative roots), adhering strictly to the forth property. Consequently, for disjoint

subsets S1 and S2 of cover (C), where all paths resolving to an array are in S1 and

those not resolving to an array are in S2, the space complexity can be expressed as

Θ(|T| ∗ (2 ∗ |S1|+ |S2|)), or more simply, Θ(|T| ∗ | cover (C) |). In this scenario, space

consumption scales linearly with both the number of paths and types.

Contrastingly, a sparse matrix, utilizing the 2D array representation, incurs space

in the order of Θ(3 ∗m), where m denotes the count of non-zero counters, or more

succinctly, Θ(m). Thus, space consumption grows proportionally with the number of

non-zero counters. In instances where the collection is entirely homogeneous, includ-

ing the content types of arrays, there can only be one non-zero counter per path in

the Data Pilot. However, if heterogeneity exists, some paths may boast more than

one non-zero counter. Consequently, the more homogeneous a collection, the sparser

the counter matrix becomes.

Pseudocode 2: Example implementation of Data Pilot
1 struct {
2 Trie paths;
3 CMatrix counters;
4 uint nInsertedPaths;
5 } DataPilot;
6 Function InitDataPilot(DataPilot dp, uint nPaths, uint nTypes):
7 InitEmptyTrie(dp.paths );
8 InitCounters(dp.counters, nPaths, nTypes );
9 dp.nInsertedPaths ← 0;

10 end
11 Function DataPilotAdd(DataPilot dp, Path path, uint type):
12 // assume function TrieSearchAndRetrieve returns a struct
13 // with members "found" and "value" of types boolean and uint
14 res ← TrieSearchAndRetrieve(dp.paths, path );
15 pathIdx ← res.value;
16 if res.found = false then
17 pathIdx ← dp.nInsertedPaths;
18 TrieAdd(dp.paths, path, pathIdx);
19 dp.nInsertedPaths ← dp.nInsertedPaths + 1;
20 end
21 CounterInc(dp.counters, pathIdx, type );
22 end

Opting for a dense matrix offers simplicity in implementation and interaction, as

depicted in Pseudocode 1. Counter incrementation entails basic arithmetic operations

to locate the counter in the matrix and execute the increment itself. However, its
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memory footprint is significantly higher the more homogeneus a collection is. For

instance, assuming counters are stored as unsigned integers occupying 4 bytes each,

and considering the 8 types in the BSON specification (i.e., byte, int32, int64, uint64,

double, decimal128, array, and object), a row in the dense matrix necessitates 4×8 =

32 bytes. Consequently, to accommodate
⌊

1024
32

⌋
= 32 paths, 1KiB is required, and for⌊

1049000
32

⌋
= 32781 paths, 1MiB is necessary. In a collection with homogeneous path

types, a sparse matrix, utilizing a 2D array representation, needs only 4 × 3 = 12

bytes per path, as there is only one non-zero counter per path. Therefore, the sparse

matrix stores the path (row) index, type (column) index, and the non-zero counter

value, all as unsigned integers, requiring 12 × 32 = 384 bytes to store the same 32

paths as the dense matrix. This results in a reduction of memory consumption by

100%×
(

1024−384
1024

)
= 62.5%.

In a collection with heterogeneous path types, the sparse matrix would demand

3× 4×mi = 12mi bytes per path, where mi is the number of non-zero counters for

path i. In such cases, it may be a less favorable choice than the dense matrix.

In scenario 2, choosing a suitable container data structure, such as a hash table

or trie, for the tree representation of the Data Pilot involves careful consideration.

Taking the tree representation into account, consider a path p that resolves to an

object with k children.

If a hash table is used, p must be retained in memory. When the parser iterator

reaches child i of the object, li, the label resolving to that child, is concatenated with

p. Subsequently, path p·li is hashed and inserted into the hash table. This process

involves k concatenations and k hash computations.

In contrast, employing a trie that keeps track of the last insertion involves retaining

the iterator to the last inserted node instead of maintaining p. If the iterator is, for

instance, a pointer, only 8 bytes per trie iterator need to be stored. This allows for

the straightforward insertion of label li into the trie as a new node without the need

for any preceding search. It is worth noting that, while the size of p can vary and
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Pseudocode 3: Example implementation of a Data Pilot’s creation function
using a recursive approach that traverses documents in a depth-first manner
1 // iterator starts at opening bracket of the JSON array
2 Function ProcessArr(DataPilot dpC , Path path, Iterator it):
3 key ← ⋆;
4 depth ← IterDepth(it );
5 // move iterator to first element of the array
6 IterNext(it );
7 do
8 valueType ← IterType(it );
9 DataPilotAdd(dpC, path · key, valueType );

10 if valueType = obj then
11 ProcessDoc(dpC , path · key, it );
12 else if valueType = arr then
13 ProcessArr(dpC , path · key, it );
14 end
15 IterNext(it );
16 while IterDepth(it) < depth ;
17 end
18 // iterator starts at opening brace of JSON object
19 Function ProcessDoc(DataPilot dpC , Path path, Iterator it):
20 depth ← IterDepth(it );
21 // move iterator to first key of JSON object
22 IterNext(it );
23 do
24 key ← IterGet(it );
25 // move iterator to value
26 IterNext(it );
27 valueType ← IterType(it );
28 DataPilotAdd(dpC, path · key, valueType );
29 if valueType = obj then
30 ProcessDoc(dpC , path · key, it );
31 else if valueType = arr then
32 ProcessArr(dpC , path · key, it );
33 end
34 // move iterator to next key
35 IterNext(it );
36 while IterDepth(it) < depth ;
37 end
38 // dpC must have already been initialized by calling the InitDataPilot function
39 Function CreateDataPilot(Collection C, DataPilot dpC):
40 foreach document d of C do
41 it ← NewJsonIter(d);
42 // ϵ refers to the empty path
43 ProcessDoc(dpC , ϵ, it );
44 end
45 end

might be less than 8 bytes (e.g., a·b·c takes 3 bytes, assuming each character occupies

1 byte), this scenario is unlikely in JSON datasets designed for human readability.

Furthermore, even in such cases, p would still necessitate concatenation with children

labels and subsequent hashing.

Pseudocode 2 shows an example of a Data Pilot implementation that exposes
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functions InitDataPilot and DataPilotAdd, and interacts with the counter store

implemented in Pseudocode 1 by using the function CounterInc. The Pseudocode

assumes the existence of a path store implemented as a Trie, where keys are paths and

values are unsigned integers that act as references linking a path to its correspond-

ing row in the counter store that exposes functions InitEmptyTrie to initialize an

empty counter store instance, TrieSearchAndRetrieve to find a path’s reference to

its vector of counters, and TrieAdd to add a path and its reference to the appropriate

counter vector.

A Data Pilot can be developed concurrently with parsing and ingesting data into a

collection or constructed from an existing collection. The flexibility to add paths later

simplifies the process when new documents are inserted. In the context of parsing

substantial datasets, an iterator over a JSON document should ideally refrain from

retaining unnecessary data, freeing resources or marking them for potential release as

the iterator progresses. This approach becomes particularly relevant for performance.

Pseudocode 3 illustrates the implementation of a function to construct a Data

Pilot from a collection, adhering to the move forward and forget iterator approach.

The pseudocode assumes the existence of an Iterator interface over JSON documents

that facilitates a depth-first traversal. The function NewJsonIter, when provided

with a document d as an argument, creates an iterator positioned at the opening brace

of d. The IterNext function transitions the iterator from key to value if currently

pointing to a key, from value to key if pointing to a value, and from array element

to array element if currently positioned as such. During document processing, the

iterator always begins at the opening brace ({) and, when handling an array, starts

at the opening bracket ([). The iterator keeps track of the current depth, retrievable

using the IterDepth function.

Theorem 2.1 (Creation of a faithful Data Pilot). Given a collection C and an empty

Data Pilot dpC, function CreateDataPilot from Pseudocode 3 populates dpC so that

it is faithful to C.

158



3 Data Pilot algebra

In describing operations over a Data Pilot dpC, this section addresses two components

independently: structural—how the tree structure is altered—and counting—how

path occurrences are altered.

Each Data Pilot operator is homonymic to an operator from the algebra of docu-

ments; this intends to (1) outline a one-to-one correspondence between summary and

data operations, which aids in the further implementation of a query planner, and

(2) ease characterization of the estimates in collection structure and cardinality that

a Data Pilot provides.

For any collection C, the objective is for each Data Pilot operator to produce

an approximation of the faithful Data Pilot obtained from the collection resulting

from applying the corresponding document algebra operator to C. In other words,

for an arbitrary operation Ψ, a faithful Data Pilot dpC of C, a collection C ′ = Ψ (C),

and a faithful Data Pilot dpC′ of C ′, the Data Pilot resulting from Ψ
(
dpC

)
should

approximate dpC′ . The primary distinctions between these two Data Pilots are in

their counters and structure. Structurally, Ψ
(
dpC

)
maintains the forth property but

forfeits the back property, making it non-faithful. Both differences arise because dpC′

is computed based on the data in C ′, while Ψ
(
dpC

)
relies solely on the information

in dpC.

To illustrate, consider C with documents d1 = {"name": "John Doe", "age":

20, "hobby": "soccer" } and d2 = {"name": "Jane Doe", "age": 30 }, and

let Ψ be the selection of documents in C where "age"> 25. Therefore, C ′ = σage>25 (C),

and only document d2 remains in C ′. This means that dpC′ lacks the path "hobby"

since it is only present in d1, absent from C ′. On the other hand, σage>25
(
dpC

)
is only

aware that path "age" evaluates to a number in the two documents present in C and

that path "hobby" is present in one of those two documents. Because dpC is unaware

of the actual values in the data, Data Pilot σage>25
(
dpC

)
provides an upper bound,
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assuming that at most both documents in C are filtered by the selection predicate

and, consequently, that path "hobby" remains as well.

The term approximation, loosely used in previous paragraphs, denotes the con-

nection between a document operation Ψ applied to a collection with the data and a

corresponding Data Pilot operation Ψ′ applied to a Data Pilot, ensuring the commu-

tativity of the following diagram:

C dpC

Ψ(C) dpΨ(C)

Ψ Ψ′

The description of operators below starts then by outlining the behavior of the

respective Data Pilot operation and how it affects C, while describing the accurate

(or faithful) changes in dpC had perfect knowledge of structure and cardinality be

available. Estimation of structure and cardinality are subsequently addressed in a

separated manner.

Selection

The behavior of a selection has two implications on a data pilot: (1) path cardinal-

ities either remain the same or decrease after a select, but can never increase; (2)

faithfulness is not guaranteed (and oftentimes lost).

Structural estimation

A data pilot does not have access to the data; thus, branches in dpC that should be

absent in σφ(dpC) are unknown. Due to this uncertainty select refrains from deleting

any path p (even if Card(σφ(dpC), p) = 0) to keep the forth property, but at the cost

of losing the back property.
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cardinality estimation

Suppose φ is an arbitrary select expression and exprpaths (φ) the set of path expres-

sions in φ. Cardinality estimates rely on the following two quantities:

• document retention factor. Denoted drf(dpC, φ), this quantity estimates the

percentage of documents to keep.

• type density factor. Denoted tdfb(dpC, φ, p), this quantity estimates the per-

centage of documents where path p is of type b out of all documents remaining

where path p exists.

Both factors are calculated based on the type of φ.

In a Path-Path expression pθq, the operator θ is defined for a subset (often a

proper subset) B of the types in T. For example, the operator < is frequently defined

for integers and strings in database systems, with the commonly accepted behaviors of

integer and lexicographic orders, respectively. However, it is not clear how < behaves

for arrays or JSON objects as inputs.

As a result, documents where p and q are of any type in T−B are filtered out from

C based on this fact alone. Therefore, estimating the number of documents kept

depends on the probability of p and q being of any type in B. Assuming that both

events are independent, this probability is given by Equation 7.

drf(dpC, pθq) =
∑
b∈B

cb(dpC, p)
Card(dpC, ϵ)

×
∑
b∈B

cb(dpC, q)
Card(dpC, ϵ)


= 1
Card(dpC, ϵ)2 ×

∑
b∈B

cb(dpC, p)
×

∑
b∈B

cb(dpC, q)
 (7)

Likewise, the type density factor for any type of p and q given θ depends on B

as shown in Equation 8. Take operator < for example, if p is of type object in 5

documents, integer in 10 and string in 5, then all 5 documents where p is an object

are not retained in C because obj /∈ B for <. Thus, the percentage of documents
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where p is an object, integer and string after select are 0, 10/(10 + 5) and 5/(10 + 5)

respectively.

tdfa(dpC, pθq, s) =



0 if a /∈ B
ca(dpC, s)∑
b∈B cb(dpC, s)

if s ∈ exprpaths (pθq)

ca(dpC, s)
Card(dpC, ϵ) if s /∈ exprpaths (pθq)

(8)

In a Path-Const expression pθd, one of the operands of θ (in this case, a constant

d) has a single type t, unlike in a Path-Path expression. Therefore, estimating the

number of documents kept depends on the probability of p and d being of the same

type, as shown in Equation 9.

drf(dpC, pθd) = ct(dpC, p)
Card(dpC, ϵ) (9)

The type density factor of path p with type t is 1 and 0 with any other type because

documents where p is of a type other than t are not retained. For any path other

than p, the density is computed based on the collection’s estimated cardinality. This

is shown in Equation 10.

tdfa(dpC, pθd, s) =



1 if s = p and a = t

ca(dpC, s)
Card(dpC, ϵ) if s ̸= p

0 otherwise

(10)

In an existence expression ∃p, an estimate of the number of documents kept

relies on the probability of a document having path p. This probability is given by

Equation 11.

drf(dpC, ∃p) = Card(dpC, p)
Card(dpC, ϵ) (11)

All documents where p exists are kept and thus the percentage of documents where

p is of any type a ∈ T remains the same as in dpC. This is shown in Equation 12.
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tdfa(dpC,∃p, s) = ca(dpC, s)
Card(dpC, ϵ) (12)

In a grouped expression (α), the probability of finding a document in C that

matches a (group of) expression(s) wrapped in parentheses is equal to the probability

of α itself as shown in Equation 13. Similarly, any type density associated with (α)

is also associated with α as shown in Equation 14.

drf(dpC, (α)) = drf(dpC, α) (13)

tdfa(dpC, (α), s) = tdfa(dpC, α, s) (14)

In a conjunctive expression α∧β, the probability of finding a document in C that

matches both α and β is the product of the probabilities of finding a document that

matches each expression independently as given by Equation 15. Conversely, type

density depends exclusively on the path expressions explicitely involved in α and β

as shown in Equation 16.

drf(dpC , α ∧ β) = drf(dpC , α)× drf(dpC , β) (15)

tdfa(dpC , α ∧ β, s) =


tdfa(dpC , α, s) if s ∈ exprpaths (α)− exprpaths (β)

tdfa(dpC , β, s) if s ∈ exprpaths (β)− exprpaths (α)

tdfa(dpC , α, s)× tdfa(dpC , β, s) if s ∈ exprpaths (α) ∩ exprpaths (β)

(16)

In a disjunctive expression α ∨ β, the probability of finding a document in C

that matches either α or β is calculated as the sum of the probabilities of finding

a document that matches each expression independently, minus the probability of

finding a document that matches both expressions. This calculation assumes that α

and β are not mutually exclusive as show in Equations 17 and 18.
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drf(dpC , α ∨ β) = drf(dpC , α) + drf(dpC , β)− drf(dpC , α ∧ β) (17)

tdfa(dpC , α ∨ β, s) =



tdfa(dpC , α, s) if s ∈ exprpaths (α)− exprpaths (β)

tdfa(dpC , β, s) if s ∈ exprpaths (β)− exprpaths (α)

tdfa(dpC , α, s) + tdfa(dpC , β, s)

−tdfa(dpC , α ∧ β, s)
if s ∈ exprpaths (α) ∩ exprpaths (β)

(18)

Estimating counters of σφ(dpC) is a two-step process:

Step 1 estimate the number of documents kept after a select, given by Equation 19.

Card(σφ(dpC), ϵ) =
⌊
Card(dpC, ϵ)× drf(dpC, φ)

⌋
(19)

When φ belongs to the simple expression kind, Equation 19 can be transformed

into a more descriptive form given by Equation 20.

Card(σφ(dpC), ϵ) =



 1
Card(dpC , ϵ) ×

∑
b∈B

cb(dpC , p)

×
∑
b∈B

cb(dpC , q)

 φ = pθq

⌊
ct(dpC , p)

⌋
φ = pθd⌊

Card(dpC , p)
⌋

φ = ∃p
(20)

Step 2 estimate the counters of paths in σφ(dpC). Let s be a path such that

s
r∽ σφ(dpC), then the counter of s for any type a ∈ T is given by Equation 21.

ca(σφ(dpC), s) =
⌈
Card(σφ(dpC), ϵ)× tdfa(dpC, φ, s)

⌋
(21)

Example 3.1 (Path-Path comparison using an operator defined for a single type).

Assume the data pilot dpC = {"a","b","d","e"} with counters:
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• cint(dpC, "a") = 25

• cstr(dpC, "a") = 15

• cint(dpC, "d") = 5

• cstr(dpC, "d") = 10

• cint(dpC, "b") = 30

• cstr(dpC, "b") = 0

• cint(dpC, "e") = 6

• cstr(dpC, "e") = 8

Let θ be a comparison operator defined in type int only. Then, the counters for

data pilot dpC′ = σaθb(dpC) are computed as follows:

Card(dpC′
, ϵ) =

⌊ 1
40 × 25× 30

⌋
= 18

Counters of paths directly involved in the condition:

• cint(dpC
′
, "a") =

⌈
18× 25

25

⌋
= 18

• cstr(dpC
′
, "a") = 0

• cint(dpC
′
, "b") =

⌈
18× 30

30

⌋
= 18

• cstr(dpC
′
, "b") = 0

Other counters:

• cint(dpC
′
, "d") =

⌈
18× 5

40

⌋
= 2

• cstr(dpC
′
, "d") =

⌈
18× 10

40

⌋
= 5

• cint(dpC
′
, "e") =

⌈
18× 6

40

⌋
= 3

• cstr(dpC
′
, "e") =

⌈
18× 8

40

⌋
= 4

Example 3.2 (Path-Path comparison using an operator defined for multiple types).

Assume the same initial data pilot and counters from Example 3.1. Let α be a

comparison operator defined for types int and str.Then, the counters for a data pilot

dpC
′ = σdαe(dpC) are computed as follows:

Card(ϵ, dpC′) =
⌊ 1

40 × (5 + 10)× (6 + 8)
⌋

= 5

Counters of paths directly involved in the condition:

• cint(dpC, "d") =
⌈
5× 5

5+10

⌋
= 2

• cstr(dpC, "d") =
⌈
5× 10

5+10

⌋
= 3

• cint(dpC, "e") =
⌈
5× 6

6+8

⌋
= 2

• cstr(dpC, "e") =
⌈
5× 8

6+8

⌋
= 3

165



Other counters:

• cint(dpC, "a") =
⌈
5× 25

40

⌋
= 3

• cstr(dpC, "a") =
⌈
5× 15

40

⌋
= 2

• cint(dpC, "b") =
⌈
5× 30

40

⌋
= 4

• cstr(dpC, "b") =
⌈
5× 0

40

⌋
= 0

Properties

Property 3.1 (Commutativity of select). Let φ and Ψ be select expressions. The

composition of two selects over a data pilot is commutative:

σφ
(
σΨ (dpC)

)
= σΨ

(
σφ(dpC)

)

Example 3.3 (Commutativity of select). Assume the same initial data pilot and

counters from Example 3.1. Let θ and α be comparison operators such that θ is

defined for type int only and α for types int and str. The counters of data pilots

σdαe
(
σaθb(dpC)

)
and σaθb

(
σdαe(dpC)

)
are computed as follows:

For dpC′ = σdαe
(
σaθb(dpC)

)
, Example 3.1 shows how the counters change after

σaθb(dpC). Using such information as a starting point, the new counters of the entire

algebraic expressions are:

Card(ϵ, dpC′) =
⌊ 1

18 × (2 + 5)× (3 + 4)
⌋

= 2

Counters of paths directly involved in the condition:

• cint(dpC, "d") =
⌈
2× 2

2+5

⌋
= 1

• cstr(dpC, "d") = ⌈2× (5/(2 + 5))⌋ = 1

• cint(dpC, "e") =
⌈
2× 3

3+4

⌋
= 1

• cstr(dpC, "e") =
⌈
2× 4

3+4

⌋
= 1

Other counters:
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• cint(dpC, "a") =
⌈
2× 18

18

⌋
= 2

• cstr(dpC, "a") =
⌈
2× 0

18

⌋
= 0

• cint(dpC, "b") =
⌈
2× 18

18

⌋
= 2

• cstr(dpC, "b") =
⌈
2× 0

18

⌋
= 0

For dpC′ = σaθb
(
σdαe(dpC)

)
, Example 3.2 shows how the counters change after

σdαe(dpC). Using such information as a starting point, the new counters of the entire

algebraic expressions are:

Card(ϵ, dpC′) =
⌊1

5 × 3× 4
⌋

= 2

Counters of paths directly involved in the condition:

• cint(dpC, "a") =
⌈
2× 3

3

⌋
= 2

• cstr(dpC, "a") = 0

• cint(dpC, "b") =
⌈
2× 4

4

⌋
= 2

• cstr(dpC, "b") = 0

Other counters:

• cint(dpC, "d") =
⌈
2× 2

5

⌋
= 1

• cstr(dpC, "d") =
⌈
2× 3

5

⌋
= 1

• cint(dpC, "e") =
⌈
2× 2

5

⌋
= 1

• cstr(dpC, "e") =
⌈
2× 3

5

⌋
= 1

Property 3.2 (select is conjuction collapsible). Let φ and Ψ be select expressions,

then

σφ
(
σΨ (dpC)

)
= σΨ∧φ(dpC)

Example 3.4 (select is conjuction collapsible). Assume the same initial data pilot

and counters from Example 3.1. Let θ and α be comparison operators such that

θ is defined for type int only and α for types int and str. Consider the equations:

(1) σdαe
(
σaθb(dpC)

)
, presented in Example 3.3, and (2) σdαe∧aθb(dpC) obtained after

applying Property 3.2 to (1). The counters for (2) are computed as follows:

Card(ϵ, dpC′) =
⌊ 1

40 × 25× 30× (5 + 10)× (6 + 8)
⌋

= 2
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Counters of paths directly involved in condition dαe:

• cint(dpC, "d") =
⌈
2× 5

15

⌋
= 1

• cstr(dpC, "d") =
⌈
2× 10

15

⌋
= 1

• cint(dpC, "e") =
⌈
2× 6

14

⌋
= 1

• cstr(dpC, "e") =
⌈
2× 8

14

⌋
= 1

Counters of paths directly involved in condition aθb:

• cint(dpC, "a") =
⌈
2× 25

25

⌋
= 2

• cstr(dpC, "a") = 0

• cint(dpC, "b") =
⌈
2× 30

30

⌋
= 2

• cstr(dpC, "b") = 0

Projection

Structural estimation

For two arbitrary documents d1 and d2 in C can have totally different projection

idempotent sets given the schemaless nature of C. The union of all these sets makes up

the leaves of the data pilot of πP (C), which ensures the forth property is maintained.

For a data pilot, this means that any leaf in dpπP (C) is part of at least one projection

idempotent set of documents in C and, by definition, has a prefix in P . Therefore,

removing any path q ∈ Lf(dpC) with no prefix in P—which is precisely what function

branch does—captures the structural behavior of a projection over the data.

Let K = {p | ∀p ∈ P ∧ p r∽ dpC}. That is, the set of path expressions in P that

exist in dpC. Then,

πP (dpC) =
⋃
p∈K

branch
(
dpC, p

)
and π⊘P (dpC) =

⋃
p∈K

branch
(
dpC, p

)

When projecting array elements, all array indexes are seen as ⋆ from a Data Pilot

perspective. For instance, the result of π"b"·0(K) in Example 2.1 is estimated by

π"b"·⋆(dpK). Therefore, the estimations of πs·x(C) for any path s realized in dpC and

x ∈ N are indistinguishable from one another.
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Cardinality estimation

Counters remain the same for paths kept by πP (dpC). Note that there could be

documents in C whose projection idempotent set with respect to P is empty, in

which case such documents become empty (i.e. ⦃⦄) after πP (dpC). As a consequence,

Card(πP (dpC), ϵ) > Card(πP (dpC), q) for any path q other than ϵ in N
(
πP (dpC)

)
,

and Card(πP (dpC), ϵ) = Card(dpC, ϵ). In contrast, for a non-preserving projection,

Card(π⊘P (dpC), ϵ) = max
q∈N(dpC)∩P

Card(dpC, q).

Cartesian product

Structural estimation

Let dpA and dpB be data pilots of A and B respectively (note this implies that for

any path p in dpA and any path q in dpB, p1 ̸= q1, by definition of A and B). Then,

dpA × dpB = dpA ∪ dpB

Cardinality estimation

Let dpC be data pilots such that dpC = dpA × dpB. Then, the number of documents

in dpC is estimated through Equation 22 and the number of documents where a path

p ∈ dpC is of type t ∈ T is given by Equation 23.

Card(dpC, ϵ) = Card(dpA, ϵ)× Card(dpB, ϵ) (22)

ct(dpC, p) =


ct(dpA, p)× Card(dpB, ϵ) if p r∽ dpA

ct(dpB, p)× Card(dpA, ϵ) if p r∽ dpB
(23)

Example 3.5 (Cardinality estimation of cartesian product). Assume data pilots dpA

and dpB with the cardinalities and counters shown in Table 9. Let dpC = dpA × dpB.

The counters of dpC are computed as follows:

Card(dpC, ϵ) = Card(dpA, ϵ)× Card(dpB, ϵ) = 40× 15 = 600
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DataPilot Path int str obj Cardinality
dpA ϵ 0 0 40 40
dpA a 25 15 0 40
dpA b 30 0 0 30
dpB ϵ 0 0 15 15
dpB d 5 10 0 15
dpB e 6 8 0 12

Table 9. Data pilots from Example 3.5

• cint(dpC, "a") = 25× 15 = 375

• cstr(dpC, "a") = 15× 15 = 225

• cint(dpC, "b") = 30× 15 = 450

• cstr(dpC, "b") = 0

• cint(dpC, "d") = 5× 40 = 200

• cstr(dpC, "d") = 10× 40 = 400

• cint(dpC, "e") = 6× 40 = 240

• cstr(dpC, "e") = 8× 40 = 320

Inner Join

Cardinality estimation

Let A, B be collections and α be a predicate of the form pθq. The process to estimate

the cardinality of operation A ▷◁α B is explained below.

The number of all possible document merges that can occur between both collec-

tions is Card(dpA, ϵ) ∗ Card(dpB, ϵ) or, equivalently, Card(dpA × dpB, ϵ).

Suppose θ is defined for any type in some set B, then tuples are not merged if

(1) p or q are of any type in A− B, or (2) p and q are of different types. Therefore,

estimating the number of merges depends on the probability of p and q being of any

type in B over all possible merges. Assuming independence of events, this probability

is given by Equation 24.
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∑
b∈B

cb(dpA, p)× Card(dpB, ϵ)
Card(dpA, ϵ)× Card(dpB, ϵ)

×
∑
b∈B

cb(dpB, q)× Card(dpA, ϵ)
Card(dpA, ϵ)× Card(dpB, ϵ)


=
∑
b∈B

cb(dpA, p)
Card(dpA, ϵ)

×
∑
b∈B

cb(dpB, q)
Card(dpB, ϵ)


= 1
Card(dpA, ϵ)× Card(dpB, ϵ) ×

∑
b∈B

cb(dpA, p)
×

∑
b∈B

cb(dpB, q)


(24)

Lemma 3.3. Equation 24 is equivalent to drf(dpA × dpB, pθq).

Proof.

1
(Card(dpA, ϵ)× Card(dpB, ϵ))2

(∑
b∈B

cb(dpA, p)× Card(dpB, ϵ)
)(∑

b∈B

cb(dpB, q)× Card(dpA, ϵ)
)

= 1
Card(dpA × dpB, ϵ)2 ×

(∑
b∈B

cb(dpA × dpB, p)
)(∑

b∈B

cb(dpA × dpB, q)
)

= drf(dpA × dpB, pθq)

Then, the number of documents produced after a join operation is computed as

indicated in Equation 25.

Card(dpA ▷◁pθq dpB, ϵ) =

Card(dpA, ϵ)× Card(dpB, ϵ)︸ ︷︷ ︸
All possible document merges

×
∑
b∈B

cb(dpA, p)
Card(dpA, ϵ) ×

∑
b∈B

cb(dpB, q)
Card(dpB, ϵ)︸ ︷︷ ︸

Probability computed in Equation 24


=
⌊

Card(dpA, ϵ)× Card(dpB, ϵ)
Card(dpA, ϵ)× Card(dpB, ϵ) ×

(∑
b∈B

cb(dpA, p)
)
×

(∑
b∈B

cb(dpB, q)
)⌋

=
(∑

b∈B

cb(dpA, p)
)
×

(∑
b∈B

cb(dpB, q)
)

(25)

Alternatively, Equation 25 can also be written as Card(σpθq(dpA× dpB), ϵ) as shown

in Lemma 3.4.

Lemma 3.4. Card(dpA ▷◁pθq dpB, ϵ) = Card(σpθq(dpA × dpB), ϵ)
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Proof.

Card(dpA ▷◁pθq dpB, ϵ) =
⌊

Card(dpA, ϵ)× Card(dpB, ϵ)×
∑
b∈B

cb(dpA, p)
Card(dpA, ϵ) ×

∑
b∈B

cb(dpB, q)
Card(dpB, ϵ)

⌋

=
⌊
Card(dpA × dpB, ϵ)× drf(dpA × dpB, pθq)

⌋
= Card(σpθq(dpA × dpB), ϵ)

To compute the new counters after a join, first consider all possible merges of

documents. Out of the resulting Card(dpA×dpB, ϵ) documents, the operation on the

data only keeps those where p and q are equal. For a data pilot, this translates to

the likelihood of p and q having the same type given the occurrences of each path

segregated by type.

Let s be an arbitrary path in dpA ▷◁pθq dpB, then if s is either p or q, the percentage

of documents where s is of type t ∈ B is

ct(dpA × dpB, p)∑
b∈B cb(dpA × dpB, p)

= ct(dpA, p)× Card(dpB, ϵ)∑
b∈B cb(dpA, p)× Card(dpB, ϵ)

= ct(dpA, p)∑
b∈B cb(dpA, p)

If s is a path other than p and q, the percentage of document retention per type is

ct(dpA × dpB, q)∑
b∈B cb(dpA × dpB, q)

= ct(dpB, q)× Card(dpA, ϵ)∑
b∈B cb(dpB, q)× Card(dpA, ϵ)

= ct(dpB, q)∑
b∈B cb(dpB, q)

If s has some type in A − B, then document retention is 0 because θ is not defined

for such type.

Altogether, the percentage of document retention for a path s with arbitrary type

a ∈ T is equivalent to tdfa(dpA × dpB, pθq, s) as shown below:

tdfa(dpA × dpB, pθq, s) =



0 if a /∈ B
ca(dpA × dpB, s)∑
b∈B cb(dpA × dpB, s)

if s ∈ exprpaths (pθq)

ca(dpA × dpB, s)
Card(dpA × dpB, ϵ) if s /∈ exprpaths (pθq)

(26)

Equation 26 can be written in simpler terms by eliminating its dependence on

exprpaths, which results in Equation 27.
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tdfa(dpA × dpB, pθq, s) =



0 if a /∈ B
ct(dpA, p)∑
b∈B cb(dpA, p)

if s = p

ct(dpB, q)∑
b∈B cb(dpB, q)

if s = q

ca(dpA × dpB, s)
Card(dpA × dpB, ϵ) otherwise

(27)

This type density factor is used to estimate counters as indicated by Equation 28.

ca(dpA ▷◁pθq dpB, s) =
⌈
Card(dpA ▷◁pθq dpB, ϵ)× tdfa(dpA × dpB, pθq, s)

⌋
(28)

Lemma 3.5. For any path s in either dpA or dpB, ca(dpA ▷◁pθq dpB, s) = ca(σpθq(dpA×

dpB), s).

Proof.

ca(dpA ▷◁pθq dpB, s) =
⌈
Card(dpA ▷◁pθq dpB, ϵ)× tdfa(dpA × dpB, pθq, s)

⌋
=
⌈
Card(σpθq(dpA × dpB), ϵ)× tdfa(dpA × dpB, pθq, s)

⌋
(by Lemma 3.4)

= ca(σpθq(dpA × dpB), s) (by Equation 21)

Example 3.6. Assume the same data pilots dpA and dpB from Example 3.5. Fur-

ther, let θ be a comparison operator defined for type int and p and q paths such that

p
r∽ dpA and p r∽ dpB. The counters for data pilots σaθd(dpA×dpB) and dpA ▷◁aθd dpB

are computed as follows:

For dpC = σaθd(dpA × dpB), Example 3.5 shows how the counters change after

dpA×dpB. Using such information as a starting point, the new counters of the entire

algebraic expressions are:

Card(dpC, ϵ) =
⌊ 1

600 × 375× 200
⌋

= 125
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Counters of paths directly involved in the condition:

• cint(dpC, "a") =
⌈
125× 375

375

⌋
= 125

• cstr(dpC, "a") = 0

• cint(dpC, "d") =
⌈
125× 200

200

⌋
= 125

• cstr(dpC, "d") = 0

Other counters:

• cint(dpC, "b") =
⌈
125× 450

600

⌋
= 94

• cstr(dpC, "b") = 0

• cint(dpC, "e") =
⌈
125× 240

600

⌋
= 50

• cstr(dpC, "e") =
⌈
125× 320

600

⌋
= 67

For dpC = dpA ▷◁aθd dp
B, the new counters are:

Card(dpC, ϵ) = 25× 5 = 125

Counters of paths directly involved in the join condition:

• cint(dpC, "a") =
⌈
125× 25

25

⌋
= 125

• cstr(dpC, "a") = 0

• cint(dpC, "d") =
⌈
125× 5

5

⌋
= 125

• cstr(dpC, "d") = 0

Other counters:

• cint(dpC, "b") =
⌈
125× 30×15

40×15

⌋
= 94

• cstr(dpC, "b") = 0

• cint(dpC, "e") =
⌈
125× 6×40

40×15

⌋
= 50

• cstr(dpC, "e") =
⌈
125× 8×40

40×15

⌋
= 67

Unnest

Structural estimation

Definition 3.1 (non-preserving unnest). Denoted as µ⊘p (dpC), a non-preserving unnest

of dpC produces a new data pilot where the subtree rooted at p is equal to the subtree

from dpC rooted at p.⋆. Formally,
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µ⊘p (dpC) = replace
(
dpC, subtree

(
dpC, p.⋆

)
, p
)

(29)

"name" "level"

⋆

"name"
"type"

"name"
"phone"

"hobbies"

"name" "level"

"name"
"phone"

"hobbies"

Step 1: Select subtree rooted at p.⋆ (blue) Step 2: Produce new tree where p
resolves to subtree selected in step 1

xx

Figure 39. Example of a non-preserving unnest: µ⊘hobbies(dpC)

Definition 3.2 (preserving unnest). Denoted as µp(dpC), a preserving unnest of dpC

produces a new data pilot where the subtree rooted at p is the union of the subtrees

from dpC rooted at non-array children of p and the subtrees from dpC rooted at

children of p.⋆. Formally,

µp
(
dpC

)
= replace

(
dpC, subtree

(
dpC, p · ⋆

)
∪(

subtree
(
dpC, p

)
− branch

(
subtree

(
dpC, p

)
, ⋆
))
, p
)

cardinality estimation

To understand how the unnest operation affects counters, first consider how the

deconstruction process affects arrays. Given a collection C, suppose a document

doc ∈ C with a path p that meets all deconstruction invariants. This means that p

resolves to an array with some number x of elements. By deconstructing doc based

on p, x new documents are created such that path p resolves to an array element on

each new document. For instance, if the array in question has 2 integers and 1 string,

then 3 almost-exact copies of doc are created, except that p resolves to an integer in

two of them and a string in the remaining one.
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"name" "level"

⋆

"name"
"type"

"name"
"phone"

"hobbies" "name" "level"∪"name" "type"

=
"name"

"type"
"level"

Step 1: Select disjoint subtrees of p.⋆ (blue) and p (red) Step 2: Merge selected subtrees

Step 3: Produce new tree where p resolves to subtree from step 2

"name"
"type"

"level"

"name"
"phone"

"hobbies"

Figure 40. Example of a preserving unnest: µhobbies(dpC)

On a collection level, the number of new documents produced after deconstruc-

tion based on p is the cumulative length of the arrays that p resolves to on each

document meeting all deconstruction invariants. On dpC, this cumulative length can

be computed as Card(dpC, p.⋆). When grouping these new documents based on the

type of p, the number of documents in each group corresponds to ct(dpC, p.⋆), where

t ∈ T.

If no document in C meets all the invariants, then deconstruction based on p is

not possible. That is, if either of the following is true:

• p is not realized in dpC (Invariant 1 is false on all documents).

• p is realized in dpC, but carr(dpC, p) = 0 (Invariant 2 is false on all documents).

• p is realized in dpC, but carr(dpC, p) = ε(dpC, p) (Invariant 3 is false on all

documents).

For any such case, a non-preserving unnest removes all documents from C (i.e.

Card(µ⊘p (dpC), ϵ) = 0) and a preserving one keeps them all (i.e. Card(µp(dpC), ϵ) =

Card(dpC, ϵ)).

176



Otherwise, when at least one document in C meeets all invariants, a non-preserving

unnest creates as many new documents as the cummulative number of elements within

documents where p is an array. Therefore,

Card(µ⊘p (dpC), ϵ) = Card(dpC, p.⋆) (30)

A preserving unnest also produces Card(dpC, p.⋆) new documents, while keeping

documents where the unnest invariants are not met (i.e. an extra Card(dpC, ϵ) −

carr(dpC, p) + ε(dpC, p) documents are included in the output). Thus,

Card(µp(dpC), ϵ) = Card(dpC, p.⋆) + Card(dpC, ϵ)− carr(dpC, p) + ε(dpC, p) (31)

Since p resolves to an array element after deconstruction, then for a non-preserving

unnest, ct(µ⊘p (dpC), p) is equal to the number of array elements with type t ∈ T:

ct(µ⊘p (dpC), p) = ct(dpC, p.⋆) (32)

for a preserving unnest, the number of array elements with a given type is added to the

counters of p in dpC. In the case of arrays, however, because documents with empty

arrays are kept and the ones deconstructed removed, carr(dpC, p) must be substracted

and ε(dpC, p) added:

ct(µ⊘p (dpC), p) =


ct(dpC, p.⋆) + ε(dpC, p) if t = arr

ct(dpC, p) + ct(dpC, p.⋆) otherwise
(33)

For any path q other than p, both variations of unnest re-distribute counters for

any path q ̸= p based on the percentage of documents held on dpC:

ct(µ⊘p (dpC), q) = ct(µ⊘p (dpC), ϵ)× ct(dpC, q)
Card(dpC, ϵ) (34)

ct(µp(dpC), q) = ct(µp(dpC), ϵ)×
ct(dpC, q)

Card(dpC, ϵ) (35)

Group

Let dpC be a Data Pilot of collection C, G a set of paths to group by, l1, l2, . . . , lk labels

not in N
(
dpC

)
, q1, . . . , qk paths in N

(
dpC

)
, and f1, . . . , fk the name of aggregate
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functions. Group has the form:

Pγr1:f1(q1),r2:f2(q2),...,rk:fk(qk)(dpC)

Note that a data pilot aggregate function f in references an aggregate function in a

database system (e.g. sum), but does not operate on the data. Rather, operations

are carried out on paths and counters. That is, f reflects the structural and path

occurrence implications for a collection when using the homonymic aggregate named

f on the data.

The result of each data pilot aggregate function fi evaluated at qi dangles from

branch li in the new tree generated by the fi.

structural estimation

In each path of G, there exists at least one document in C. To ensure path com-

pleteness, the resulting Data Pilot after applying γ encompasses elements of πG(dpC).

Each triplet li, fi, qi | 1 ≤ i ≤ k is utilized to construct a tree Ti such that Lf(Ti) =

{li · s | ∀s ∈ Lf(fi(qi))}. The structure of each tree generated by an aggregate

function varies depending on the its type:

• Scalar aggregates applied to the data yield literals, essentially forming a tree

with a single node (ϵ) from a structural standpoint. Therefore, for all scalar

aggregates, a triplet li, fi, qi generates a tree Ti such that Lf(Ti) = {li}.

• Array aggregates applied to the data result in an array, often by appending

values from a path. Structurally, this entails that any array aggregate f pro-

duces a tree where at least ϵ and ⋆ are included as nodes. Thus, a triplet li, fi, qi,

with fi representing an array aggregate, generates a Ti with Lf(Ti) = {⋆} at

the very least.

The structure of the Data Pilot created by the group operator is thus given by:

Lf
(
Pγl1:f1(q1),l2:f2(q2),...,lk:fk(qk)

(
dpC

))
= Lf

(
πG
(
dpC

))
∪

⋃
1≤i≤k

Lf(Ti)
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Cardinality estimation

Suppose an arbitrary collection C is devided into n partitions. After the merging

step, the number of documents remaining is one per partition; that is, n.

Let dpC′ be the Data Pilot resulting from a group operation over dpC and ti the

return type of an aggregate function fi. Then,

• Card(dpC′
, ϵ) = n

• If fi is a scalar aggregate, cti(dpC
′
, li) = n and Card(dpC′

, li) = cti(dpC
′
, li).

• If fi is an array aggregate, carr(dpC
′
, li) = n, Card(dpC′

, li) = carr(dpC
′
, li) and

Card(dpC′
, li · ⋆) = Card(dpC, qi).

• If fi is a document aggregate, then cobj(dpC
′
, li) = n and Card(dpC′

, li) =

cobj(dpC
′
, li).

Furthermore, the counters for any path li · s where s is produced by a non-scalar fi

are dependant on how the specific fi works.

In practice, n can only be computed from the actual values in the data. To

understand how a Data Pilot estimates n, first consider the case where there is only

one path expression p in G: the biggest value n can take is Card(dpC, ϵ), when p is

present in all documents and resolves to distinct values on all of them. The smallest

value is 1, when either p is present on all documents and resolves to the same value

on all of them, or p is absent on all documents. If Card(dpC, p) < Card(dpC, ϵ) then

there is a partition with Card(dpC, ϵ)−Card(dpC, p) documents where p is undefined.

If cnull(dpC, p) > 0 then there is a partition with cnull(dpC, p) documents where p

evaluates to null. As the cummulative number of documents in these two partitions

increases relative to Card(dpC, ϵ), the number of possible partitions to estimate from

the remaining documents where p does not evaluate to null decreases. Furthermore,

without relying on the data, it is known with certainty that:
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• If cnull(dpC, p) = Card(dpC, ϵ) or Card(dpC, p) = 0, then n = 1.

• If cnull(dpC, p) = Card(dpC, p) and Card(dpC, p) < Card(dpC, ϵ), then n is ex-

actly 2 as there is one partition for documents where p is undefined and another

for documents where p evaluates to null.

• If Card(dpC, p) < Card(dpC, ϵ) and Card(dpC, p)− cnull(dpC, p) > 0 then n is at

least 3.

Likewise, these three facts extend to the case when there are multiple path expres-

sions in G. Each path expression can either be undefined, evaluate to null or a value

other than null. Let j be the number of paths in G, then there are 3j permutations

of these three possibilities. For instance, if G = {p1, p2} these permutations are: (un-

defined, undefined), (null, null), (nut-null, not-null), (undefined, not-null), (not-null,

undefined), (null, not-null), (not-null, null), (undefined, null), and (null, undefined).

If all path expressions are null or undefined within all documents, then n = 1

. In a Data Pilot, this happens when cnull(dpC, p) = Card(dpC, p) for all p ∈ P or,

alternatively, Card(dpC, p) = 0 for all p ∈ G. For all other 3j − 2j permutations,

excluding those containing only null and undefined paths, a Data Pilot is unable to

guess the exact values that coincide within documents and can thus only assume the

worst case of:

min
Card(dpC, ϵ), 2 +

∑
p∈G

Card(dpC, p)


To further investigate the impact of null and undefined paths on the number of

groups, the following experiment is implemented:

Experimental Setup Generate a table with varying numbers of documents and

paths per document. Each cell in the table represents a path evaluation and can

have one of three string values: "value", "undefined", or "null". "null" indicates that

the path evaluates to null, "undefined" indicates the path is not present, and "value"
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indicates a distinct non-null value. The distribution of null, value, and undefined

paths is controlled by the experimental variable pvals.

Experimental Variables

• ndocs (Number of documents): Determines the number of simulated doc-

uments (table rows).

• ppd (Paths per document): Determines the number of simulated paths per

document (table columns).

• npgb (Number of paths to group by): Specifies the number of random

paths chosen for grouping.

• nruns: Specifies the number of experimental runs.

• pvals: Represents the distribution probabilities as percentages, in the format

pvals=<percent of nulls>,<percent of values>,<percent of undefined>.

Experiment Steps

1. Identify rows where none of the selected paths for grouping have a non-null

value (i.e. the string "value").

2. Calculate the number of groups and documents per group based on the selected

rows.

3. Determine the total number of documents in the selected rows from step 1.

4. Subtract the value obtained in step 3 from ndocs.

5. Add the number of groups obtained in step 2 to the value obtained in step 4.

The value obtained in step 4 represents the number of groups where at least one

of the paths for grouping resolves to a non-null value.
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Figure 41. Impact of null and undefined paths on the number of groups

Experiment Results Figure 41 illustrates the number of groups obtained after

grouping by 2, 3, 4, and 5 paths in 100 iterations. The X-axis is labeled based on the

distribution of null, undefined, and value paths. The label “N” represents the normal

distribution with pvals of 0.1, 0.8, and 0.1 for undefined, value, and null respectively.

Similarly, the label “U” corresponds to the uniform distribution with a pval of 1/3

for all three types. The number of characters in a X-label indicates the number of

paths to group by and each character the distribution type along with the minimum,

maximum, and average number of groups obtained from the 100 runs.

The analysis reveals that when at least one path follows a normal distribution,
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there is minimal reduction in the number of groups.

Card(dpC
′
, ϵ) =


max
p∈G

(Card(dpC , p)− cnull(dpC , p)) if maxp∈G(Card(dpC ,p)−cnull(dpC ,p))
Card(dpC ,ϵ) < 1

3

Card(dpC , ϵ) otherwise

group families

The cost to compute all possible groups with respect to types in A is considerably

high. To ease such computation and provide a better upper bound, the combinations

of paths and types forming groups are derived from the number of ways a group can

be formed. This concept is called group families, an example of which is provided in

Example 3.7.

Example 3.7. Suppose G has 3 paths and the database system has 3 atomic types:

A = {int, str, date}, then there are 10 different ways to form groups:

Type GF1 GF2 GF3 GF4 GF5 GF6 GF7 GF8 GF9 GF10

int 3 0 0 2 2 1 0 0 1 1
str 0 3 0 1 0 2 2 1 0 1

date 0 0 3 0 1 0 1 2 2 1

Table 10. Number of paths with a specific type in a group family

Group families are rationalized through a generating function and its properties.

First, consider that any path p ∈ G can have at most 1 type on each group; this is

rather obvious, but it is important when defining the function’s coefficients. A group

can have all paths be the same type or a combination of types and paths as seen

in Example 3.7, which poses the question “Given a set of paths to group by, how

many group families are there?”. Consider the same setup as in Example 3.7, the

information |A| = 3 and |G| = 3 can be encoded in the following polynomial:

(x0 + x1 + x2 + x3)︸ ︷︷ ︸
int

× (x0 + x1 + x2 + x3)︸ ︷︷ ︸
str

× (x0 + x1 + x2 + x3)︸ ︷︷ ︸
date
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where the nature of x is immaterial, and the exponents read as follows: 0 means a

group family where no paths have type t, 1 means a group family where 1 path has

type t, etc. For instance, in the first term of the polynomial (the set of parentheses

marked as int), x0 encodes the information that a group family may have 0 paths be

of type int, x1 that it may have 1 path of type int, and so on. When generalized to

arbitrary G and A, the expression becomes:

(x0 + x1 + x2 + x3 + · · ·+ x|G|)︸ ︷︷ ︸
t1

× (x0 + x1 + x2 + x3 + · · ·+ x|G|)︸ ︷︷ ︸
t2

× · · ·×

(x0 + x1 + x2 + x3 + · · ·+ x|G|)︸ ︷︷ ︸
t|A|

=
( |G|∑
k=0

xk
)|A| (36)

After pluggin in the values |G| = 3 and |A| = 3, the new expression expands to the

polynomial:

x9 + 3x8 + 6x7 + 10x6 + 12x5 + 12x4 + 10x3 + 6x2 + 3x+ 1

where the relevant terms are those with exponent equal to or less than |G| (more

about this later). They read as:

• 10x3: “Given 3 paths to group by, each with an arbitrary type, there

are 10 group families”; which is exactly the number group families shown in

Example 3.7.

• 6x2: “Given 3 paths to group by, where 2 of them have the same type,

there are 6 group families”; these correspond to GF4, GF5, GF6, GF7, GF8,

and GF9.

• 3x: “Given 3 paths to group by, where all of them have the same type,

there are 3 group families”; these correspond to GF1, GF2, GF3.

• 1 = x0: “Given 3 paths to group by, where all of them have different type,

there is 1 group family”; this is GF10.
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Any term of the form cxn, where c is a coefficient and n > |P | violates the initial

conditions set in the problem.

From an implementation perspective, the number of types in a system are fixed,

thus computing the polynomial only depends on |G| in practice. When designing an

algorithm to determine the number of group families, the polynomial coefficients can

be computed ahead of time and fixed in the code. Aditionally, newer terms in the

polynomial can be derived from previous ones as seen in Example 3.8.

Example 3.8. Consider |A| = 3, 4, |G| = 0, 1, 2, . . . , 5, and let C denote the table

shown in Table 11, where each cell Ci,j is a coefficient from the expanded polynomial

produced by the generating function evaluated in particular choosings of |G|.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1
1 1 3 3 1
2 1 3 6 7 6 3 1
3 1 3 6 10 12 12 10 6 3 1
4 1 3 6 10 15 18 19 18 15 10 6 3 1
5 1 3 6 10 15 21 25 27 27 25 21 15 10 6 3 1

(a) |A| = 3, |G| = 0, 1, 2, . . . , 5
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1
1 1 4 6 4 1
2 1 4 10 16 19 16 10 4 1
3 1 4 10 20 31 40 44 40 31 20 10 4 1
4 1 4 10 20 35 52 68 80 85 80 68 52 35 20 10 4 1

(b) |A| = 4, |G| = 0, 1, 2, . . . , 4

Table 11. Expansion of generating function with |A| = 3, 4 and |G| = 0, 1, 2, . . . , 5
encoded in a tabular format. Rows are values of |G|, columns are exponents, and any
cell at row i and column j is a coefficient. Red cells denote the total number of group
families per number of group attributes.

It can be seen, for instance, that cells (3, 0), (3, 1), (3, 2), and (3, 3) in Table 11a

correspond to terms 1, 3x, 6x2, and 10x3 in Example 3.7. Additionally, when |G| = 1,
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|G| = 1
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|A| = 0
|A| = 1
|A| = 2
|A| = 3
|A| = 4
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1 1 1
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Figure 42. Rows of Pascal’s triangle computed from the generating function’s ex-
pansion after pluggin in |G| = 1, 2, and |A| = 0, 1, 3, 4.

the rows in both tables correspond to rows of Pascal’s triangle. For instance, row 1 of

Table 11a makes up the Pascal’s triangle row corresponding to |A| = 3 in Figure 42a.

When |G| > 1, a variation of Pascal’s triangle is constructed; an example with

|G| = 2 is shown in Figure 42b.

A well-known property of Pascal’s triangle is that each number is the sum of the

two numbers above. This is true for |G| = 1, but for |G| = 2 each number is the sum

of the 3 numbers above, except for the numbers next to the first and last number of

the row.

Intersection

Unlike other DataPilot operators that compute structural and cardinality estima-

tions independently, the intersection’s structural and cardinality estimation are in-

terdependent. While a straightforward definition might entail N(dpC1 ∩ dpC2) =

N(dpC1) ∩ N(dpC2), consider a scenario where a path p exists in both DataPilots.

If one DataPilot records only non-zero counters for type t and the other for a differ-

ent type t′, p should not be included in the result as it points to values with different

types. Example 3.9 elucidates this, along with insights into computing the resulting

counters and cardinalities post-intersection.
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Path obj arr int str Cardinality
ϵ 25 0 0 0 25
a 0 0 25 0 25
b 0 0 0 6 6
d 0 0 3 1 4

(a) dpC1

Path obj arr int str Cardinality
ϵ 15 0 0 0 15
a 0 0 10 5 15
b 0 0 4 0 4
e 0 0 4 2 6

(b) dpC2

Table 12. DataPilots from Example 3.9

Example 3.9. Consider DataPilots dpC1 and dpC2 with the counters and cardinalities

in Tables 12a and 12b. While paths "a" and "b" are present in both collections,

the intersection operation considers paths and their corresponding values. Thus, no

document with path "b" will belong to C1 ∩ C2 as the non-zero counters for path "b"

in dpC1 and dpC2 correspond to types str and int, respectively. For path "a", the

non-zero counters for type int suggest a potential min (25, 10) = 10 documents in

the intersection. However, considering path "e" present in most documents of C2 but

absent in C1, it is apparent that at least Card(dpC2 , e) = 6 documents from C2 will

not be in the intersection. Thus, only Card(dpC2 , ϵ) − Card(dpC2 , e) = 15 − 6 =

9 documents from C2 can potentially be in the intersection. Following a similar

logic, out of the 25 documents in C1, only Card(dpC1 , ϵ) − Card(dpC1 , d) = 25 − 4 =

21 can potentially be in the intersection. Thus, an approximation of the number

of documents with path "a" pointing to a value of type int in the intersection is

min (25, 10, 9, 21) = 9.

Let D = N(dpC1)△N(dpC2), where △ denotes symmetric difference, be the set

of paths outside the intersection (from a structural point of view). The expression

max
q∈N(dpC1 )∩D

(
Card(N

(
dpC1

)
, q)
)

provides the estimated number of documents in dpC1

where there is at least one path outside the intersection. It is essential to note that

this expression does not capture co-occurrences in the actual data, and therefore, it

may not accurately detect cases where the intersection is empty. For instance, when
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all documents in a collection have at least one path from D; refer to Example 3.10

for clarification.

Example 3.10. Consider the following collections:

Collection C1:

{a:1,b:2,d:4}

{a:2,d:3}

{a:3,f:5}

Collection C2:

{a:1,b:2}

{a:2,e:3}

{a:3}

When computing the intersection between C1 and C2, it is evident that there are no

common documents, resulting in an empty intersection. Furthermore, all 3 documents

in C1 have one path outside of the intersection, but from the DataPilot perspective

this is only the case for 2 documents: path "d" is present in 2 documents and path

"f" in 1, thus the number of paths from C1 outside of the intersection is estimated to

be max (2, 1) = 2. For Collection C2, only path "e" is outside the intersection. Thus,

the number of documents from C2 outside of the intersection is estimated to be 1.

Consequently, the estimated integer counter for paths "a" and "b" would be 1.

The expression NumNED
(
dpC1

)
−
(

max
q∈N(dpC1 )∩D

(
Card(N(dpC1), q)

))
estimates the

number of documents in C1 where there is no path outside of the intersection, and

similarly, NumNED
(
dpC2

)
−
(

max
q∈N(dpC2 )∩D

(
Card(N(dpC2), q)

))
estimates the number

of documents in C2 where there is no path outside of the intersection. Consequently,

the counters of the DataPilot dpC1 ∩ dpC2 are computed through the following steps:

1. Compute the structural estimation of the intersection between DataPilots as shown

in Equation 37.

N(dpC1 ∩ dpC2) = N(dpC1) ∩N(dpC2) (37)
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2. Use Equation 38 to compute the counters of all paths in N(dpC1 ∩ dpC2)− {ϵ}.

ct
(
dpC1 ∩ dpC2 , p

)
=


cnon-array
t

(
dpC1 ∩ dpC2 , p

)
if ⋆ /∈ p

carray
t

(
dpC1 ∩ dpC2 , p

)
otherwise

(38)

cnon-array
t

(
dpC1 ∩ dpC2 , p

)
= min

(
 ct(dpC1 , p)
Card(dpC1 , p) ∗

NumNED
(
dpC1

)
− max

q∈N(dpC1)∩D

(
Card(dpC1 , q)

) , ct(dpC2 , p)
Card(dpC2 , p) ∗

NumNED
(
dpC2

)
− max

q∈N(dpC2)∩D

(
Card(dpC2 , q)

))
(39)

carray
t

(
dpC1 ∩ dpC2 , p

)
= min

(
ct
(
dpC1 , p

)
, ct

(
dpC2 , p

))
(40)

3. Compute the cardinality of the DataPilot using Equation 41.

Card(dpC1 ∩ dpC2 , ϵ) = NumNED
(
dpC1 ∩ dpC2

)
+

min
(
NumED

(
dpC1

)
,NumED

(
dpC2

)) (41)

Difference

The behavior of the Difference operator has a straightforward structural definition:

N
(
dpC1 − dpC2

)
= N

(
dpC1

)
−N

(
dpC2

)
.

Cardinality estimation follows similar steps to those of the intersection’s cardinal-

ity estimation.

1. Compute the estructural estimation of the union between Data Pilots using the

formula: N
(
dpC1 − dpC2

)
= N

(
dpC1

)
−N

(
dpC2

)
.

2. Use Equation 42 to compute the counters of all paths in N
(
dpC1 − dpC2

)
−{ϵ}.

ct

(
dpC1 − dpC2 , p

)
= max

(
0, ct

(
dpC1

)
− ct

(
dpC2

)
,

⌈
ct

(
dpC1

)
Card(dpC1 , ϵ) ∗ max

q∈N(dpC1 )−N(dpC2 )

(
Card(dpC1 , q)

)⌉
) (42)
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3. Compute the cardinality of the Data Pilot using Equation 43.

Card(dpC1 − dpC2 , ϵ) = NumNED
(
dpC1 − dpC2

)
+

max
(
NumED

(
dpC1

)
− NumED

(
dpC2

)
, 0
) (43)

Union

The behavior of the union operator has a straightforward structural definition:

N
(
dpC1 ∪ dpC2

)
= N

(
dpC1

)
∪N

(
dpC2

)
.

Cardinality estimation follows similar steps to those of the intersection’s cardi-

nality estimation. Updating counters is, however, simpler as the usual definition of

union of multisets can be used. The steps are as follows:

1. Compute the estructural estimation of the union between Data Pilots using the

formula: N
(
dpC1 ∪ dpC2

)
= N

(
dpC1

)
∪N

(
dpC2

)
.

2. Use Equation 44 to compute the counters of all paths in N
(
dpC1 ∪ dpC2

)
−{ϵ}.

ct
(
dpC1 ∪ dpC2

)
= max

(
ct
(
dpC1

)
, ct

(
dpC2

))
(44)

3. Compute the cardinality of the Data Pilot using Equation 45.

Card(dpC1 ∪ dpC2 , ϵ) = NumNED
(
dpC1 ∪ dpC2

)
+

max
(
NumED

(
dpC1

)
,NumED

(
dpC2

)) (45)

Join variants

Similarly to the algebra of documents, join variants are derived operators defined as

follows:

dpC1 ⋉α dp
C2 = π⊘

dpC1

(
dpC1 ▷◁α dp

C2
)

(Left semijoin)

dpC1⋉αdp
C2 = dpC1 −

(
dpC1 ⋉ dpC2

)
(Left antijoin)

dpC1 ▷◁α dp
C2 =

(
dpC1 ▷◁α dp

C2
)
∪
(
dpC1⋉αdp

C2
)

(Left outer join)
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Lookup

Similarly to the algebra of documents, lookup is a derived operator defined as follows:

dpC1 ▷̂◁αl dp
C2 = dpC1γl:arragg(dpC2)

(
dpC1 ▷◁α dp

C2
)

4 Data Pilot algebra properties

This section explores properties of the operators from the Data Pilot algebra that

intend to mimic the behavior of properties from the Document algebra. However,

certain properties from the document algebra that depend on the data itself do not

have a parallel in the algebra of Data Pilots. An example of this is Lemma 3.22.

Others like Lemma 3.21, although not explicitely mentioned in the Data Pilot algebra,

still apply.

Lemma 4.1 alludes to Lemma 3.9. Lemma 4.2 alludes to Lemma 3.10. Lemma 4.3

alludes to Lemma 3.11. Lemma 4.4 alludes to Lemma 3.12. Lemma 4.6 alludes to

Lemma 3.14. Lemma 4.7 alludes to Lemma 3.15. Lemma 4.8 alludes to Lemma 3.16.

Lemma 4.9 alludes to Lemma 3.17. Lemma 4.10 alludes to Lemma 3.18. Lemma 4.11

alludes to Lemma 3.20. Lemma 4.12 alludes to Lemma 3.25. Lemma 4.13 al-

ludes to Lemma 3.26. Lemma 4.14 alludes to Lemma 3.27. Lemma 4.15 alludes

to Lemma 3.28. Lemma 4.16 alludes to Lemma 3.29. Lemma 4.17 alludes to

Lemma 3.30. Lemma 4.18 alludes to Lemma 3.31. Lemma 4.19 alludes to Lemma 3.33.

Lemma 4.20 alludes to Lemma 3.34. Lemma 4.21 alludes to Lemma 3.35. Lemma 4.22

alludes to Lemma 3.36. Lemma 4.23 alludes to Lemma 3.37. Lemma 4.24 al-

ludes to Lemma 3.38. Lemma 4.25 alludes to Lemma 3.39. Lemma 4.26 alludes

to Lemma 3.40.

Lemma 4.1 (Projection simplification). Let C be a collection and P and Q be sets

of paths. If P ⊆ Q, then π⊘P (π⊘Q(dpC)) = π⊘P (dpC).
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Lemma 4.2 (Selection makes projection non-preserving on absent path rejection).

Let P be a set of paths and α a selection predicate. If α rejects absent paths in P ,

then σα(πP (dpC)) = σα(π⊘P (dpC)).

Lemma 4.3 (Unnest makes projection non-preserving based on prefixes). Let P be

a set of paths and q be a path other than ϵ. If there is at at least one path p ∈ P for

which q ⪯ p, then µ⊘q (πP (dpC)) = µ⊘p (π⊘P (dpC)).

Lemma 4.4 (Non-preserving projection dominates preseving projection). Let P and

Q be sets of paths. If Q ⊆· P , then π⊘Q(πP (dpC)) = π⊘Q(π⊘P (dpC)).

Lemma 4.5 (Projection push-down on unwind). Let p and x be paths. Then

π⊘p·x(µ⊘p (dpC)) = µ⊘p (π⊘p·∗·x(dpC))

Lemma 4.6 (Projection push-down on join). Let P be a set of paths. If there exists

a subset Q of N
(
dpA

)
such that Q ⊆ P then

πP (dpA ▷◁α dpB) = πP (πQ∪exprpaths(α)(dpA) ▷◁α dpB)

Likewise, if Q ⊆ N
(
dpB

)
and Q ⊆ P , then

πP (dpA ▷◁α dpB) = πP (dpA ▷◁α πQ∪exprpaths(α)(dpB))

Lemma 4.7 (Projection is distributive over join). Let dpC1 , dpC2 be Data Pilots, α

a predicate and P , Q, R sets of paths such that P ⊆ N
(
dpC1

)
∪ N

(
dpC2

)
. If Q =(

P ∩N
(
dpC1

))
∪
(
N
(
dpC1

)
∩N

(
dpC2

))
andR =

(
P ∩N

(
dpC2

))
∪
(
N
(
dpC1

)
∩N

(
dpC2

))
,

then π⊘P
(
dpC1 ▷◁α dp

C2
)

= π⊘P
(
π⊘Q

(
dpC1

)
▷◁α π

⊘
R

(
dpC2

))
and πP

(
dpC1 ▷◁α dp

C2
)

=

πP
(
πQ

(
dpC1

)
▷◁α πR

(
dpC2

))
.

Lemma 4.8 (Projection push-down on lookup). Let dpC1 , dpC2 be Data Pilots, α a

predicate, l a label and P a set of paths. If there exists some subset Q of N
(
dpC2

)
such that {l · ∗ · q | q ∈ Q} ⊆ P , then

π⊘P (dpC1 ▷̂◁lα dp
C2) = π⊘P (dpC1 ▷̂◁lα π

⊘
Q∪exprpaths(α)(dp

C2))
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Lemma 4.9 (Projection is distributive over lookup). Let dpC1 , dpC2 be Data Pilots,

α a predicate, l a label and P , Q sets of paths such that Q ⊆ N
(
dpC1

)
. If there

exists some subset R of N
(
dpC2

)
such that {l · ∗ · r | r ∈ R} ∪Q ⊆ P , then

π⊘P (dpC1 ▷̂◁lα dp
C2) = π⊘Q∪exprpaths(α)(dp

C1) ▷̂◁lα π⊘R∪exprpaths(α)(dp
C2)

Lemma 4.10 (Projection push-down on union). Let dpC1 , dpC2 be Data Pilots and

P a set of paths. Then,

π⊘P
(
dpC1 ∪ dpC2

)
= π⊘P (C1)∪π⊘P

(
dpC2

)
and πP

(
dpC1 ∪ dpC2

)
= πP

(
dpC1

)
∪πP

(
dpC2

)
Lemma 4.11 (Projection introduction on group). Let P be a set of paths, q1, q2, . . . qk

paths from N
(
dpC

)
, r1, r2, . . . , rk labels and f1, f2, . . . , fk Data Pilot aggregates.

Then,

Pγr1:f1(q1),r2:f2(q2),...,rk:fk(qk)
(
dpC

)
= Pγr1:f1(q1),r2:f2(q2),...,rk:fk(qk)(πP∪{q1,...,qk}(dpC))

Lemma 4.12 (Selection push-down on join). Let dpC1 and dpC2 be Data Pilots, and

α, ψ1 and ψ2 be predicates. If exprpaths (ψ1) ⊆ N
(
dpC1

)
and exprpaths (ψ2) ⊆

N
(
dpC2

)
, then

σψ1∧ψ2(dpC1 ▷◁α dp
C2) = σψ1(dpC1) ▷◁α σψ2(dpC2)

Lemma 4.13 (Selection push-down on set operators). Let dpC1 and dpC2 be collec-

tions, ψ a predicate, and ⊙ an arbitrary operator from the set {∪,∩,−}. Then

σψ
(
dpC1 ⊙ dpC2

)
= σψ

(
dpC1

)
⊙ σψ

(
dpC2

)
Lemma 4.14 (Selection introduction on group). Let dpC be a collection, F̃1 = (l11 :

arragg (q1
1) , . . . , l1k : arragg (q1

k)) and F̃2 = (l21 : f 2
1 (q2

1), . . . , lj : fj(qj)) vectors of

aggregates, and P , L, R sets of paths such that L = {l11, . . . , l1k}∪{l21, . . . , l2j}, L ⊆· P ,

paths(F̃1) ∩ paths(F̃2) = ∅, and

R = {q · x | (∃l ∈ L)(∃q ∈ {q1
1, . . . , q

1
k})(∃x ̸= ϵ)[l · ∗ · x ∈ P ∧ (l : arragg (q)) ∈ F̃1]} =

{r1, . . . , rh}. Then

π⊘P (GγF̃1·F̃2
(dpC)) = π⊘P (GγF̃1·F̃2

(σ∃r1∨···∨∃rh
(dpC)))
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Lemma 4.15 (Convertion from join to semijoin). Let α be a predicate, and dpC1 ,

dpC2 be Data Pilots. Then

π⊘
N(dpC1)

(
dpC1 ▷◁α dp

C2
)

= dpC1 ⋉α dp
C2 and π⊘

N(dpC2)
(
dpC1 ▷◁α dp

C2
)

= dpC1 ⋊α dp
C2

Lemma 4.16 (Conversion of Left Outer Join to Join). Let dpC1 and dpC2 be collec-

tions, ψ and α predicates, and Q = exprpaths (α)∩N(dpC2). If ψ rejects absent paths

in Q, then σψ
(
dpC1 ▷◁α dp

C2
)

= dpC1 ▷◁α dp
C2 .

Lemma 4.17 (Conversion of Extended Left Outer Join to Join). Let dpC1 and dpC2

be Data Pilots, ψ and α predicates, and l a non-empty label. If ψ rejects empty

objects in {l}, then σψ
(
dpC1 ▷◁lα dp

C2
)

= dpC1 ▷◁lα dp
C2 .

Lemma 4.18 (Conversion of Lookup to Nest Join). Let dpC1 and dpC2 be Data Pilots,

ψ and α predicates, and l a non-empty a label. If ψ rejects empty arrays in {l}, then

σψ
(
dpC1 ▷̂◁lα dp

C2
)

= dpC1 ▷̂◁lα dp
C2 .

Lemma 4.19 (Projection eliminates Left Outer Join). Let dpC1 and dpC2 be collec-

tions, an α a predicate. If NumED
(
dpC1

)
= 0, then π⊘

N(dpC1)
(
dpC1 ▷◁α dp

C2
)

= dpC1 .

Lemma 4.20 (Delayed nesting on chained Nest joins). Let dpC1 , dpC2 , . . . , dpCk be

Data Pilots, l1,2, l2,3, l3,4, . . . , lk−1,k be labels, and α1,2, α2,3, α3,4, . . ., αk−1,k be predi-

cates.
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dpC1 ▷̂◁l1,2
α1,2

(
dpC2 ▷̂◁l2,3

α2,3

(
. . . dpCk−2 ▷̂◁lk−2,k−1

αk−2,k−1

(
dpCk−1 ▷̂◁lk−1,k

αk−1,k
dpCk

)
. . .
))

=

N(dpC1)γl1,2:arragg(N(dpC2)∪{l2,3})
(

N(dpC1)∪N(dpC2)γl2,3:arragg(N(dpC3)∪{l4,5})
(

. . .

N(dpC1)∪...∪N(dpCk−2)γlk−2,k−1:arragg(N(dpCk−1)∪{lk−1,k})
(

N(dpC1)∪...∪N(dpCk−1)γlk−1,k:arragg(N(dpCk))
(

dpC1 ▷◁α1,2

(
dpC2 ▷◁α2,3

(
. . . dpCk−2 ▷◁αk−2,k−1

(
dpCk−1 ▷◁αk−1,k

dpCk

)
. . .
))

)
)
. . .)

)

Lemma 4.21 (Left Outer Join - Inner Join Reordering with GOJ). Let dpC1 , dpC2

and dpC3 be collections, and α and β be predicates. If β rejects absent paths on

N
(
dpC2

)
, then

dpC1 ▷◁α
(
dpC2 ▷◁β dp

C3
)

=(
dpC1 ▷◁α dp

C2
)goj
▷◁ [β, N

(
dpC1

)
] dpC3

Lemma 4.22 (Lookup - Inner Join Reordering with GOJ). Let dpC1 , dpC2 and dpC3

be collections, and α and β be predicates. If β rejects absent paths on N
(
dpC2

)
, then

dpC1 ▷̂◁lα
(
dpC2 ▷◁β dp

C3
)

=

N(dpC1)γl:arragg(N(dpC2)∪N(dpC3))

((
dpC1 ▷◁α dp

C2
)goj
▷◁
[
β, N

(
dpC1

)]
dpC3

)
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Lemma 4.23 (Full Group push-down over Selection). Let dpC be a Data Pilot of

some collection C, l1, l2, . . . , lk labels not realized in dpC, q1, . . . , qk paths realized in

dpC, and α a selection predicate.

exprpaths(α)γl1:f1(q1),...,lk:fk(q1)
(
σα
(
dpC

))
= σα

(
exprpaths(α)γl1:f1(q1),...,lk:fk(qk)

(
dpC

))

Lemma 4.24 (Partial Group push-down over Selection). Let dpC be a Data Pilot,

G a set of paths to group by, l1, . . . , lk, l′1, . . . , l′k labels not realized in dpC, q1, . . . , qk

paths realized in dpC, α a selection predicate and ξ the function:

ξ(G,α) =


exprpaths (α) if G ⊂ exprpaths (α)

G ∪ exprpaths (α) if G ⊈ exprpaths (α)

then

Gγl1:f1(q1),...,lk:fk(qk)
(
σα
(
dpC

))
=

Gγl1:f1(l′1),...,lk:fk(l′
k

)
(
σα
(
ξ(G,α)γl′1:f1(q1),...,l′

k
:fk(qk)

(
dpC

)))

Lemma 4.25 (Unnest simplification due to Group). Let dpC be a collection, G a

set of paths to group by, p a path in N
(
dpC

)
, l a label not in N

(
dpC

)
and agg an

aggregate function. If there exists a non-aggregate function f that treats constituents

of arrays as a bag of values and performs the same operation as agg would over the

same bag of values, then Gγl:agg(p)
(
µ⊘p

(
dpC

))
= Gγl:agg(f(p)) (C).

Lemma 4.26 (Partial Group push-down over Left Outer Join). Let dpC1 and dpC2

be Data Pilots, α a predicate, G a set of paths to group by, and F̃ a vector of scalar

aggregate functions such that F̃ can be split into F̃1 and F̃2; and G can be split into

G1 = G ∩N
(
dpC1

)
and G2 = G ∩N

(
dpC2

)
. Then

GγF̃ (dpC1 ▷◁α dp
C2) = Gγ(F̃1⊗(∃c2?c2:1))·F̃ ′

2
(dpC1 ▷◁α G2∪exprpaths(α)γF̃2·⦅c2:count(∗)⦆(dpC2))

It is important to note that all operations performed on Data Pilots using oper-

ators from the Data Pilot algebra adhere to a conservative approach. This approach
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ensures that paths are not removed from or added to the input collection’s estimated

cover unless it is 100% certain that they should.

This concept is formalized in Definition 4.1.

Definition 4.1 (Conservative operation). Let dpC be a Data Pilot, Ω an operation

over collections, and Ψ the corresponding operation of Ω over Data Pilots. Ψ is

considered conservative regarding dpC if the Data Pilot Ψ
(
dpC

)
satisfies either of the

following conditions:

1. If dpC is faithful, any path in N
(
Ψ
(
dpC

))
that does not approximate a path in

cover (Ω (C)) must exist in N
(
dpC

)
.

2. If dpC is not faithful, there must exist a faithful Data Pilot dpC′ and a se-

quence of conservative Data Pilot operations Ψ1,Ψ2, . . . ,Ψn such that dpC =

Ψn

(
. . .Ψ2

(
Ψ1

(
dpC

′
))
. . .
)
, and for any path p in N

(
Ψ
(
dpC

))
that does not

approximate a path in cover (Ω (C)), there exists an i ∈ [1, n] such that p r∽

Ψi

(
Ψi−1

(
. . .Ψ1

(
dpC

′
)
. . .
))

.

Conservative operations ensure the maintenance of the forth property, indicating

that while there may be “false positives” (i.e., estimating that a path exists when it

does not), “false negatives” (i.e., estimating that a path does not exist when it does)

are prevented. This is behavior is similar to that of “Bloom Filters”. Avoiding false

negatives is crucial for estimates, as a false negative could prematurely suggest that

a query will result in an empty collection.

Moreover, conditions 1 and 2 outlined in Definition 4.1 serve to minimize false

positives by prohibiting operations that forfeit the back property from generating any

path not approximating a path in the collection cover of the pertinent Data Pilot’s

collection. Essentially, a conservative operation on a Data Pilot removes paths with

absolute certainty if they are to be eliminated from the respective collection cover
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(e.g., projection), retains paths with absolute certainty if they should be retained or if

uncertainty exists regarding their removal (e.g., selection), and introduces paths only

if there is absolute certainty of their creation in the corresponding collection cover

(e.g., unnest).

Theorem 4.27 (Every Data Pilot operator constitutes a conservative operation).

Let dpC be a faithful Data Pilot and Ψ an operation with an underlying operator

from the Data Pilot algebra, then Ψ is conservative with respect to dpC.

Under specific conditions, there are operations whose results respect the back

property when processing a faithful Data Pilot. This is further explained in Lem-

mas 4.28, 4.30, and 4.29.

Lemma 4.28 (Preserving projection is faithful). Let dpC be a Data Pilot of collection

C, and P a set of path expressions. If dpC is faithful and no path p ∈ arrs (P ) exists

such that p r∽ N
(
dpC

)
, then πP

(
dpC

)
is faithful.

Lemma 4.29 (Cartesian product is faithful). Let dpC1 and dpC2 be Data Pilots of

collections C1 and C2, respectively. If both dpC1 and dpC2 are faithful, then dpC1×dpC2

is faithful.

Lemma 4.30 (Union is faithful). Let dpC1 and dpC2 be Data Pilots of collections C1

and C2, respectively. If both dpC1 and dpC2 are faithful, then dpC1 ∪ dpC2 is faithful.

Lemma 4.31 (Unnest is faithful). Let dpC be a Data Pilot of collection C and p a

path expression. If dpC is faithful, then µp
(
dpC

)
is faithful.

Lemma 4.32 (Group is faithful). Let dpC be a Data Pilot of collection C, G a set

of path expressions realized in dpC and ⦅F⦆ an aggregate vector whose non-scalar

aggregate functions comprise arragg and arrconcat, then Gγ⦅F ⦆

(
dpC

)
.

There are also conservative operations that are guaranteed to violate the back

property. These are discussed in Lemma 4.33.
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Lemma 4.33 (Non-faithful operators preserve forth property). Let dpC be a Data

Pilot of collection C, and Ψ an operation over Data Pilots. If the underlying operator

of Ψ is a selection, join (or any of its derivatives), difference, or intersection, then

Ψ
(
dpC

)
loses the back property but retains the forth property.

5 Optimization hints

This section introduces the dynamics (join-simplifaction, reordering of operators, etc.)

used to pass down advices, or optimization hints, to the optimizer. Intuitevely, the

idea is simple: Given a query q, modify q when convenient based on the cardinality

estimates produced by the data pilots of collections involved in q aiming to reduce the

size of intermediate results and provide the optimizer with more flexibility to choose

candidate implementations of an operator. For instance, an optimizer has fixed outer

and inner collections in a left outer join, but is free to choose the inner and outer

collections in a regular join.

An optimization hint is more formally described in Definition 5.1.

Definition 5.1 (Optimization hint). An optimization hint is a pair (H,E), where H

is an algebraic equivalence referring to a property of the document algebra and E a

number from N0 referring to a cardinality estimate computed from the information

stored in the Data Pilot.

Throughout the section, this manuscript incorporates multiple diagrams, each

representing a property from the document algebra. These visual aids, denoted as

cardinality estimation diagrams, provide a visual depiction of the anticipated number

of documents entering and exiting operators before and after the application of a

specific document algebra property. These diagrams closely resemble query plans

at the logical level, but instead of showing a query tree, they aim to illustrate the

direction in which data flows together with its expected quantity. The source of each

arrow marks the data source and the arrow label the expected number of documents
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the target is to receive. The word access marks the retrieval of documents from a

collection (what a physical plan would typically name a scan, be it through an index

or not).

Commencing with Figure 43, the diagram is based on Lemma 3.13. By performing

an non-preserving projection beforehand, the count of elements to unnest changes

from Card(dpC, ϵ) to carr(dpC, p), potentially benefiting the unwind operation in two

ways:

(Before push-down) access C Card(dpC ,ϵ)−−−−−−−→ µ⊘p
Card(dpC ,p·⋆)−−−−−−−−→ π⊘p·x

Card(dpC ,p·⋆·x)−−−−−−−−−→

(After push-down) access C Card(dpC ,ϵ)−−−−−−−→ π⊘p·⋆·x
carr(dpC ,p)−−−−−−→ µ⊘p

Card(dpC ,p·⋆·x)−−−−−−−−−→

Figure 43. Cardinality estimation diagram of Lemma 3.13

1. Since the projection removes any document where the path p · ⋆ · x is missing,

all documents where p is not an array are removed. Thus, unnest can assume

that p exists on all its input and must only check if p is an empty array or not.

2. The input size decreases, reducing the size of intermediate results.

Moreover, if Card(dpC, p ·⋆ ·x) is considerably smaller than Card(dpC, ϵ), introducing

a selection before the projection and transforming the un-preserving operators into

preserving ones can be beneficial from an implementation standpoint. These trans-

formations reduce conditionals at the code level, thereby minimizing branching. For

instance, consider two paths p and q, and the query described in Equation 46.

π⊘p·q(µ⊘p (C)) = µ⊘p (π⊘p·∗·q(C))

= µ⊘p (πp·∗·q(σ∃p·∗·q(C)))

= µp(πp·∗·q(σ∃p·∗·q(C)))

(46)

By ensuring that the selection with an existential predicate is the first operator

evaluated in the query, the optimizer can take advantage of a faithful data pilot of C.
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Assuming one is available, the optimizer can declare an early-stopping criterion on

the loop that scans either an index or a collection itself. This criterion would consider

that a maximum of Card(dpC, p) documents are to be retrieved and a maximum of

Card(dpC, p · ⋆ · q) are to be projected.

For the case of joins, a projection push-down is done similarly to relational algebra,

but instead of relying on the fixed schemas of tables, it relies on Data Pilots. If all

paths within a set of projected paths following a join are present in the data pilot of

one of the input collections, the projection can be performed on that specific collection

beforehand as described in Lemma 3.14. Figure 44 shows the cardinality estimations

at each operation.

Figure 44. Cardinality estimation diagram of Lemma 3.14

A selection can be pushed down to one or both arguments of a join, multiset

intersection or multiset difference. For the case of union, selections must be pushed

down to both arguments.
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Figure 45. Cardinality estimation diagram of Lemma 3.16

Figure 46. Cardinality estimation diagram of Lemma 3.18
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Figure 47. Cardinality estimation diagram of Lemma 3.25

Collection volume

When reordering operators, there are situations where the most significant perfor-

mance improvements result from reducing the number of intermediate results gener-

ated at a specific operation. This section introduces a metric known as “Collection

volume” and outlines its utility in assessing the viability of an optimization. Essen-

tially, the collection volume represents the weighted sum of the cardinality of all paths

within the collection’s data pilot. The underlying idea behind this metric is that the

more frequently a path appears in a collection’s documents, the more significance or

weight it carries. Think of it as an abstract representation of a collection’s memory

footprint in comparison to another collection. This abstraction does not consider the

actual memory sizes of types since they can vary across different database manage-

ment systems. Instead, when deciding whether to suggest an optimization to the
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optimizer, the metric is computed both before and after applying the optimization

to gauge how the collection’s volume changes at a specific operation.

Definition 5.2 provides a method to calculate a collection’s volume utilizing its

data pilot, as expressed in Equation 47. This computation relies on the path weight,

as defined recursively in Equation 48. In essence, this weight distinguishes between

two scenarios: whether a path is within an array (indicated by the presence of the

label ⋆ in the path) or not.

When the path is not within an array, the weight is determined by the percentage

of non-empty documents in which the path is found. This percentage is calculated as

the ratio between the cardinality of the path and the number of non-empty documents

in the collection, denoted by NumNED
(
dpC

)
.

In situations involving arrays, some documents may contain a number of array

elements nested to a greater extent than the total number of documents in the collec-

tion. In such instances, unnesting operations could become computationally expen-

sive without a prior selection. Therefore, the weight of paths within arrays should

account for both the number of elements within the parent array and the cardinality

of the parent array concerning the entire collection. This concept is the base of the

recursion in Equation 48, with an illustrative example provided in Figure 48.

Definition 5.2 (Collection Volume). Let dpC be a DataPilot of collection C, p be a

path of dpC and array_parent(p) denote a prefix q of p such that there exists some

sequence of labels r with ⋆ /∈ r that satisfies the equality p = q. ⋆ .r. The volume of

collection C based on dpC is expressed by Equation 47.

vol(dpC) =
∑

p∈explicit(N(dpC))

(
wdp

C

p ∗ Card(dpC, p)
)

(47)

wdp
C

p =


Card(dpC, p)

NumNED(dpC) if ⋆ /∈ p

Card(dpC, p)
Card(dpC, array_parent(p) · ⋆) ∗ w

dpC

array_parent(p) otherwise
(48)
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Figure 48. An illustration of the weight computed from a path within an array, in
accordance with Definition 5.2.

Definition 5.3 (Faithful Collection Volume). The volume of a collection C is faithful

if it is computed from a faithful DataPilot of C.

To determine whether an optimization should be recommended to the optimizer,

the percentage decrease in both input and output volumes associated with a specific

operator is calculated as follows:

1. Select a candidate optimization for analysis, based on the given query. For

instance, if a join precedes a projection, “projection push-down over join”

(Lemma 3.14) is a candidate optimization.

2. Identify pipeline-breaker operators influenced by changes in volume either in

the collections they receive as input or in the collection they produce as output.

Following the example from the previous step, “join” is the operator affected

by a change in the volume of the two collections passed to it.

3. Estimate the input and/or output volumes of pipeline-breaker operators affected

by the optimization. For input collections, calculate the total input volume by

summing their volumes. For output collections, calculate the volume as usual.

4. Apply the optimization to the query and estimate the input and output volumes

of pipeline-breaker operators impacted by the optimization.
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5. Calculate the percentage decrease in input and output volume for the pipeline-

breaker operators influenced by the optimization.

The optimization is then recommended to the optimizer if any of the calculated

percentages exceeds a user-defined threshold.

Example 5.1. Consider two data pilots dpC1 and dpC2 with the paths and counters

shown in Table 13.

DataPilot Path Cardinality
dpC1 ϵ 40
dpC1 a 40
dpC1 b 30
dpC1 d 15
dpC1 e 14
dpC2 ϵ 20
dpC2 f 5
dpC2 g 15
dpC2 h 20

Table 13. Data pilots from Example 5.1

Suppose an user wants to execute the query Q1 = πe,f,d,g(dpC1 ▷◁d=g dp
C2). Fol-

lowing the steps outlined above:

1. Select a candidate optimization: Based on Lemma 3.14, Q1 can be rewrit-

ten as Q2 = πd,e(dpC1) ▷◁d=g πg,f (dpC2). The candidate optimization is then

“projection push-down over join”.

2. Pipeline-breaker operators influenced by changes in volume: For this

case, only the join operator is affected.

3. Estimation of input/output volumes before optimization: For this case,

the output volume of the join is the same whether or not the optimization is

applied. Thus, the only determining factor is the input volume computed as
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follows:

vol
(
dpC1

)
= 40

40 ∗ 40 + 30
40 ∗ 30 + 15

40 ∗ 15 + 14
40 ∗ 14 = 73.025

vol
(
dpC2

)
= 20

20 ∗ 20 + 5
20 ∗ 5 + 15

20 ∗ 15 = 32.5

input volume = vol
(
dpC1

)
+ vol

(
dpC2

)
= 73.025 + 32.5 = 105.525

4. Estimation of input/output volumes after optimization: Q2 is the op-

timized version of Q1 after applying the candidate optimization. The input

volume of the join in Q2 is then:

vol
(
πd,e

(
dpC1

))
= 15

15 ∗ 15 + 14
15 ∗ 15 ≈ 28.067

vol
(
πg,f

(
dpC2

))
= 15

15 ∗ 15 + 5
15 ∗ 5 ≈ 16.667

input volume = vol
(
dpC1

)
+ vol

(
dpC2

)
= 28.067 + 16.667 = 44.734

5. Percentage decrease in input/output volume of operator:

105.525− 44.734
105.525 ≈ 0.5761

Example 5.2. Consider a collection C and its data pilot dpC, with the cardinality

and counters shown in Table 14.

Path obj arr int str Cardinality
ϵ 40 0 0 0 40
a 0 0 25 15 40
b 0 0 30 0 30
d 0 0 5 10 15
e 0 0 6 8 14

Table 14. Data pilot from Example 5.2

Assume the following queries are issued:

207



• πa,b(σaθconst(C))

• πa,b(σbθconst(C))

• πa,b(σdθconst(C))

• πa,b(σeθconst(C))

• πd,e(σaθconst(C))

• πd,e(σbθconst(C))

• πd,e(σdθconst(C))

• πd,e(σeθconst(C))

First, start by computing the volume of dpC as follows:

vol
(
dpC

)
= 40

40 ∗ 40 + 30
40 ∗ 30 + 15

40 ∗ 15 + 14
40 ∗ 14 = 73.025

then, compute the volume of each projection and selection pushdown followed by the

percentage decrease in volume using vol
(
dpC

)
as the base.

For πa,b(σaθconst(C)):

New counters and cardinality after selection:

Card(σaθconst
(
dpC

)
, ϵ) = cint

(
dpC, a

)
= 25

cint
(
σaθconst

(
dpC

)
, a
)

= ⌈25 ∗ 1⌋ = 25, cstr
(
σaθconst

(
dpC

)
, a
)

= 0

cint
(
σaθconst

(
dpC

)
, b
)

= ⌈25 ∗ (30/40)⌋ = 19, cstr
(
σaθconst

(
dpC

)
, b
)

= 0

cint
(
σaθconst

(
dpC

)
, d
)

= ⌈25 ∗ (5/40)⌋ = 3, cstr
(
σaθconst

(
dpC

)
, d
)

= ⌈25 ∗ (10/40)⌋ = 6

cint
(
σaθconst

(
dpC

)
, e
)

= ⌈25 ∗ (6/40)⌋ = 4, cstr
(
σaθconst

(
dpC

)
, e
)

= ⌈25 ∗ (8/40)⌋ = 5

Number of non-empty documents:

max
(
Card(πa,b

(
σaθconst

(
dpC

))
, a), Card(πa,b

(
σaθconst

(
dpC

))
, b)
)

= max (25, 19) = 25

New volume:

vol
(
πa,b

(
σaθconst

(
dpC

)))
= 25

25 ∗ 25 + 19
25 ∗ 19 = 39.44

Reduction in volume of:

vol
(
dpC

)
− vol

(
πa,b

(
σaθconst

(
dpC

)))
vol (dpC) = 73.025− 39.44

73.025 ≈ 0.46

For πa,b(σbθconst(C)):
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New counters and cardinality after selection:

Card(σbθconst
(
dpC

)
, ϵ) = cint

(
dpC, b

)
= 30

cint
(
σbθconst

(
dpC

)
, b
)

= ⌈30 ∗ 1⌋ = 30, cstr
(
σbθconst

(
dpC

)
, b
)

= 0

cint
(
σbθconst

(
dpC

)
, a
)

= ⌈30 ∗ (25/40)⌋ = 19, cstr
(
σbθconst

(
dpC

)
, a
)

= ⌈30 ∗ (15/40)⌋ = 11

cint
(
σbθconst

(
dpC

)
, d
)

= ⌈30 ∗ (5/40)⌋ = 4, cstr
(
σbθconst

(
dpC

)
, d
)

= ⌈30 ∗ (10/40)⌋ = 8

cint
(
σbθconst

(
dpC

)
, e
)

= ⌈30 ∗ (6/40)⌋ = 5, cstr
(
σbθconst

(
dpC

)
, e
)

= ⌈30 ∗ (8/40)⌋ = 6

Number of non-empy documents:

max
(
Card(πa,b

(
σbθconst

(
dpC

))
, a), Card(πa,b

(
σbθconst

(
dpC

))
, b)
)

= max (30, 30) = 30

New volume:

vol
(
πa,b

(
σbθconst

(
dpC

)))
= 30

30 ∗ 30 + 30
30 ∗ 30 = 60

Reduction in volume of:

vol
(
dpC

)
− vol

(
πa,b

(
σbθconst

(
dpC

)))
vol (dpC) = 73.025− 60

73.025 ≈ 0.1784

For πa,b(σdθconst(C)):

New counters and cardinality after selection:

Card(σdθconst
(
dpC

)
, ϵ) = cint

(
dpC, d

)
= 5

cint
(
σdθconst

(
dpC

)
, d
)

= ⌈5 ∗ 1⌋ = 5, cstr
(
σdθconst

(
dpC

)
, d
)

= 0

cint
(
σdθconst

(
dpC

)
, a
)

= ⌈5 ∗ (25/40)⌋ = 3, cstr
(
σdθconst

(
dpC

)
, a
)

= ⌈5 ∗ (15/40)⌋ = 2

cint
(
σdθconst

(
dpC

)
, b
)

= ⌈5 ∗ (30/40)⌋ = 4, cstr
(
σdθconst

(
dpC

)
, b
)

= 0

cint
(
σdθconst

(
dpC

)
, e
)

= ⌈5 ∗ (6/40)⌋ = 1, cstr
(
σdθconst

(
dpC

)
, e
)

= ⌈5 ∗ (8/40)⌋ = 1

Number of non-empy documents:

max
(
Card(πa,b

(
σdθconst

(
dpC

))
, a), Card(πa,b

(
σdθconst

(
dpC

))
, b)
)

= max (5, 4) = 5
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New volume:

vol
(
πa,b

(
σdθconst

(
dpC

)))
= 5

5 ∗ 5 + 4
5 ∗ 4 = 8.2

Reduction in volume of:

vol
(
dpC

)
− vol

(
πa,b

(
σdθconst

(
dpC

)))
vol (dpC) = 73.025− 8.2

73.025 ≈ 0.8877

For πa,b(σeθconst(C)):

New counters and cardinality after selection:

Card(σeθconst
(
dpC

)
, ϵ) = cint

(
dpC, e

)
= 6

cint
(
σeθconst

(
dpC

)
, e
)

= ⌈6 ∗ 1⌋ = 1, cstr
(
σeθconst

(
dpC

)
, e
)

= 0

cint
(
σeθconst

(
dpC

)
, a
)

= ⌈6 ∗ (25/40)⌋ = 4, cstr
(
σeθconst

(
dpC

)
, a
)

= ⌈6 ∗ (15/40)⌋ = 2

cint
(
σeθconst

(
dpC

)
, b
)

= ⌈6 ∗ (30/40)⌋ = 5, cstr
(
σeθconst

(
dpC

)
, b
)

= 0

cint
(
σeθconst

(
dpC

)
, d
)

= ⌈6 ∗ (5/40)⌋ = 1, cstr
(
σeθconst

(
dpC

)
, d
)

= ⌈6 ∗ (10/40)⌋ = 2

Number of non-empy documents:

max
(
Card(πa,b

(
σeθconst

(
dpC

))
, a), Card(πa,b

(
σeθconst

(
dpC

))
, b)
)

= max (6, 5) = 6

New volume:

vol
(
πa,b

(
σeθconst

(
dpC

)))
= 6

6 ∗ 6 + 5
6 ∗ 5 = 10.17

Reduction in volume of:

vol
(
dpC

)
− vol

(
πa,b

(
σeθconst

(
dpC

)))
vol (dpC) = 73.025− 10.17

73.025 ≈ 0.8607

The cardinalities and counters previously calculated for the data pilots σaθconst
(
dpC

)
,

σbθconst
(
dpC

)
, σdθconst

(
dpC

)
, and σeθconst

(
dpC

)
are employed for the following volume

computations and reductions.

For πd,e(σaθconst(C)):

Number of non-empty documents:

max
(
Card(πd,e

(
σaθconst

(
dpC

))
, d), Card(πd,e

(
σaθconst

(
dpC

))
, e)
)

= max (9, 9) = 9
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New volume:

vol
(
πd,e

(
σaθconst

(
dpC

)))
= 9

9 ∗ 9 + 9
9 ∗ 9 = 18

Reduction in volume of:

vol
(
dpC

)
− vol

(
πd,e

(
σaθconst

(
dpC

)))
vol (dpC) = 73.025− 18

73.025 ≈ 0.7535

For πd,e(σbθconst(C)):

Number of non-empty documents:

max
(
Card(πd,e

(
σbθconst

(
dpC

))
, d), Card(πd,e

(
σbθconst

(
dpC

))
, e)
)

= max (12, 11) = 12

New volume:

vol
(
πd,e

(
σbθconst

(
dpC

)))
= 12

12 ∗ 12 + 11
12 ∗ 11 = 22.083

Reduction in volume of:

vol
(
dpC

)
− vol

(
πd,e

(
σbθconst

(
dpC

)))
vol (dpC) = 73.025− 22.083

73.025 ≈ 0.6976

For πd,e(σdθconst(C)):

Number of non-empty documents:

max
(
Card(πd,e

(
σdθconst

(
dpC

))
, d), Card(πd,e

(
σdθconst

(
dpC

))
, e)
)

= max (5, 2) = 5

New volume:

vol
(
πd,e

(
σdθconst

(
dpC

)))
= 5

5 ∗ 5 + 2
5 ∗ 2 = 5.8

Reduction in volume of:

vol
(
dpC

)
− vol

(
πd,e

(
σdθconst

(
dpC

)))
vol (dpC) = 73.025− 5.8

73.025 ≈ 0.9206

For πd,e(σeθconst(C)):

Number of non-empty documents:

max
(
Card(πd,e

(
σeθconst

(
dpC

))
, d), Card(πd,e

(
σeθconst

(
dpC

))
, e)
)

= max (6, 3) = 6
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New volume:

vol
(
πd,e

(
σeθconst

(
dpC

)))
= 6

6 ∗ 6 + 3
6 ∗ 3 = 7.5

Reduction in volume of:

vol
(
dpC

)
− vol

(
πd,e

(
σeθconst

(
dpC

)))
vol (dpC) = 73.025− 7.5

73.025 ≈ 0.8973

Example 5.3. Consider a collection C and its data pilot dpC, with the path, car-

dinalities and counters shown in Table 15a. Assume the query π⊘a·c,a·d

(
µ⊘a

(
dpC

))
is

Path obj arr int str Cardinality
ϵ 20 0 0 0 20
a 0 5 0 0 5
b 0 0 20 0 20

a·⋆ 50 0 0 50 100
a·⋆·c 0 0 0 50 50
a·⋆·d 0 0 30 0 30

(a) dpC

Path obj arr int str Cardinality
ϵ 20 0 0 0 20
a 0 5 0 0 5

a·⋆ 50 0 0 0 50
a·⋆·c 0 0 0 50 50
a·⋆·d 0 0 30 0 30

(b) π⊘a·⋆·c,a·⋆·d

(
dpC

)
Path obj arr int str Cardinality
ϵ 100 0 0 0 100
a 50 0 0 50 100
b 0 0 100 0 100

a·c 0 0 0 50 50
a·d 0 0 30 0 30

(c) µ⊘a
(
dpC

)

Path obj arr int str Cardinality
ϵ 50 0 0 0 50
a 50 0 0 50 50

a·c 0 0 0 50 50
a·d 0 0 30 0 30

(d) µ⊘a
(
π⊘a·⋆·c,a·⋆·d

(
dpC

))
Table 15. Data pilots from Example 5.3

given to the system. This query can be rewritten by pushing down the projection as

follows: µa
(
π⊘a·⋆·c, a·⋆·d

(
dpC

))
. This is how both queries compare in terms of volume:

For unnest’s input volume

1. Compute the input volume before the projection pushdown (i.e. The volume

from the DataPilot in Table 15a):

vol(dpC) = 20
20∗20+ 5

20∗5+20
20∗20+ 5

20∗
100
100∗100+ 5

20∗
50
100∗50+ 5

20∗
30
100∗30 = 74.75
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2. Compute the input volume after the projection pushdown (i.e. The volume

from the DataPilot in Table 15b):

vol(π⊘a·⋆·c, a·⋆·d

(
dpC

)
) = 20

20∗20+ 5
20∗5+ 5

20∗
50
50∗50+ 5

20∗
50
50∗50+ 5

20∗
30
50∗30 = 50.75

3. Compute the reduction in input volume: (74.75− 50.75)/74.75 ≈ 0.3211.

For unnest’s output volume

1. Compute the output volume before the projection pushdown (i.e. The volume

from the DataPilot in Table 15c):

vol(µ⊘a (dpC)) = 100
100 ∗ 100 + 100

100 ∗ 100100
100 ∗ 100 + 50

100 ∗ 50 + 30
100 ∗ 30 = 334

2. Compute the output volume after the projection pushdown(i.e. The volume

from the DataPilot in Table 15d):

vol(µa(π⊘a·⋆·c, a·⋆·d

(
dpC

)
)) = 50

50 ∗ 50 + 50
50 ∗ 5050

50 ∗ 50 + 30
50 ∗ 30 = 168

3. Compute the reduction in input volume: (334− 168)/334 ≈ 0.4970.
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CHAPTER VI

EXPERIMENTAL ANALYSIS

1 Chapter Overview

This chapter presents two proof-of-concept (POC) experiments focusing on essential

aspects of the envisioned query processing framework. Recognizing the comprehensive

nature of the entire framework’s development beyond the scope of the thesis, each

POC selectively assumes the existence of components not directly relevant to the

validated concept. The primary objectives of these POCs include the creation of a

Data Pilot, as described in Section VI.2, and the execution of queries using “compiled

queries” detailed in Section VI.3. In this approach, each query is translated into source

code and subsequently compiled into a program for execution.

In the context of the query compilation and execution POC, an algebraic query

translator is presumed to exist. Within this component, an input query undergoes

translation into expressions at levels 2 and 3 of the document algebra, forming a

query tree. The translation from the query language to the query tree depends on

the specific query language used by a given JSON document store. For the conducted

experiments, queries from the TPC-H benchmark, scripted in MongoDB’s aggregation

pipeline, are manually translated into the algebra.

Subsequently, query plans are generated in two phases. The first phase involves

applying various transformations to the query tree based on algebraic properties of the

operators. These transformations aim to simplify or enhance the tree. Noteworthy
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transformations include the strategic pushing down of projections and selections,

converting outerjoins into joins, and optimizing the elimination of unnestings and the

delay of nests. In the second phase, each resulting tree from the first phase undergoes

implementation through (a) providing an implementation for each operator in the

tree and (b) exploring different join orders in case of multiple joins in the query,

yielding a set of physical query plans.

The optimization process also identifies sequences of operations that correspond

to a macro-operator, replacing them with the macro-operator. This introduces cross-

operator optimization, a dimension enhancing the optimization process.

Example 1.1 (Demonstration of the Approach: Query 5). The process of query

translation and plan generation is exemplified here with query 5 from the TPC-H

benchmark, implemented on a database where each relational table resides in a dis-

tinct collection. Figure 49 MongoDB’s aggregate pipeline representation of Query 5,

with multiple query versions considered for optimal performance. Its translation to

the proposed algebraic framework is portrayed in Figure 50. Notably, this algebraic

expression is structured as a tree and subjected to Phase I of query planning. This

initial optimization stage involves pushing down projections and selections, eliminat-

ing matching nest and unnest pairs, and converting outerjoins to joins when feasible.

The decision to transform outerjoins relies on insights from the DataPilot, which

affirms that documents on one side of the outerjoin invariably have matches on the

other side. The resulting optimized tree, showcased in Figure 51a, manifests a con-

siderably streamlined algebraic expression. In Phase II, where several join orders are

explored, the best-suited query plan is determined, as revealed in Figure 51b. The

DataPilot again plays a pivotal role, providing estimates of selection size (distribu-

tion of attributes like r_name and o_orderdate) and collection size (e.g., orders,

customers, lineitem, supplier). It is worth noting that the final plan does not

explicitly exhibit the concluding grouping and ordering operations performed at the

apex of the tree.
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S1 {$match:{$expr:{$and:[
{$gte:["$o_orderdate", ISODate("1992-01-01T00:00:00Z")]},
{$lt:["$o_orderdate", ISODate("1993-01-01T00:00:00Z")]}]}}},

S2 {$lookup: {from: "lineitem",localField: "_id",
foreignField: "_id.l_orderkey",as: "lineitems"}},

S3 {$unwind: "$lineitems"},
S4 {$lookup: {from: "customer",localField: "o_custkey",

foreignField: "_id",as: "customers"}},
S5 {$unwind: "$customers"},
S6 {$lookup: {from: "supplier",localField: "customers.c_nationkey",

foreignField: "s_nation.n_nationkey",as: "suppliers"}},
S7 {$unwind: "$suppliers"},
S8 {$project:{suppliers: 1,lineitems: 1}},
S9 {$match: {"suppliers.s_nation.n_region.r_name": "MIDDLE EAST"}},
S10 {$match: {$expr:{$eq:["$suppliers._id", "$lineitems.l_suppkey"]}}},
S11 {$project:{suppliers:1,

l_extendedprice: "$lineitems.l_extendedprice",
l_discount: "$lineitems.l_discount"}},

S12 {$group: {
_id: "$suppliers.s_nation.n_name",
revenue: {$sum: {$multiply:[

"$l_extendedprice", {$subtract:[1, "$l_discount"]}]}}}}

Figure 49. TPC-H Query 5 in MongoDB’s aggregate pipeline. Pipeline starts from
collection orders.

S1 = σo_orderdate ≥ 1992-01-01 ∧ o_orderdate < 1993-01-01 (orders)
S2 = S1 ▷̂◁litems

_id=lid·l_orderkey ρlid ← _id (lineitem)
S3 = µlitems(S2)
S4 = S3 ▷̂◁custs

o_custkey=cid ρcid←_id (customer)
S5 = µcusts (S4)
S6 = S5 ▷̂◁supps

custs·c_nationkey=s_nation·n_nationkey supplier

S7 = µsupps (S6)
S8 = πsupps,litems (S7)
S9 = σsupps·s_nation·n_region.r_name=’MIDDLE EAST’ (S8)

S10 = σsupps·_id=litems·l_suppkey(S9)
S11 = πsupps·s_nation·n_name,litems·l_extendedprice,litems·l_discount (S10)
S12 = γsupps·s_nation·n_name,sum(litems·l_extendedprice* (1 - litems·l_discount)) (S11)

Figure 50. Initial algebraic expression of TPC-H Query 5 derived from Figure 49
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. . .

σl_suppkey=sid

σs_nation.n_region.r_name=’MIDDLE EAST’

▷◁c_nationkey=s_nation.n_nationkey

▷◁o_custkey=cid

▷◁l_orderkey=oid

π

σ

orders

π

lineitem

π

customer

π

supplier

(a) Phase I

. . .

▷◁ l_suppkey=sid
∧s_nation.n_nationkey=c_nationkey

Hash Join

π

▷◁oid=l_orderkey

Hash Join

π

▷◁o_custkey=cid

Hash Join

π

σ

Seq Scan

orders

π

customer

Seq scan

π

lineitem

Seq scan

π

σ

Seq scan

supplier

(b) Phase II

Figure 51. Query trees derived from Figure 50 after phases I and II of query planning

This example underscores the significance of algebraic manipulations in our method-

ology. Transformation of outerjoins into joins is instrumental in considering diverse

join orders, a flexibility constrained by the non-associative nature of outerjoins ([71]).

MongoDB’s optimizer, in contrast, adheres to the query’s specified order, necessitat-

ing manual optimization.

Remarkably, the resultant query tree closely aligns with a relational structure.

Comparative analysis with plans produced by PostgreSQL indicates striking similar-

ities, implying that the proposed approach, in a sense, discerns and simplifies the

"relational nature" of the data. This intrinsic capability contributes to an optimized

plan that mirrors traditional relational strategies.

In the envisioned model, cost estimates are grounded in the work of [36], providing

formulas to evaluate document access costs via indices or scanning. These formulas

extend traditional approaches by incorporating factors like average document size

(partially captured in the Data Pilot) and system-dependent elements such as cache

size and eviction policies. These costs estimates are, however, not considered for the

POCs as evaluation of system-dependent elements is outside the scope of this thesis.

The final stage of the process involves generating a program to be executed against

the database back-end. The current approach involves compiling the query using
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templates, akin to the methodology employed in the Hyper system ([61]). Each

algebraic operator is associated with a code block containing parameters. These

distinct blocks are assembled by traversing the query plan from the bottom up.

The query plan is divided into sections based on “blocking” operations, primarily

joins and groupings. A code block or segment is generated for each section, with ef-

forts made to amalgamate code for multiple operations within a tight loop. Thanks to

the utilization of macro-operators, multiple operations can sometimes be consolidated

into a single code block. For example, a sequence involving selections, projections,

and joins might be executed in a singular loop, ultimately resulting in a hashmap

probed later by the other collection in the join.

Similar to the approach detailed in [44], the code is tailored for diverse back-

ends. This adaptation is crucial for JSON data, which may be stored as BSON

or other formats. Leveraging information from the DataPilot and the query, an

attempt is made to determine or narrow down possible data types. For instance, if

projections involve attributes like a·b·c and a·b·d, and the DataPilot indicates that

a·b·c is consistently an integer while a·b·d is consistently a string, a structure with two

fields (an integer and a string) is created to capture these values. In cases where a·b·c

might be either an integer or a float, a structure with a float is created, converting

a·b·c as necessary. In scenarios where a·b·c is variably an integer or a string, a typed

union with std::variant is used to store this value.

Additionally, the query itself aids in type inference. For instance, a condition like

order·discount= 0.5 implies that only numerical values of the attribute can satisfy

the condition. If the type of order·discount has not been conclusively determined

by the Data Pilot, the attribute is accessed, and non-numerical values (along with

their respective documents) are discarded without further condition checks.

The current strategy employs an "eager but opportunistic" approach to format

conversion. Data is converted upon access but only when required. For instance,

in the case mentioned above, order·discount is converted to check the condition.
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Only if the condition holds true are other attributes in the document accessed and

converted. This approach is efficient as it aligns with the principle of pushing down

projections, ensuring that only necessary attributes undergo processing.

2 Proof of Concept: Data Pilot Creation

This small experiment evaluates the runtime overhead of creating a Data Pilot during

parsing using a naive, non-optimized implementation. The Data Pilot is constructed

based in Pseudocodes 2, 1, and 3.

For Pseudocode 2, the experiment benchmarks two different data structures: the

HAT-Trie[7] and the Adaptive Radix Tree (ART)[48]. Note that while the HAT-Trie

and ART are designed with performance in mind, this experiment does not account

for considerations like parallel (multi-core) execution or tracking the last inserted

path.

In the case of Pseudocode 3, the experiment utilizes the SIMDJson on-demand

parser ([47]). This parser efficiently handles the placement and movement of the iter-

ator within and across documents. Additionally, serialization into BSON is integrated

into the parsing process using the libbson library from MongoDB.

The experiment consists of three benchmarks:

1. Path Insertion: Reads a file of JSON documents, extracts their paths one

document at a time, and inserts them into the designated data structure for

the Data Pilot’s pathstore. This benchmark solely measures the raw insertion

time for both the HAT-Trie and ART.

2. Data Pilot Creation: Reads a file of JSON documents, extracts their paths

one document at a time, and inserts them into the designated data structures

for the Data Pilot’s pathstore and counter store. Path types are counted dur-

ing this process. The Data Pilot implementation involves using a Pathstore

implementation (either a HAT-Trie or ART) to store the paths, and a vector of
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counters to store the counters of each path. When a new path is encountered, a

new counter struct is created and added to the vector, then the path is inserted

into the pathstore’s underlying data structure as a key, with its value being the

position of the counter struct in the vector. This benchmark measures the raw

creation time of the Data Pilot.

3. BSON Serialization: Reads a file of JSON documents and converts them

into BSON. Notably, the libbson library provides a function to parse JSON

into BSON, but this function is not utilized in the experiment. Instead, parsing

is handled using SIMDJson, and the respective BSON documents are created

using the relevant libbson directives. This benchmark measures the time taken

to serialize JSON into BSON, both with and without constructing the Data

Pilot.

The benchmarks utilize the Yelp 2019 Dataset, which serves as a subset of Yelp’s

businesses, reviews, and user data. This dataset comprises multiple text files, where

each line represents a JSON document. Each text file essentially represents a collec-

tion in its own right. For the experiments, the two smallest and largest files from

the dataset are selected. The smaller files pertain to businesses and tips, while the

larger ones contain user and review data. Henceforth, these collections are referred to

as Business, Tip, User, and Review. Table 16 provides pertinent details about each

collection.

Business Tip User Review
Size (MiB) 114 173 3208 5095
Number of documents 150346 908915 1987897 6990280
Number of complete paths 60 5 22 9
Maximum depth 2 1 1 1
Average depth 1.972 1.000 1.000 1.000

Table 16. Yelp collections used for the Data Pilot creation POC

220



Benchmark Implementation Yelp Dataset (time in ms)
Business Tip User Review

Path Insertion HAT-Trie 187 173 1542 2193
ART 183 120 1385 1661

Data Pilot Creation HAT-Trie 176 162 1466 2095
ART 265 204 2311 2330

BSON Serialization
HAT-Trie 417 437 4539 7128

ART 520 541 5653 7860
No Data Pilot 330 373 3668 6125

Table 17. Result of Data Pilot feasibility experiment

Results and discussion

All benchmarks are run on a Lenovo Legion Pro 5 laptop equipped with an AMD

Ryzen 7 5800H processor, 16GB of RAM, and running the Alma Linux 9.3 operating

system. Each benchmark is executed 5 times, and the average time is reported.

Table 17 summarizes the results of each benchmark and Figure 52 depicts them.

The results indicate that, on the whole, the HAT-Trie outperforms ART. However,

it is evident that ART generally exhibits superior performance in raw path insertion.

The observed performance degradation during Data Pilot creation and BSON Serial-

ization benchmarks when using ART can likely be attributed to its interactions with

the counter store implementation. It’s essential to emphasize that this experiment

does not delve into the intricacies of these issues, their underlying causes, or potential

solutions. Instead, it serves as a proof of concept, illustrating the feasibility of creat-

ing a Data Pilot at parsing time through a naive implementation with a reasonable

increase in running time. Specifically, when employing the HAT-Trie, a maximum

overhead of approximately 21% was observed across the Yelp datasets.

In the BSON Serialization benchmark, the User and Business collections exhibit

the most significant performance decline, with their running times increasing by 19.2%

and 20.86%, respectively, compared to plain BSON serialization without Data Pilot
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Figure 52. Results of benchmarks from the Data Pilot feasibility experiment

Business Tip User Review
Number of documents 150346 908915 1987897 6990280
Documents with at least
one missing path

100% 0% 0% 0%

Number of complete paths 60 5 22 9
Maximum depth 2 1 1 1
Overhead 20.86% 14.6% 19.2% 14.1%

Table 18. Minum overhead of Data Pilot creation in BSON Serialization benchmark
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creation. These collections share a common characteristic: they contain the highest

number of complete paths among all four collections. In contrast, the Tip and Re-

view collections, with fewer complete paths, show a lower overhead ranging between

14% and 15%, despite the Review collection occupying 4922MiB more space than

Tip. This information is summarized in Table 18, which presents the minimum over-

head recorded in the benchmark, observed in the HAT-Trie implementation. From

the table, it is evident that the more heterogeneous a collection is, the greater the

overhead incurred when creating a Data Pilot. Although heterogeneity is influenced

by multiple factors, including depth, the number of paths across all documents, and

documents with missing paths, the number of paths across all documents appears to

be the most influential factor on the overhead. This is expected, as a larger number

of paths increases the overall size of the Data Pilot.

3 Proof of Concept: Query Optimization Framework

The assessment methodology employs the TPC-H benchmark ([73]). Analogous to

the adaptation of the relational-formatted TPC-H data to JSON in the experiments

detailed in Section III.1, this experiment recreates the original data in JSON using two

approaches, yielding two schemas: Denormalized (referred to as S1) and Normalized

(S2). S2 comprises the collections Customer (C), Orders (O), Lineitem (L), Supplier

(S), and Part (P), thus mimicking the original relational schema. S1 consists of

collections COL—the amalgamation of C, O, and L through embedding—P , and S.

The latter two are linked through two-way embedding—documents in S incorporate

a list of ids from all associated parts, and in P a list of sub-documents modeled

after matching tuples from the PartSupp table in the relational schema (noting that

attributes from this table can be embedded in Parts, Suppliers, or both). Each

document in S includes a (single) subdocument modeled after matching tuples from

the junction of tables Nation and Region in the relational schema. The objective is

to leverage naturally occurring hierarchies between Customer, Order, and Lineitem
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to create a schema that exploits JSON’s ability to represent nesting.

This experiment employs a subset of queries from the TPC-H benchmark—1, 3,

4, 6, 12, 13, 18, and 22 for hierarchical data (only tables Customer, Orders, and

Lineitem are involved), 2 and 11 to address the M-N case (only tables Part, Supplier,

and PartSupp are involved), and 5 and 9 to address the mixed (1-M and M-N) case.

The experiments run on scale factors 1, 10, 25, and 50 using an IBM System x3650

M2 server with two Intel Xeon X5672 processors at 3.20GHz, 16 virtual cores, and

46GB of RAM running CentOS 7.6. MongoDB 4.4 and PostgreSQL 10.6 serve as

the baselines, with both database systems tuned according to best practices. One

database per system is created to hold the benchmark’s data.

While the entire framework described in Section III is not fully implemented,

the experiment aims to evaluate its potential before committing to a specific im-

plementation and to gain a better understanding of its weaknesses. To "simulate"

an algorithmic process, a translation from MongoDB’s aggregation pipeline to the

document algebra is defined by providing a translation for each operator involved in

any query ($lookup, $unwind, ...). On each algebraic query tree, the following

transformations are applied in the same order: pushing down selections, eliminating

nest/unnest pairs (whenever possible), transforming outer joins into joins (whenever

possible), and pushing down projections. Once the query tree is refined, plans are

generated by considering join orders. To simplify query plan generation and evalu-

ation and concentrate on the impact of algebraic optimization, no indices are used

(all access is through scan), and only hashing is considered as an implementation for

joins. As a result, only one join order is considered for plan generation, and cost

estimation is greatly simplified. This, in turn, makes it possible to generate a final,

compiled query via simple templates. Finally, it is assumed that a Data Pilot with

relevant information is available for each collection, as well as metadata about the

database structure. The ramifications of these simplifying choices are discussed in

detail later in this section.

224



The queries are reformulated both in MongoDB’s aggregation framework (referred

to as MongoDB queries for brevity) and as C++ programs (referred to as compiled

queries).

These compiled queries are constructed against MongoDB’s source code, utiliz-

ing their catalog library to access data files in the Wired Tiger storage engine. The

translation of MongoDB queries to the algebra, cost estimation, and query plans

computation for the compiled queries is performed manually. Queries are versioned

based on the schema they use (S1 or S2), except for 2 and 11 as they exclusively in-

volve P and S. Timing for MongoDB queries is accomplished using the aggregation

framework’s explain command running in "allPlansExecution" mode, compiled queries

leverage MongoDB’s function-level benchmarking library, and relational queries uti-

lize PostgreSQL’s explain analyze command. All queries are executed five times, and

the cache of the operating system and the respective database system is cleared after

each execution. The average running time is reported. Due to time constraints, there

is a set time limit of 10 hours per query, and indexes are added to the linking fields of

collections to favor MongoDB’s $lookup operator. Indexes are also added to foreign

keys on the tables of the relational database. During experimentation it is noted that

these indexes are not utilized by PostgreSQL nor our approach (as indexing is not

supported).

The results are presented on a per-query basis below, using the notation q<number>_-

[s1|s2]_[m|c] to distinguish MongoDB queries from compiled queries. Here, <number>

corresponds to the TPC-H query number, [s1|s2] denotes the denormalized (s1) or

normalized (s2) schema, and [m|c] indicates a MongoDB query (m) or a compiled

query (c).

Results

Queries 1 and 6: Both queries exclusively operate on lineitems. Query 1 involves

1 selection and 8 aggregates, while query 6 has 4 selections and no group by. Query
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Query Schema SF1 SF10 SF25 SF50

1
S1 46.20% 43.27% 43.85% 39.25%
S2 38.19% 31.16% 32.97% 28.77%
S2† 38.74% 31.36% 34.12% 32.11%

2 N/A‡ 43.65% 32.70% 41.84% 36.94%

3 S1 45.15% 50.04% 42.34% 9.14%
S2 -127.10% -117.33% -122.46% -119.98%

4 S1 52.31% 56.27% 56.33% 37.94%
S2 30.20% 27.72% 27.25% 25.95%

5 S1 97.06% 97.22% 96.82% 95.39%
S2 93.98% 93.91% 93.69% 93.12%

6 S1 35.35% 44.62% 37.92% 30.77%
S2 30.83% 32.12% 23.15% 20.36%

9 S1 99.21% 99.15% 99.12% N/A§
S2 91.34% 92.61% 92.63% N/A§

11 N/A‡ 81.11% 83.01% N/A§ N/A§

12 S1 11.24% 23.78% 14.32% 5.90%
S2 92.72% 92.72% 92.62% 92.38%

13 S1 15.16% 17.57% 19.36% 14.36%
S2 78.31% 78.85% 78.89% 81.50%

18 S1 55.58% 58.87% 54.32% 47.79%
S2 64.58% 64.50% 60.36% 56.68%

22 S1 49.48% 59.25% 65.51% 72.67%
S2 89.63% 89.19% 88.59% 90.65%

S1: Denormalized schema, S2: Normalized schema, S2†: Query on schema S2 with extra features
to handle data heterogeneity, N/A‡: Query only uses collections P and S, N/A§: Query was

killed

Table 19. Decrease in running time achieved by compiled queries compared to their
MongoDB query counterparts. Higher is better.
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1’s selection based on l_shipdate retrieves between 95% and 97% of the rows in the

table. In alignment with prior work ([54, 53]), the selectivity is enhanced to only

return 0.00028% of the rows. Figure 53a illustrates that q1_s1_c and q1_s1_m are

slower than their S2 counterparts. This is attributed to the former queries reading

all customers, orders, and lineitems, whereas q1_s2_c and q1_s2_m exclusively read

lineitems. Moreover, leveraging tight loops for processing extensive data enhances

code locality, boosting performance on compiled queries and significantly reducing

running time, as demonstrated in Table 19. A similar performance improvement is

observed for query 6.

The compiled queries rely on statistics to infer a field’s datatype. However, due to

the homogeneity of the TPC-H data, the DataPilot consistently returns a field’s exact

type. Consequently, q1_s1_c and q1_s2_c are generated under this assumption,

neglecting data heterogeneity. To address this, an alternative version of q1_s2_c

named q1v2_s2_c is created. This version employs a hash table with BSON keys

to handle cases where the same field may have different datatypes and introduces

checks (thereby introducing branches) to verify the correct datatype of attributes

before computing aggregates.

In Figure 54, the updated query demonstrates performance comparable to the

original version on S2. However, it is acknowledged that a few branch mispredic-

tions may occur due to the homogeneity of the dataset type. The investigation of

performance degradation in the presence of heterogeneous data is deferred to future

work.

Query 2: This query interacts with collections P and S. The compiled query

first constructs a supplier hashtable (first loop) and then iterates through documents

in P (second loop). The second loop navigates nested documents, modeled after the

PartSupp table in the relational schema, in the p_suppliers attribute to compute

the correlated sub-query. It subsequently performs a second pass to compute the

outer query. While optimizing time locality by having the second loop traverse p_-
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Figure 53. Running time of TPC-H queries 1-4 on PostgreSQL, MongoDB and our
compiled approach

suppliers in the first loop’s opposite direction could enhance performance, as shown

in Figure 53b and Table 19, the approach still outperforms both the relational and

MongoDB queries without such optimization.

Query 3: This query has one selection per table: Customer, Orders, and Lineitem,

with selectivities of ~20%, ~0.041%, and ~99.99%, respectively. q3_s2_m starts by

filtering out orders; thus, the aggregation pipeline starts from O, then joins O with

C and the result with L. It performs the appropriate aggregations. Notably, (1) the

system scans the index on O’s _id field as the first join retrieves ~41.3% of customers,

(2) unnesting of O after the first join is unnecessary since only one customer will be

retrieved per order, (3) the second join triggers an index seek on L’s l_orderkey

field, thus retrieving 0.042% of lineitems. q3_s2_c follows the plan shown in Fig-
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Figure 54. Q1 compiled queries vs PostgreSQL

ure 56. This plan is implemented using three loops. The first two scan O and L,

populate the hash tables, and filter the respective documents of these two collections.

The third one scans O, probes the hash tables created in the first two loops, and

computes aggregates. Sorting is done afterwards. Scanning L is the most expensive

step in this compiled query, taking ~86% of the time and being by itself slower than

what it takes q3_s2_m to finish. Figure 53c and Table 19 clearly show such a per-

formance gap and evidence one of the main weaknesses of the experimental setup for

the proposed framework: lack of indexes. q3_s1_m starts by filtering customers from

COL, then unnesting O, filtering orders, unnesting L, filtering lineitems and, lastly,

aggregating. q3_s1_c has three (nested) loops: The first one scans COL, the second

traverses orders from customers, and the third lineitems from orders. There are if-

statements before the second and third loops to avoid traversing orders and lineitems

not meeting the respective selection criterion. Because the selection on orders filters

out most documents (less than 0.001% of orders qualifies), MongoDB can afford to

access lineitem for the $lookup using the index and barely touch this table, while

the compiled approach is forced to scan it in its entirety. This effect is reminiscent

of sideways information passing ([40]), where information about selectivity in one

table gets propagated to other tables through join; the compiled approach does not

currently take advantage of this, but MongoDB does.

Queries 4 and 18: Query 4 features two selections over orders, one over lineitem,
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Figure 55. Running time of TPC-H queries 5, 6, 9 and 11 on PostgreSQL, MongoDB
and our compiled approach

Hash Join
O._id=L._id.l_orderkey

probe

Hash Join
O._id=O.o_orderkey

probe

scan + filter
o_orderdate<′1992−01−02′

O

hash

scan + filter
c_mktsegment=′AUTOMOBILE′

O

hash

scan + filter
l_shipdate>′1992−01−02′

L

Figure 56. plan for compiled query 3 on normalized schema (S2)

and a correlated sub-query within SQL’s exists operator that verifies if an order has

at least one lineitem delivered to the respective customer later than its committed
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Figure 57. Q5 compiled queries vs PostgreSQL

date. q4_s2_m’s pipeline begins with O, filters orders, and then joins with L. Mon-

goDB’s $lookup operator nests the matching lineitems, emulating the behavior of

SQL’s EXISTS and the sub-query by (1) filtering out lineitems received by the cus-

tomer earlier than its committed date and (2) removing orders left with an empty

array of lineitems. q4_s1_m follows the same approach but unnests orders instead of

using $lookup. q4_s2_c treats the query as an unnested version of the relational query

(i.e., a semi-join). q4_s1_c follows the same approach as q3_s1_c, using one loop to

traverse COL and two nested loops with if-statements in between. Figure 53d shows

the compiled approach outperforms MongoDB queries on their respective schemas,

and Table 19 demonstrates that the compiled approach achieves around a 2X consis-

tent speedup on S1 and a 1.4X consistent speedup on S2. Query 18 behaves similarly

to query 4 in both MongoDB and the compiled queries. However, a better speedup

over S1 is achieved on query 18 than query 4.

Query 5: This query has a selection over region and orders. The query makes

use of all tables in the relational schema and all collections of each of the schemas in

MongoDB. q5_s2_m is a modified version of MongoDB’s implementation of query 5

over S2 proposed in previous work ([54, 53]) that tries to mimic the plan in Figure 51b.

In practical terms, this means values of localField and foreignField in S6 of

Figure 49 are replaced with lineitems.l_suppkey and _id respectively, and the

value of $expr in S10 with
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Figure 58. Running time of TPC-H queries 12, 13, 18 and 22 on PostgreSQL,
MongoDB and our compiled approach

["$suppliers.s_nation.n_nationkey", "$customers.c_nationkey"]

This change allows MongoDB to use the index on l_suppkey, decrease the doc-

uments S6 outputs (i.e. increase join selectivity) and decrease S10’s input. q5_s2_c

follows the plan in Figure 51b. It creates hash tables for O, L, S and then traverses

O and probes them. The main bottleneck of this query is located in S10 for Mon-

goDB queries, but the compiled queries amortize it through pipelining. This explains

the gap between MongoDB queries and the compiled queries shown in Figure 55a.

Furthermore, because n_nationkey has low cardinality, it is feasible to create an

extra hash table with Boolean values when scanning S at a negligible cost to discard

customers not being in the same nation as the supplier that filled their order of parts.

This technique is incorporated in q5_s1_c and achieves an extra speedup. This is
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Figure 59. Q9 compiled queries vs PostgreSQL

shown more clearly in Figure 57 and Table 19.

Query 9: This query is similar to query 5. There is a selection over P , but there

are no customers. Thus, the pipeline of q9_s1_m can only start from COL to unnest

orders, lineitems and then join with P and S. These unnests increase the number

of input documents to join and harm performance as shown in Figure 55c. q9_s2_m

filters parts from P first and then joins with L and S, thus avoiding such problem.

q9_s2_c and q9_s1_c follow a similar approach, even outperforming the relational

query as shown in Figure 59.

Query 11: As stated in [54, 53], the way the M-N relationship between parts and

suppliers is modeled harms this query’s performance in q11_m and q11_c compared to

the relational schema as it forces joinining P and S. Notable, this can be avoided by

embedding PartSupp tuples as nested documents in S at the cost of more redundancy.

During experimentation, q11_m reached the $facet operator’s 100MB threshold on

scale factors 25 and 50, which forcibly aborted the query’s execution. Hence, their

running times are not reported on Figure 55d, nor Table 19. On q11_c, $facet is

treated as if joining two sub-queries in a relational schema, which is handled similarly

to query 4 for this case. Results in Figure 55d show the compiled approach is close

in performance to the relational query despite having to join S and P .

Queries 12 and 13: Query 13 has a sub-query with a left outer join that counts

orders per customer as long as they meet a condition set on attribute o_comment.
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Figure 60. Q12 compiled queries vs PostgreSQL and MongoDB query on S1

q13_s2_c manages the left join by creating a hash table with all customer keys and a

default counter value of 0, then traversing O, probing the hash table and adding one

to the counter matching the value of field o_custkey. q13_s1_c loops through nested

orders inside documents of COL, but it is slower due to the overhead of retrieving

nested lineitems, which is unnecessary as the query only needs customers and orders.

Figures 58a and 58b show that query 12 behaves similarly to query 13, but scales

worse on MongoDB queries where a join is involved. This is expected as query 12 uses

orders and lineitems, for which the join between O and L is much more expensive

than C and O. Furthermore, Figure 60 evidences that the extra overhead of reading

customers on q12_s1_c is much less than joiningO and L in q12_s2_c—small enough

that q12_s1_c is ~8% faster than q12_s2_c on average.

Query 22: This query features one sub-query in the from-clause and two nested

subqueries (at the same level). One is a scalar uncorrelated sub-query that computes

customers’ average positive account balance, and the other is an anti-join that ensures

customers of interest have not placed any orders. Similar to q11_s2_m, q22_s2_m uses

$facet to compute these sub-queries. This new version of the MongoDB query signif-

icantly improves performance compared to the previous work. q22_s1_m is kept as

described in [54, 53] as it is still faster than using $facet on S1. q22_s2_c handles the

anti-join by (1) creating a hash table based on the o_custkey field from O and (2)

discarding customer documents later on a successful probe. From a relational per-
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spective, it pushes down selections unrelated to the table in the outer query but pulls

up the selection involving the uncorrelated sub-query, keeping track of the number

of account balances and adding their values together to subtract from numcust and

totalaccountbal at the end for every customer with an account balance less than

or equal to the average. q22_s1_c simply checks the size of the array of orders in

every document of COL. Similar to other queries on S1, q22_s1_m and q22_s1_c

read more information than they need, making them slower than queries on S2 due

to the extra overhead. Figure 58d illustrates this.

Limitations and Analysis

This test acknowledges some critical limitations. A prominent one is the high ho-

mogeneity of the dataset, originating from a relational dataset, enabling the trans-

formation of every outer join into an inner join and eliminating all nesting. This

optimization aligns the plans closely with relational counterparts. Additionally, the

ability to specialize code for a single data type per attribute contributes to simplic-

ity, as the metadata requirements are akin to those of a relational database’s system

tables.

Despite these limitations, the test yields valuable insights. The summary, outlined

in Table 19, illustrates that the proposed approach consistently outperformed Mon-

goDB across all queries and schemas, except for one instance (query 3 on S2, discussed

earlier). The improvements range from modest (5.9%) to substantial (97%), with an

average improvement that is notably significant, approaching 50%. Furthermore,

the observed improvement either sustains or increases as the database size grows in

nearly all cases, indicating robust scalability compared to MongoDB. Notably, the

proposed approach achieved these results without employing indices or additional

performance-enhancing methods (caches, multi-threading, etc.), relying solely on the

described optimizations. In contrast, indices were provided for MongoDB, and mul-

tiple versions of each query were executed to maximize their aggregated pipeline’s
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performance.

In comparison with PostgreSQL, a more mature system, the proposed approach

demonstrates competitive performance. It outperforms PostgreSQL in some queries

(2, 4, 5, 9, 18) and lags slightly in others (1, 11, 12, 13). Some queries show varying

results between schemas (3, 22), but seldom does the proposed approach trail by

a significant margin (query 6). Thus, despite acknowledged limitations, the results

substantiate the viability and effectiveness of the proposed approach.
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CHAPTER VII

RELATED RESEARCH

1 Introduction

The research discussed in this chapter is highly pertinent to the JSON data model, its

formal representation as JSON Trees, and the intricacies of cost-based optimization

within JSON document stores. The core of this thesis hinges on a JSON data model

rooted in labeled trees. Notably, various researchers concur that JSON documents

naturally manifest as labeled trees, although a unanimous consensus regarding the

precise labeling scheme remains elusive. The comprehensive exploration of these

researchers’ findings is presented in Section VII.2.

It is important to note that while alternative formalisms for JSON exist, only

those directly relevant to this thesis are referenced here. The thesis is centered on

DataPilots, which draw inspiration from XML DataGuides. Consequently, the ensu-

ing sections delve into a comparative analysis of how other initiatives have adapted

DataGuides to suit the idiosyncrasies of JSON, all of which are detailed in Sec-

tion VII.3.

2 JSON Data Model

[14] formalizes MongoDB’s data model and a fragment of the aggregation framework

query language called MQuery, comprised of stages match, unwind, project, group and

lookup—each named after the corresponding pipeline stage in MongoDB’s aggregation
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framework. The authors outline the (rough) correspondence between MQuery stages

and NRA operators select, unnest, project, nest and left join respectively, and claim

MQuery and NRA to have equivalent expressive power. Furthermore, they analyze

fragments of MQuery—each denoted byMα, where α are the initials of the operator

names in the fragment (e.g. MMUPG)—to determine their computational complexity.

In their formalization, the authors view a JSON Object as an unordered set of

key-value pairs such that a key is always a unique string and a value is either a literal

(i.e. any atomic value such as an string, number, date, etc.), object or an array of

values. MongoDB documents are viewed as unordered, unranked, node-labeled and

edge-labeled trees, where labels belong to one of the three disjoint sets: K of keys,

I of (non-negative integer) array indexes and V of node labels to denote literals. A

MongoDB document is then defined as a tuple (N,E,Ln, Le) where N is a set of

nodes, E a set of edges, (N,E) is a tree, Ln : N → V ∪ {′⦃⦄′,′ [ ]′} is a node labeling

function and Le : E → K ∪ I is an edge labeling function, such that outgoing edges

from nodes labeled ′⦃⦄′ must be labeled by keys, outgoing edges from nodes labeled

by ′[ ]′ must be labeled by distinct array indexes and any node labeled by a literal

must be a leaf. A collection is viewed as a forest that can be transformed into another

forest by any MQuery stage.

An MQuery (or MQuery pipeline) has the form s1 ▷ s2 ▷ . . . sk, where each si|1 ≤

i ≤ k is a stage in the pipeline and sa ▷ sb denotes output documents from stage sa

are stage sb’s inputs. The authors define 5 stages:

• Match stage (µ):

– µφ: Select tree based on criterion φ, which only supports path existence

or path equality comparisons to constants (the authors claim that adding

other order comparison operators besides equality will not affect their com-
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plexity and expressivity analyses, thus they omit them for simplicity), thus

the values of two paths cannot be compared to each other (note that this

happens in MongoDB’s $match stage as well without using the $expr -

operator). When using equality to compare a path p that evaluates to an

array a with a value v, this stage checks (1) whether v is exactly a or (2)

v is within a.

– divergence with MongoDB: for MongoDB’s $match, p = null for some

path p holds if p evaluates to null or is missing, whereas for µ it only

holds in the former case.

• Unwind stage (ω):

– ωp: flatten array reached by path p and output a new tree per element in

the array. For any tree t, if p is not defined in t or evaluates to a non-array

value, t is discarded from the output.

– ω+
p : Same as ωp, but preserves t if p is not defined in t or evaluates to a

non-array value.

• Project stage (ρ):

– ρP : project away, rename or create new paths. P is a sequence of the form

p or q/d, where p is a path to be kept, and q a new path whose value is

equal to the value d evaluates to. Unlike φ in stage µ, d can be a boolean

expression β allowing the value comparison of two paths, or a conditional

expression (β?d1 : d2)—read as: if β, then evaluate to d1, else evaluate to

d2. The key _id is kept by default.

– ρid
P : Same as ρP , but key _id is projected away by default. This would

be (roughly) equivalent to using $project in MongoDB like: {$project:

{_id:0, ...}}.
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– divergence with MongoDB: Unlike MongoDB’s $project behavior for

equality comparisons between arrays and values, where only check (1)

described in stage ω is performed, β performs both checks in this stage.

• Group stage (γ):

– γG:A: group trees based on condition G and collect values for each group

based on condition A.

– divergence with MongoDB:

∗ when grouping by one path, $group creates a single group for docu-

ments where the grouping path is missing or evaluates to null. e.g. for

documents doc1, doc2, . . . docn, the expression γg/y:... puts all doci where

y is missing or evaluates to null in a group with _id = ⦃g : null⦄.

∗ when grouping by multiple paths, $group creates two groups, one

for documents where all grouping paths are missing and another for

documents where all grouping paths are null. e.g. for documents

doc1, doc2, . . . docn, the expression γg1/y1,...,gm/ym:... puts documents where

all yj|1 ≤ j ≤ m are missing in a group with _id = ⦃⦄, while

documents where all yj evaluate to null are put in a group with

_id = ⦃g1 : null, . . . , gm : null⦄.

• Lookup (λ):

– λp1=C.p2
p : joins input documents with documents from collection C using

paths p1 (evaluated on input documents) and p2 (evaluated on documents

in C) to express the join condition, then stores matching documents in an

array under path p.

The semantics of these stages can, in some cases, abstract the use of MongoDB

operators with MongoDB pipelines. For instance, when renaming paths inside arrays
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one can use the combination of $project and $map, or just $project. For instance,

the authors (in page 7) show the MQuery:

ρawsName/awards.award,awsY ear/awards.year(. . . )

which can be translated as:

{$project: {

awsNames: {

$map:{

input:"$awards",

as:"aws",

in:"$$aws.name"

} },

awsYear: {

$map:{

input:"$awards",

as:"aws",

in:"$$aws.year"

} } }

}

or the more simple pipeline:

{$project: {awsNames:"$awards.name", awsYear:"$awards.year"} }

Note that even if both MongoDB pipelines produce the same result, $map inherently

produces a new array, which could be deemed as an incorrect translation of an alge-

braic operator depending on how such operator is defined. For this particular case, the

authors mention that arrays get “disassembled” when renaming paths within, which

is made explicit from the combination of $project and $map (implementation-wise,
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using just $project performs better).

To perform their analyses of NRA and MQuery’s expressive power, the authors

define new higher order pipeline stages to “linearize” nested queries on (tree-shaped)

NRA expressions. This is necessary because MQuery is based on MongoDB’s aggre-

gation pipeline, where the first stage fetches documents and each subsequent stage

acts over the output of the previous stage, which makes it impossible to support

nested queries. To this end, the authors define the new pipeline stages:

spec2 = ρid
origDoc/ϵ,actRel/[1,2] ▷ ωactRel ▷ ρactRel,{reli/((actRel=i)?origDoc:dummy)}i=1,2

where:

1. ρid
origDoc/ϵ,actRel/[1,2] creates (and projects) the new path “origDoc” whose value is

the input document itself and the path “actRel” with value [1, 2]. e.g.

document ⦃ name: jhon, age: 20 ⦄

becomes: ⦃ origDoc:⦃ name: jhon, age: 20 ⦄, actRel:[1,2] ⦄

2. ωactRel unwinds “actRel”. The purpose of this stage is to duplicate the original

document so that two independent pipelines operate over different copies of the

same document. e.g. from the previous stage, two new documents are created:

⦃ origDoc:⦃ name: jhon, age: 20 ⦄, actRel:1 ⦄

⦃ origDoc:⦃ name: jhon, age: 20 ⦄, actRel:2 ⦄

3. ρactRel,{reli/((actRel=i)?origDoc:dummy)}i=1,2 projects “actRel” and creates a new prop-

erty called “reli”, where i is the same number as the value of “actRel”. “dummy”

is some non-existent path that causes ρ to ignore (project away?) “reli” for i ̸=

actRel.from the previous stage, documents become:

⦃ actRel:1, rel1: ⦃ name: jhon, age: 20 ⦄ ⦄

⦃ actRel:2, rel2: ⦃ name: jhon, age: 20 ⦄ ⦄
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pipeline(q1, q2) = spec2 ▷ subq1(q1) ▷ subq2(q2)

where q1 and q2 are two independent sequences of stages (i.e. two pipelines) that op-

erate over the same input documents and subqj(qj), j ∈ {1, 2} is defined as subqj(s1)▷

· · · ▷ subqj(sn), for qj = s1 ▷ · · · ▷ sn. Because spec2 modifies the schema of doc-

uments, stages in q1 and q2 must be adapted through subq1 and subq2 respectively.

The authors provide a table in page 10 that shows the translation of a MQuery stage

s using subqj(s). For instance, subqj(ω+
p ) = ω+

relj.p. Note the resemblance of this stage

to MongoDB’s $facet stage:

{ $facet: {

<outputField1>: [ <stage1>, <stage2>, ... ],

<outputField2>: [ <stage1>, <stage2>, ... ],

...

}

}

which computes independent pipelines over the same set of input documents and

stores the output of each one in a separate array. In $facet, the MongoDB equiv-

alent of MQuery’s spec2 is done by the system, thus there is no explicit document

duplication.

The paper [37] introduces J-Logic, a logical framework rooted in Datalog. This

framework is designed for the analysis of JSON querying, employing a Sequence

Datalog language that operates on sets of sequences using paths as its foundation.

In this formalism, JSON documents are conceptually represented as labeled trees,

mirroring the approach outlined in this thesis.

The paper places particular emphasis on the generation of data elements, such as

keys, edge labels, and nodes within a document, as outcomes of operations performed

243



between documents. This methodology results in the encapsulation of operation

results within a single JSON document, as opposed to a collection of documents.

To address issues like naming conflicts or the necessity for creating new keys, the

authors propose a technique called packing. Packing involves concatenating a key

sequence to generate a new key. For instance, the authors generalize the cartesian

product as follows:

Consider two documents, D1 and D2, defined as: D1 = ⦃k1
1 : v1

1, k
1
2 : v1

2, ..., k
1
n :

v1
n⦄, D2 = ⦃k2

1 : v2
1, k

2
2 : v2

2, ..., k
2
m : v2

m⦄. Their cartesian product is represented as:

⦃ ⟨k1
1 · k2

1⟩ : ⦃d1 : ⦃k1
1 : v1

1⦄, d2 : ⦃k2
1 : v2

1⦄⦄,

⟨k1
1 · k2

2⟩ : ⦃d1 : ⦃k1
1 : v1

1⦄, d2 : ⦃k2
2 : v2

2⦄⦄,

. . .

⟨k1
1 · k2

m⟩ : ⦃d1 : ⦃k1
1 : v1

1⦄, d2 : ⦃k2
n : v2

n⦄⦄,

⟨k1
2 · k2

1⟩ : ⦃d1 : ⦃k1
2 : v1

2⦄, d2 : ⦃k2
1 : v2

1⦄⦄,

. . .

⟨k1
n · k2

m⟩ : ⦃d1 : ⦃k1
n : v1

n⦄, d2 : ⦃k2
m : v2

m⦄⦄ ⦄

Here, ⟨k1
i · k2

j ⟩ signifies a packed key resulting from the concatenation of keys k1
i and

k2
j .

Note that this cartesian product is non-commutative due to the nature of packed

keys, which are formed by concatenating the key from the right-hand side document

to that of the left-hand side document. Hence, swapping the documents would yield

different packed keys.

To address this, the authors propose transitioning from packed keys to "Object

Identifiers" (OIDs), as proposed in ILOGIC[38]. OIDs are independent of the order

in which the arguments appear, relying instead on the key pairs themselves. This

adjustment renders the cartesian product commutative.

In summary, the authors highlight the potency of J-Logic as a language, par-

ticularly in handling non-recursive queries over deeply nested data. The concept of
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packing serves as a versatile tool, enabling the application of various common tech-

niques used in traditional relational optimizers, such as duplicate elimination.

In [39], the authors introduce an innovative approach to compute the similarity

between JSON documents, which they aptly term the JSON Edit Distance (JEDI).

The authors utilize trees as their foundational structure for representing JSON data,

but unlike the methodology presented in this manuscript literals are stored as node

labels, and the value “null” is assigned when a node signifies an object or an array.

The authors also introduce a secondary node labeling function, which serves to

assign types (namely, object, array, key, or literal) to each node within the JSON

tree. Additionally, they introduce a strict, partial ordering mechanism, denoted as

<S, which they refer to as the "sibling ordering." This ordering applies exclusively

to elements within arrays and proves to be especially beneficial for JSON similarity

queries. It provides a significant advantage over the conventional representation of

array indexes using numerical edge labels, as the latter approach introduces an error

of magnitude O(n).

To illustrate this point, the authors present a straightforward example: consider

two JSON documents containing arrays, [‘A’, ‘B’, ‘C’, ‘D’] and [‘B’, ‘C’, ‘D’]. In this

scenario, the array index of each element (represented by edge labels) differs due to

the absence of ‘A’ in the second array, resulting in a substantial O(n) error.

It is noteworthy, however, that the authors’ approach is not fundamentally in-

compatible with this manuscript’s model of JSON documents as sets of paths. In

fact, the concept of sibling ordering can be seamlessly incorporated into this work’s

framework:

For any two paths, p and q, the sibling order p <S q holds true if both paths share

a common prefix, denoted as r, satisfying the following:

(∃x ∈ Z+ ∪ {0})(∃y ∈ Z+ ∪ {0})[r · x ⪯ p ∧ r · y ⪯ q ∧ x < y]

This adaptation allows for the integration of the sibling ordering concept while
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preserving the compatibility between the two approaches.

Additionally, the authors allude to the potential utility of JEDI in identifying

schemas for similar documents. However, they do not delve into further details or

provide an in-depth exploration of this application.

3 DataPilot and Query Optimization

In [35], DataGuides were introduced as a concept for XML databases. Much like

DataPilots, DataGuides serve the purpose of offering structural overviews of XML

data, acting as dynamic schemas, storing statistics, and contributing to query op-

timization. The paper puts forth a formal definition of a DataGuide and outlines

algorithms for its creation and maintenance.

The authors underline that DataGuides are rooted in the transformation of a non-

deterministic finite automaton (NFA) into a deterministic finite automaton (DFA),

as mentioned in [60], with the NFA originating from the OEM data model. Conse-

quently, an OEM model can give rise to multiple DataGuides, akin to the various

equivalent DFAs derived from the NFA. Among these DataGuides, selecting one to

maintain data summaries (both structural and statistical) is not a straightforward

task. For instance, a minimal DataGuide, while the most concise, proves to be the

most challenging to keep up-to-date in the face of updates. Notably, this issue does

not apply to DataPilots, given that JSON data is inherently deterministic. How-

ever, it’s worth noting that multiple collections may share the same DataPilot, as

DataPilots discard array labels and consolidate them into the ⋆ label.

Additionally, the paper explores the utility of DataGuides as path indexes, where

path existence is verified by referencing the DataGuide and subsequently extracting

object IDs from other accessible indexes upon successful verification. This approach

can also be adapted for DataPilots. It’s worth noting that the paper does not delve

into estimating data or detail how the statistics maintained in a DataGuide are up-

dated based on a sequence of query operators.
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[45] introduces a versatile system designed for querying a wide array of heteroge-

neous datasets stored in various formats. This system, named Proteus, serves as an

analytical query engine with the adaptability of a general-purpose query engine. It

achieves this by employing a modular architecture that relies on plug-ins to manage

statistics and calculate query costs for different data types. Consequently, Proteus

can be easily extended to support new data formats without the need for data con-

version into a uniform representation.

One notable feature of Proteus is its ability to query datasets with varying formats

directly, avoiding the necessity of transforming data into a standardized structure.

This approach is especially advantageous when dealing with format-variable work-

loads.

The authors of the paper highlight a key distinction between Proteus and special-

ized data model systems like MongoDB or CouchDB. While the latter require users to

handle data integration through middleware when conducting cross-dataset queries,

Proteus offers a unified data model. This model employs monoid comprehension cal-

culus as its primary query language, providing both flexibility and expressiveness.

This flexibility allows for the mapping of other query languages as needed.

In terms of query optimization, the approach presented in this thesis shares some

similarities with Proteus:

• Both systems employ nested relational algebra as an internal representation of

queries. Proteus initially translates queries into calculus expressions and then

restructures them as nested relational algebra trees.

• Both leverage the code compilation strategy introduced by Thomas Neumann

in the Hyper system ([62],[61]).

• Both follow a multi-step approach for generating query plans, including rule-

based rewriting followed by cost-based transformations.
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However, it’s important to note that the primary focus of Proteus is to serve as

a general-purpose query engine adaptable to diverse data types and formats. In con-

trast, the approach described in this manuscript centers on a theoretical JSON-centric

query engine. While both systems use structural indexes, they do so differently. Pro-

teus employs structural indexes to optimize data access by navigating through data

and extracting only necessary values. In contrast, a Data Pilot is utilized in this

manuscript’s approach to aid in cardinality estimation and provide optimization hints

when more suitable indexes are unavailable.

In their work [52], the authors present an approach to representing JSON doc-

uments as tree structures. They introduce three distinct types of nodes within this

tree, each representing JSON objects, JSON arrays, and JSON scalars. In essence,

they construct JSON documents as a JSON DOM tree.

The DataGuide associated with this JSON DOM tree serves as its “skeleton”.

Here, leaf scalar values are replaced with data type and length information. To form

a Collection DataGuide, the DataGuides from all documents in the collection are

merged. During this merging process, duplicate tree paths are eliminated, provided

they exhibit the same node type throughout the entire path. Tree paths where at

least one node type differs at any point are considered distinct.

When merging two paths p and q, the authors employ two strategies when p = q

and node types differ only at the leaf nodes:

• If both p and q are scalars, then either one is retained in the DataGuide, but the

type information in the leaf node is generalized. For example, if the conflicting

types are string and number, the DataGuide stores the string type and the

maximum length between both.

• Otherwise, both p and q are stored separately, each with its corresponding type

information and length.

Notably, their DataGuide differs from the Data Pilot discussed in this manuscript
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in several key aspects:

• A Data Pilot stores only one instance of each path, and array indexes on a path

are consistently replaced by a special character (⋆). Consequently, paths with

different array indexes are considered equivalent.

• While a Data Pilot records information about path occurrences grouped by

type, it extends its focus beyond type length.

• The authors leverage the Data Guide to establish a virtual relational view,

allowing them to query relational and JSON data in tandem. Conversely, a

Data Pilot serves as a tool to provide optimization hints to the query optimizer,

primarily when no suitable index is available.

These distinctions underline the unique functionalities and applications of the DataGuide

and Data Pilot in their respective contexts.

In their work, [76] introduces a comprehensive JSON taxonomy and conducts

benchmarking exercises on various popular binary JSON specifications. Their eval-

uation employs the "SchemaStore open-source test suite" — a rich resource encom-

passing both schema-driven and schema-less JSON datasets. Notably, the primary

focus of their research revolves around exploring novel space-efficient representations

for JSON data in binary form.

Within the framework of their taxonomy, the authors introduce a set of statis-

tics aimed at summarizing document structure and categorizing individual docu-

ments. To facilitate this, they have developed a tool called JSON Stats (accessible at

https://www.jsonbinpack.org/stats/). These statistics are designed for analyz-

ing individual documents and do not extend to the level of collections. Additionally,

some of these metrics are tightly coupled with specific binary serialization formats,

and their applicability to query optimization remains unaddressed. In contrast, a

Data Pilot is serialization-agnostic and centers its focus on enhancing query opti-

mization rather than document categorization.
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By incorporating a Data Pilot approach, it becomes feasible to extend and adapt

some of these statistics for collection-level analysis, offering approximate and re-

purposed insights tailored to query optimization. For instance, the authors’ metric

"document redundancy," which quantifies the percentage of duplicated values within

a JSON document, can be re-envisioned to gauge the homogeneity within a collection.

Indeed, a Data Pilot implicitly relies on this concept when estimating the cardinality

of a selection. In cases where the values from a path referenced within a selection

exhibit heterogeneity, it may lead to improved cardinality estimates, demonstrating

the potential for enhancing query optimization strategies.

In their research presented in [17], the authors focus on visually representing

the intricate relationships between schemas within different services operating within

the same domain or web API. The motivation behind this endeavor stems from the

challenge of dealing with data from disparate providers. Often, when publishing or

consuming data from various sources, it becomes essential to navigate and extract

the required information from service responses, even when those services lack com-

prehensive documentation.

To facilitate this exploration, the authors develop a dedicated plugin for the popu-

lar Eclipse Integrated Development Environment (IDE). This plugin empowers users

to generate insightful visualizations that unveil the underlying relationships between

services. This process unfolds across three distinct phases:

1. Pre-discovery Phase: Initially, the authors define the JSON grammar using

the Eclipse Xtext framework. This step yields not only the JSON metamodel

but also the essential tooling, known as the "injector", necessary for transforming

documents into models conforming to the JSON metamodel. Consequently,

every document can be seamlessly converted into an Ecore model.

2. Single-Service Discoverer Phase: In this stage, an Ecore model is gener-

ated, providing a general description of the models encompassing all injected
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document models.

3. Multi-Service Discoverer Phase: Building upon the models from the previ-

ous phase, this step produces a composite model that amalgamates the various

individual models.

Identifying the correspondences between these models, however, presents a compu-

tational challenge, as it is an NP-hard problem, reducible to graph isomorphism.

Nevertheless, the authors posit that the complexity of finding an approximate solu-

tion remains manageable, particularly when there are numerous similarities between

the models. This expectation holds since these models inherently belong to the same

application domain.

Comparatively, this paper diverges from the focus of this manuscript, as it primar-

ily seeks to enhance web API documentation by elucidating the relationships among

documents returned by services. Nonetheless, an intriguing application of their work

to query optimization emerges. This could involve reimagining what they term “ser-

vices” as operations in a query and constructing a dependency graph. Within this

graph, nodes would represent operations, while the edges’ weights would signify car-

dinality estimations. The ultimate goal would be to minimize a cost function applied

throughout a path from the query’s input to the target output, thereby identifying

the most efficient path to reach the desired query output.

In [9], an algorithm for schema inference is presented, which utilizes a map-reduce

approach. The algorithm is executed within the Apache Spark framework and incor-

porates a parameter to control the precision and conciseness of the inferred schema.

Regardless of the chosen precision level, the inferred schema includes information

about mandatory fields (labels that appear in all records) and optional fields (labels

that appear in some records) within JSON records. In the most precise schema, the

algorithm identifies co-occurrences of fields. Notably, the focus of this work is on

inferring the structural schema of extensive JSON datasets, without delving into the
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potential applications of such schema for query optimization, although it underscores

its significance for this purpose. Additionally, this work does not provide frequency

counts of types, which are covered in a separate paper by the same authors ([8]).

In [18], a JSON to Relational mapping layer, named Algo, is introduced. It out-

lines two strategies for mapping a JSON collection into a relational schema: (1)

employing a single table that retains type information, resulting in the relational

schema collection(objid, keystr, valstr, valnum, valbool), and (2) using one table per

primitive type, resulting in separate relational schemas: collection_str(objid, keystr,

valstr), collection_num(objid, keystr, valnum), and collection_bool(objid, keystr, val-

bool). Queries in the Algo/SQL language described in the paper are adaptable to

either strategy, as they are translated into SQL queries customized for the chosen

approach.

Notably, the authors’ work relies on the underlying RDBMS for query optimiza-

tion and primarily focuses on the mapping layer, aligning with the approach used

in XML-enabled databases. In contrast, this thesis explores optimization strategies

within a JSON model based on labeled trees, utilizing a structural summary data

structure inspired by XML DataGuides.

In [46], the authors introduce the concept of utilizing a miner, inspired by XML

research[57], for schema extraction in JSON data. Their approach also considers the

incorporation of statistics during schema construction. They employ a data structure

termed the “Structure Identification Graph”, where nodes and edges indicate the

presence of structural properties in specific JSON documents, including references

to the documents. Due to potential memory usage concerns, the authors present a

more concise version of this structure, referred to as the “Reduced Structure Identi-

fication Graph”, which records frequency of appearances only. The authors explore

applications of the initial structure in detecting potential schema outliers and discuss

how both versions can be employed for calculating similarity measures and gathering

statistics, including frequency counts and derived information from these counts.
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In comparison to this thesis, the authors’ work primarily focuses on schema ex-

traction and outlier detection. Notably, their work does not further delve into the

application of these graphs for query optimization.

In [11], the authors employ a concept reminiscent of this thesis’ Data Pilots,

viewing them as sets of paths. They introduce a repository termed a dictionary,

comprising key-value pairs or tuples. Each key represents a potential path existing

within any document from a collection, while its corresponding value consists of a set

of all absolute paths originating from the root node leading to that key. For exam-

ple, a tuple from the paper might resemble (year, {year, info·year, film·details·year,

description·year}).

The paper primarily focuses on utilizing reformulation rules derived from a collec-

tion’s dictionary. These rules automatically rewrite queries to ensure that all absolute

paths linked to every path used within the query are appropriately considered. How-

ever, unlike this thesis, the paper does not discuss considerations related to cost-based

query optimization, nor does it address the utilization of path occurrences in query

rewriting.

In the AsterixDB project ([5, 13, 67]), queries are processed using a query algebra

known as Algebricks, with optimization revolving around algebraic expressions ([12]).

While this methodology shares similarities with the framework proposed in this thesis,

significant distinctions exist.

Firstly, AsterixDB operates as a standalone system, with Algebricks tailored

to function alongside the SQL++ query language, executing query plans through

Hyracks—a framework facilitating parallel execution of data-flow jobs ([13]). Con-

versely, the document algebra introduced in this thesis is agnostic to both system

architecture and query language.

Secondly, optimization within Algebricks relies on rule-based mechanisms, con-

trasting with the proposed cost-based approach in this thesis. Here, paths and their

occurrences are leveraged to generate cardinality estimations when suitable indices
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are unavailable.

Thirdly, while Algebricks maintains a data-model-agnostic stance, the document

algebra in this thesis specifically targets JSON data. As a result, Algebricks necessi-

tates language developers to furnish families of operators to translate abstract query

plans into physical operators, alongside providing data-model-specific rewrite rules

for the optimizer and an implementation for a Metadata interface supplying data

information such as schema and keys. Conversely, the proposed document algebra’s

JSON focus obviates the need for such extensive support. However, in pursuit of sys-

tem independence, the proposed approach mandates translations from diverse query

languages to the document algebra, along with specialized code generation for various

back-ends.

Lastly, in AsterixDB, a tree-like structure akin to a Data Pilot is employed to store

schema information. However, its primary purpose lies in tuple compaction, aiming

to minimize storage requirements, particularly in highly heterogeneous collections, as

elucidated in [4]. In contrast, this thesis leverages Data Pilots at the logical layer,

rather than the physical one, to aid a query optimizer in making informed decisions

regarding optimization strategies when suitable indices are unavailable.

In [70], the authors introduce a rule language for JSON, termed constrained tree-

rules, grounded in automata theory. Their contribution lies in devising a rewriting-

based reasoner tailored for JSON document stores, enabling query composition and

rewriting. The paper’s primary objective centers on empowering users to formulate

queries that operate seamlessly across heterogeneous data, all without necessitating

prior knowledge of the schema. In this regard, the authors prioritize flexibility over

efficiency, diverging from the primary motivation of this thesis. Their rule-based

query rewriting technique hinges on a dataguide-like structure akin to the Data Pilot

proposed in this thesis, facilitating the generation of potential query rewritings.

In [74], the authors introduce the JXPLAIN algorithm, designed to extract schema

information from a collection. Unlike the structure of Data Pilots, the author’s
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schema inference approach refrains from immediately assuming that every document

mirrors a tuple, as typically observed in relational databases. Instead, it accounts

for scenarios where a document might encapsulate an entire collection. To discern

between these cases, documents undergo classification as tuple-like or collection-like

based on various heuristics. While this approach may offer advantages over the sim-

plistic assumption of document uniformity inherent in Data Pilots, it comes at the

cost of slower extraction processes.

Moreover, a key disparity between the focus of the paper and this thesis lies

in their respective research objectives. While the paper prioritizes the provision of

highly accurate and precise schema descriptions, it does not delve into discussions

regarding the utilization of such schemas and the information they contain to aid in

query rewriting or to facilitate cost-based optimization.

In [56], the authors introduce JSONoid, a tool dedicated to distributed schema dis-

covery using monoidal structures. Their approach to schema construction is straight-

forward and intuitive: they extract the schema of each individual document and

merge them into a schema that encompasses the entire collection. This principle

aligns with the methodology employed in this thesis for creating a Data Pilot. Simi-

larly, both the paper and this thesis gather metadata about the collection and utilize

it to generate cardinality estimations. However, the execution of this principle and

the aim of utilizing the generated schema and gathered metadata differ significantly

between the two approaches.

In this thesis, the Data Pilot is proposed as a logical data structure that, in con-

junction with the Data Pilot algebra, enables the production of cardinality estimates

at each stage of a query. It also provides hints to an optimizer regarding whether a

specific optimization should be applied or not. Conversely, the paper utilizes a combi-

nation of multiple statistical data structures such as Bloom Filters and HyperLogLog

to estimate the collection’s structure and approximate cardinality. The objective

is to furnish analysts with insightful information about the data, with discussions
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on potential applications including outlier detection and constraint discovery (e.g.,

suggesting possible foreign-key-like constraints).

In summary, the paper primarily focuses on data exploration, whereas this the-

sis emphasizes aiding cost-based optimization through path occurrences and derived

statistics from path occurrences.

In [65], the authors present the Zed data store, which harnesses the Zed super-

structured data model, a comprehensive framework encompassing both JSON and

relational data models. This data model encompasses a robust type system featuring

primitive types (such as int32, string, etc.), complex types (including record and ar-

ray), named types, and the null type. Each document in the Zed system is annotated

with its corresponding type information, and the system relies solely on the type

system to represent the schema of a collection.

Regarding analytics performance, the system adopts a dynamic columnar storage

approach, wherein columns are constructed based on the types identified from indi-

vidual documents. However, the specifics of this process are not elaborated upon.

Furthermore, there is no explicit mention of how the schemas are utilized for query

optimization, nor is there clarity on whether statistics are gathered as part of the

system’s functionality.
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