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ABSTRACT 

EMERGENCY VEHICLE PRIORITIZATION IN CONNECTED AND 

AUTONOMOUS TRAFFIC 

Mohamadreza Haghani 

April 26, 2024 

Introduction: 

Reducing the response time of emergency vehicles (EV) is highly important due to the 

relationship between response time and fatality rate. Emerging technologies can help 

reduce response time by warning vehicles to an approaching EV and harmonizing the 

movement of vehicles to decrease the lane-changing interference. On the other hand, EV 

prioritization can negatively impact general traffic especially in cross streets of signalized 

intersections. In this research, three main objectives were followed. Firstly, creation and 

dissipation of EVP disruption on arterial cross streets was studied to recommend solutions 

to prevent this disruption. Secondly, lane-changing and stopping behavior of CAVs were 

studied in EV prioritization to identify the best lane-changing behavior through minimizing 

delay. Thirdly, a cooperative behavior framework was developed for CAVs to optimize 

their trajectories when prioritizing EV to minimize lane-changing conflict. 
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Methods: 

In the first section of this research, a shockwave-based queue length estimation model was 

developed to determine how EVP affects cross street queue length during and after EVP. 

Using the developed model, the influence of signal timing adjustments during EVP and 

transition algorithms on the queue length of cross streets was investigated. The developed 

model was validated in simulation on an isolated signalized intersection in SUMO to 

investigate the sensitivity of queue length to influencing variables. In the second section, a 

driving behavior algorithm specifying what CAVs should do when alerted to an 

approaching EV and when they should return to normal driving behavior were developed 

to guide how technology should be used to provide the advance warnings of approaching 

EVs. A preemption algorithm was also developed to prioritize EVs at signalized 

intersection. Then, the algorithms were used in different microsimulation scenarios to study 

the influence of lane-changing and stopping behaviors on the delays of EV and surrounding 

traffic. At the end, the proposed algorithm was compared with an existing algorithm. In the 

third section, an optimization algorithm was developed to minimize the delay of the EV 

and surrounding CAVs by minimizing a lane-changing cost function. A control algorithm 

was also developed to facilitate CAV movements during emergencies using the 

optimization results. The trajectory optimization method and the control algorithm together 

form a proposed cooperative behavior framework for CAVs to facilitate EV passage. The 

developed framework was evaluated in traffic microsimulation on a three-lane freeway 

with a right shoulder. 
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Results: 

In the first part, simulation results showed by increasing the traffic flow of cross street in 

uncongested traffic, maximum and minimum queue lengths of the preemption cycle 

increased with a constant slope. It was also observed that increasing preemption time 

reached in increased maximum and minimum queue lengths of preemption cycle. The 

results verified the model was able to quantify how the disruption created by EVP should 

be counteracted by adjusting signal timing in transition cycles. In the second part, it was 

concluded using both lane-changing and stopping behaviors was more favorable as it 

resulted in lower CAVs delay. An optimum lane-changing threshold was recognized which 

was accompanied by minimum EV delay. The proposed algorithm proved its ability to 

induce more reduction in EV delay compared to the existing algorithm. In the third part, 

the results showed using the cooperative algorithm reduced EV travel time and improved 

EV travel time reliability compared to other tested algorithms in the scenarios in which EV 

was on the lanes not adjacent to shoulder. The cooperative algorithm was successful in 

reducing CAV delay compared to the non-cooperative algorithm in most of scenarios with 

EV on the lane not adjacent to shoulder. Small increases in EV travel time and CAV delay 

when EV moved on the lane adjacent to shoulder was a trade-off for the intelligent use of 

shoulder in the cooperative algorithm intending to minimize shoulder use. 

Conclusions: 

This research shows that shockwave theory can quantify the disruption created by EVP and 

investigating solutions to counteract the disruption. The influence of different parameters 

including preemption, transition, signal timing, and traffic can be investigated on the 
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disruption. Using the developed queue estimation model, the strategies to prevent the 

disruption can be designed, and if the disruption is not preventable, the solutions to aid the 

approaches recover quickly after EVP can be investigated. The results of cooperative 

behavior framework indicate that if EVs move on the rightmost road lane, adjacent to 

shoulder, the cooperative algorithm can clear EV’s lane and have minimal adverse impact 

on CAV delay as it can wisely open shoulder to CAVs when required. The developed 

framework could be implemented to enhance EV movements in traffic networks and 

reduce the negative impact of EV prioritization on traffic. Intelligent use of shoulder 

enables the cooperative algorithm to avoid using shoulder when there are obstacles in 

shoulder which can be studied in future research. As very little is known about human 

behaviors during EV encounters, in future research, the human aspect of behaviors could 

be studied to enable the simulation of human drivers in emergencies so that the 

improvement of CAVs can be measured compared to human drivers. Our cooperative 

approach was developed and tested in fully connected and autonomous traffic. This 

approach could be adopted to consider human driving behavior in mixed traffic with 

different market penetration rates. 
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CHAPTER 1 

INTRODUCTION 
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1.1 Introduction and contribution 

The response time of emergency medical service (EMS) activations strongly correlates to 

positive health outcomes (O'Keeffe et al., 2011). EMS vehicle is referred as emergency 

vehicle (EV) in the following. The response time of EV is the duration between when an 

emergency call is received and when an EV reaches the scene (Blanchard et al., 2012). 

Based on EMS call records, the average response time in the United States was estimated 

to be 7.9 minutes (Mell et al., 2017). It was also observed that reducing the response time 

to less than 5 minutes was accompanied with a substantial decrease in the fatality rate of 

EMS, while slight variations in the fatality rate were associated with the response times in 

the range of over 5 minutes (Blackwell & Kaufman, 2002). 

Prioritizing the movement of EVs is highly important in transportation management as it 

directly influences EV response time. Emergency vehicle preemption (EVP) is used to 

ensure the safe and fast passage of EVs at signalized corridors. While improving safety and 

reducing the response time of EVs, EVP can have detrimental influences on general traffic. 

The performance of EVP algorithms is highly dependent on the preemption threshold that 

activates the EV’s prioritization at traffic signal. If a short threshold is implemented, the 

EV can be delayed at the intersection. While using large thresholds results in high 

disruption for general traffic, especially movements other than the EV’s approach. Arterial 

cross streets perpendicular to the EV’s movement receive a red light during EVP, and, after 

EV departure, may require several cycles to fully discharge the residual queue created by 

EVP. To aid cross streets recover sooner after EVP, transition algorithms are implemented 

to adjust signal timing. Therefore, the first goal of this research is to quantify the effect on 
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the queue length of arterial cross streets during and after EVP and provide 

recommendations to lessen the EVP disruption. 

One of the main barriers to reducing EV response time is interference from other vehicles 

(Lenné et al., 2008). Vehicles ceding right of way to an EV may interfere with each other 

while changing lanes. As emerging technologies has demonstrated benefits to 

transportation networks for different purposes such as traffic safety (Papadoulis et al., 

2019; Sahebi et al., 2024; Virdi et al., 2019; Ye & Yamamoto, 2019), emergency 

evacuation (Y. Chang & Edara, 2017, 2018; Ekram & Rahman, 2018; Mirjalili et al., 2023) 

and intersection management (Khayatian et al., 2020; Khayatian et al., 2018; Qiang Lu & 

Kim, 2019; Yu et al., 2019) among other applications, they can be beneficial in helping 

drivers to recognize approaching EVs and, hence, reduce EV response time. Promising 

technologies include connected vehicles (CV) and connected and autonomous vehicles 

(CAV) that implement different communication tools such as vehicle to vehicle (V2V) (R. 

Wang et al., 2019; Zheng et al., 2021) and vehicle to infrastructure (V2I) (Afdhal & Elizar, 

2015; Olaverri-Monreal et al., 2018; Zheng et al., 2021). CAVs can leverage 

communication and advanced computing to aid in reducing the lane-changing inference. 

CAVs operate by broadcasting positions and speeds to other CAVs and infrastructure. V2V 

communications can potentially be used to alert vehicles to an approaching EV, without 

relying on limitations associated with lights and sirens. V2I communications can help relay 

messages between vehicles and infrastructure and enable infrastructure such as connected 

traffic signals to engage in preemption. 
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While previous research investigated the applications of new technologies to facilitate the 

movement of EVs through varying conditions (Hannoun et al., 2018; Lenné et al., 2008; 

Weinert & Düring, 2015; J. Wu et al., 2020), none was identified that focused on comparing 

different combinations of vehicles lane-changing and stopping behavior to preclear the 

EV’s lane in a connected and autonomous traffic environment. CAV technologies can be 

implemented to improve lane changing behavior to cede the right of way more efficiently 

to EVs. Hence, the second goal of this research is to explore the lane-changing and stopping 

behaviors of CAVs on arterial corridors to investigate how these behaviors affect the delay 

of EV and CAV traffic. 

Independent behavior of vehicles while clearing EV’s way is a factor contributing to 

increasing lane-changing conflict. Utilizing autonomous vehicles, a traffic fleet can behave 

cooperatively to clear the way for an EV. Using cooperative behavior algorithms, positions 

and speeds of CAVs can be transmitted to a central processor, where optimization methods 

are implemented to improve the chance EVs are unimpeded in responding to emergencies 

and limit the impact of the encounter on surrounding traffic. Therefore, the third goal is to 

establish a cooperative behavior framework for harmonizing the trajectories of CAVs to 

cede the right of way for EVs on multilane freeways. 

The contributions of this research are as follows: 

1. A queue estimation model was developed based on shockwave theory to study the

influence of EVP on arterial cross streets. Using the developed model, the

sensitivity of residual queue created by EVP was investigated to contributing

parameters including signal timing, preemption and transition settings and traffic
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volume. The developed model can estimate EVP disruption and required number 

of cycles to dissipate the disruption with the current preemption and transition 

settings. It also can recommend what preemption and transition settings are 

required to eliminate EVP disruption in a desired number of cycles. 

2. A driving behavior algorithm was developed to identify the desired behavior of 

CAVs in preclearing EV’s lane. A preemption algorithm was also devised to 

prioritize EVs at signalized intersections. Using the developed algorithms, the 

desired lane-changing and stopping behavior of CAVs in emergencies was 

investigated with the aim of minimizing EV and general traffic delay in arterial 

corridors. 

3. A binary linear programing model was developed to optimize trajectories of CAVs 

when clearing EV’s way with the aim of minimizing lane-changing disruption. A 

control algorithm was implemented to control lane changes and speed changes of 

CAVs based on optimization output. The optimization approach and the control 

algorithm together form a cooperative behavior framework harmonizing CAVs 

movements in emergencies on multilane freeways. The developed framework can 

allow CAVs to move to shoulder when clearing EV’s way is not feasible using 

freeway main lanes. 

1.2 Structure of the dissertation 

 
This dissertation includes five other chapters. Chapter 2 provides a summary of related 

literature focused on EV prioritization. This chapter is divided into three parts focusing on 

EVP methods, CAVs lane-changing and stopping behavior and cooperative behavior of 
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CAVs. Chapters 3, 4 and 5, each includes a research paper and has objectives, 

methodology, results, discussions, and conclusions sections. 

Chapter 3 aimed to quantify the effect on the queue length of arterial cross streets during 

and after EVP and provide recommendations to reduce the EVP disruption. A shockwave- 

based queue length estimation model was developed to determine how EVP affects cross 

street queue length during and after EVP. Using the developed model, the influence of 

signal timing adjustments during EVP and transition algorithms on the queue length of 

cross streets was investigated. The developed model was validated in simulation on an 

isolated signalized intersection in SUMO to investigate the sensitivity of queue length to 

influencing variables. 

Chapter 4 investigated how the lane-changing and stopping behaviors of CAVs affect the 

delay of EV and CAV traffic on arterial corridors in microsimulation. A driving behavior 

algorithm specifying what CAVs should do when alerted to an approaching EV and when 

they should return to normal driving behavior were developed to guide how technology 

should be used to provide the advance warnings of approaching EVs. A preemption 

algorithm was also developed to prioritize EVs at signalized intersection. At the end, the 

proposed algorithm was compared with an existing algorithm. 

Chapter 5 aimed to establish a methodology for optimizing CAVs trajectories when an EV 

enters a freeway segment. An optimization algorithm was developed to minimize the delay 

of the EV and surrounding CAVs by minimizing a lane-changing cost function. A control 

algorithm was also developed to facilitate CAV movements during emergencies using the 

optimization results. The trajectory optimization method and the control algorithm together 
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form a proposed cooperative behavior framework for CAVs to facilitate EV passage. The 

developed framework was evaluated in traffic microsimulation on a three-lane freeway 

with a right shoulder. 

Chapter 6 summarizes the research, provide contributions and applications of the 

developed models, and recommend future research topics based on our limitations. 
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CHAPTER 2 

BACKGROUND 
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2.1 Introduction 

Researchers have widely investigated approaches to prioritize EVs in traffic networks 

(Akdoğan et al., 2018; Hannoun & Menendez, 2022; Y. Liu et al., 2016; Park et al., 2019). 

EV prioritization approaches have been studied in both real-world settings and simulation 

environments. Simulation enables the testing of microscopic effects of EVs on traffic 

conditions while controlling for factors that cannot be easily controlled for in the real world 

(Gomes, 2022; Hassannayebi et al., 2020; Xu et al., 2017). A summary of literature focused 

on EV prioritization is provided in the following. The related research was divided into 

three sections. In the first section, different EVP approaches used to prioritize EVs and 

minimize adverse influence on general traffic at signalized corridors were provided. In the 

second section, a summary of research investigating lane-changing and stopping behavior 

of CAVs to facilitate EV movement were summarized. In the third section, the related 

research on CAV cooperative behavior with the aim of clearing EV’s way was highlighted. 

2.2 Emergency Vehicle Preemption 

EVP allows a traffic signal to dynamically adjust phases and timings to prioritize EV 

movements safely. Sanderson et al. and Roberson et al. were among the first researchers to 

investigate the ability of local controllers to initiate green waves to facilitate the movement 

of EV as computer controllers were being first developed in the late 1970s (Robertson & 

Glassbrook, 1979; Sanderson & Lord, 1978). More attention was brought to EVP when it 

was reported that 60 percent of EV traffic accidents at signalized intersections were right 

angle crashes against perpendicular traffic when EV crossed the red light (Cleal, 1982). 
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The preemption threshold, which is used to activate preemption, is one of the challenging 

parameters in EVP algorithms. If a short threshold is used, queue may not be fully 

discharged before EV arrival. On the other hand, using a longer threshold results possibly 

large disruptions for general traffic. Approaches that face red light during EVP may 

encounter large residual queues at the end of preemption. Hence, researchers aimed to 

improve EVP algorithms by accurate preemption threshold identification (Mu et al., 2018; 

Noori, 2013; Noori et al., 2016; Qin & Khan, 2012; Viriyasitavat & Tonguz, 2012) and 

devise preemption strategies that accounted for both EV delay and traffic delay due to the 

disruptions in signal timings (Qiang Lu & Kim, 2017; Qin & Khan, 2012; Su et al., 2023; 

Yun et al., 2011). 

Different emerging technologies including vehicular ad hoc network (VANET) (Nellore & 

Hancke, 2016; Noori, 2013), dedicated short-range communications (DSRC) (Noori et al., 

2016), and internet of things (IOT) (Chowdhury, 2016) have been employed to improve 

EVP and EV routing performance. Qin et al. developed an EVP algorithm which used V2I 

communications to obtain the arrival time of EV and the discharge time for the intersection 

queue to improve preemption threshold estimation accuracy. In addition to the queue 

dispersal time, then also added a safety time parameter to create a period of guaranteed 

safe passage for the EV. By calibrating these parameters, EVPs could be triggered only 

when necessary, reduce the amount of unused green time and ended once the EV has passed 

(Qin & Khan, 2012). Wang et al. developed a model to estimate the travel time of EVs 

with EVP and compare different preemption strategies in microsimulation (J. Wang et al., 

2013). Noori et al. developed a VANET communication strategy to implement EVP in 
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SUMO (Noori, 2013). In another study, Noori et al. identified the proper time to start 

preemption for EV by estimating the queue length of intersection using V2I 

communications in SUMO. They created a beaconing algorithm that introduced further 

refinements to improve the queue discharge time calculation. Startup and saturation times 

and estimated queue was used to evaluate discharge time (Noori et al., 2016). 

To lessen the negative influence of EVP on the vehicles surrounding EV, Kang et al. 

proposed a coordination system for optimizing EVPs. The results of traffic simulations 

showed the developed system was able to decrease the delay of EVs without having 

noticeable effects on other vehicles’ delay (Kang et al., 2014). Viriyasitavat and Tonguz 

developed a self-organized system to prioritize EVs at intersections using virtual traffic 

lights (Viriyasitavat & Tonguz, 2012). Lu and Kim developed an intersection control 

algorithm to identify the best vehicle sequence which prioritizes EV passing and minimizes 

adverse impact on CAV traffic. A genetic algorithm approach was utilized to optimize 

vehicle sequence. Simulation results in SUMO revealed that the proposed algorithm 

reduced the response times of EVs without causing substantial delays for other vehicles 

(Qiang Lu & Kim, 2017). Karmakar et al. developed an EV priority framework to prioritize 

emergency services based on incident’s severity and type. EV’s route and required signal 

interventions then were identified through minimizing EV’s travel time and negative 

influence on traffic (Karmakar et al., 2020). Shelke et al. implemented Fuzzy logic to 

develop a framework considering real-time congestion in EV routing to improve signal 

control and EV prioritization (Shelke et al., 2019). Su et al. developed a decentralized 
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reinforcement learning strategy to improve the real-time integration between EVP and EV 

routing (Su et al., 2022). 

As EVP disrupts coordination with upstream signals in coordinated corridors, different 

transition algorithms have been developed in the literature to resync the coordinated signals 

after EVP and to aid the recovery of corridors. Nelson and Bullock discussed the disruptive 

influence of EVP on general traffic as one of EVP’s drawbacks. Their research aimed to 

quantify this disruption by investigating different transition methods designed to recover 

from EVP. Smooth, dwell and add-only methods were compared, and smooth transition 

was identified as the best performing method in their research (Nelson & Bullock, 2000). 

Later, Shelby and Bullock preformed comprehensive research on signal transition and 

confirmed smooth transitioning as a promising method while the short way method showed 

the best results (Shelby et al., 2006). Yun et al. investigated the optimized transition from 

the preemption state of a traffic signal to normal state to reduce delay (Yun et al., 2011). 

In another study, they concluded that the implementation of short way method with 2 to 3 

transition cycles reached minimum average delay (Yun et al., 2012). 

Queue length is a performance measure that can reflect the instantaneous impact of external 

factors on an approach’s performance. Hence, the variation of queue length can be 

investigated to quantify the disruption created by EVP and evaluate the performance of 

transition methods in eliminating this disruption. To this end, queue estimation models 

have been developed. According to the literature, queue estimation models can be divided 

into two general groups. The first group called input-output models were proposed by 

Webster (Webster, 1958) and expanded by other researchers (Sharma et al., 2007; Strong 
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et al., 2006; Vigos et al., 2008). These models are based on using the input and output 

traffic flow of an approach to estimate queue. The main drawback of input-output models 

is their inability to explain the spatial variation of queue length over time (Michalopoulos 

et al., 1981). Sharma et al. concluded that input-output models are simple and cost-effective 

but are unable to work properly when there is inflow or outflow traffic between the stop 

line and traffic detector or when queue spills back over the detector (Sharma et al., 2007). 

Liu et al. also noted input-output models fail when congestion overtakes the detector’s 

location (H. X. Liu et al., 2009). 

The second group of queue estimation models are based on shockwave theory proposed by 

Lighthill and Whitham (Lighthill & Whitham, 1955) and Richards (Richards, 1956) and 

improved by Stephanopolos and Michalopoulos (Michalopoulos et al., 1981; 

Stephanopoulos et al., 1979). In shockwave theory, it is assumed that shockwaves cause 

the process of queue creation and dissipation at signalized intersections. Hence, in these 

models, queue estimation is performed by following the trajectory of shockwaves. Liu et 

al. developed a shockwave-based queue estimation model able to explain the 

spatiotemporal characteristics of queue using high-resolution event-based data as input (H. 

X. Liu et al., 2009).

With the advent of new technologies, researchers began implementing real-time vehicle 

trajectory data to develop shockwave-based queue estimation models. Ban et al. used 

vehicle travel time collected by smartphone as inputs in their queue estimation model. Two 

new concepts of Queue Front No-delay Arrival Time (QFNAT) and Queue Rear No-delay 

Arrival Time (QRNAT) were defined according to shockwave theory. Their model 
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estimated queue length based on queueing delay, QFNAT and QRNAT (Ban et al., 2011). 

Cheng et al. developed a shockwave-based model to estimate queue length using only 

vehicle trajectory data as input. Trajectory data were collected using V2V and V2I 

communication tools. A new concept of the Critical Point (CP) was defined as a point 

where vehicle dynamics change. Shockwave speeds were calculated through identifying 

CPs and used for queue estimation (Y. Cheng et al., 2011). Cetin used probe vehicles 

trajectories to determine shockwaves speeds and intercepts. Then, a shockwave-based 

model was implemented to estimate the trajectory of tail of queue over time (Cetin, 2012). 

Wang et al. improved the performance of shockwave-based queue estimation models using 

multi-source data. The recorded trajectories of probe vehicles were combined with traffic 

detector data to calculate shockwaves speeds and estimate queue length (Z. Wang et al., 

2017). Cycle-based queue estimation using shockwave-based models relies on the accurate 

identification of arrival traffic characteristics and the residual queue remained from 

previous cycle. Zhang et al. integrated low-penetration rate probe vehicles trajectory data 

to calibrate these two parameters to improve queue estimation accuracy (H. Zhang et al., 

2019). 

Despite producing high-fidelity results, shockwave-based models depend on the 

identification of critical breakpoints in the shockwave diagram. Breakpoints are the points 

in space-time diagram at which queue crosses traffic detector. Breakpoint identification is 

not feasible in specific traffic states including oversaturation, undersaturation with short 

queues or when vehicles arrive in large platoons from upstream. To overcome the 

deficiency of breakpoint identification, An et al. added two input-output models to a 
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shockwave-based model. The authors also developed frameworks for breakpoint and 

queue-over-detector misidentification checking. The results showed a Mean Absolute 

Error (MAE) reduction in maximum queue length estimation (from 105.6 ft to 35.7 ft) 

using the proposed model compared to using only the shockwave-based model (An et al., 

2018). Wu and Liu developed a comprehensive model called Shockwave Profile Model 

(SPM) to estimate queue in saturated and oversaturated intersections. Their model 

considered the changes in shockwave speeds when residual queue spills over to the 

upstream intersection (X. Wu & Liu, 2011). Shockwave-based models assume three traffic 

states including arrival, saturated and jam states. Shockwaves are created at the intersection 

of each pair of these states. In well-coordinated corridors, vehicles move in large platoons 

which makes it hard to distinguish between arrival and saturated traffic states. Therefore, 

tracking shockwaves and implementing shockwave-based models for queue estimation 

become infeasible. To address this limitation, Shen et al. integrated shockwave theory to 

platoon dispersion models to develop a new queue estimation model assuming truncated 

normal distribution for speed (Shen et al., 2022). Chang et al. noted that the disadvantages 

of shockwave-based models were their complexity and dependence on detailed event- 

based data that might not be available in real-time. They developed a queue estimation 

model comparing the average occupancy recorded by a traffic detector with two thresholds 

corresponding to free flow traffic with no queue and congested traffic with queue spilling 

over the detector (J. Chang et al., 2013). 
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2.3 Lane-Changing and Stopping Behavior 

Understanding how vehicles react to approaching EVs is critical to both accurate 

simulation and designing technology. By analyzing video data, Weinert and Düring 

observed that nearly 25% of drivers reacted to approaching EVs exceeding 50 meters from 

their vehicles, about 50% of drivers reacted to an approaching EV between 20 and 50 

meters from their vehicles, and the other 25% reacted when the EV was less than 20 meters 

away (Weinert & Düring, 2015). Bieker-Walz et al. utilized SUMO software to simulate 

the driving behavior of EVs and surrounding traffic in a microscopic traffic environment. 

25 meters was used, in this software, as the threshold distance at which vehicles recognized 

an approaching EV and reacted to it. This distance corresponds to the sound pressure level 

of 100 dB(A), at which, the sound of siren is audible for an average driver (Bieker-Walz et 

al., 2018). 

Driving behavior models have been explored to replicate the real behavior of vehicles in 

emergencies in simulation environments. Generally, driving behavior models have two 

components: car following and lane changing models (Sun & Elefteriadou, 2014). 

Interference while lane-changing is the primary source of delay when vehicles clear a lane 

for an EV in road segments (Hannoun et al., 2018; Lenné et al., 2008; J. Wu et al., 2020). 

Therefore, to study the driving behavior of EVs and other vehicles, the focus of research 

should be on lane-changing models. Moussa developed a cellular atomation model to 

simulate vehicles lane-changing behavior when evacuating EV’s lane in highways. The 

additional rule in this model was the pull-over of vehicles (Moussa, 2009). 
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Emerging technologies are already changing the way that an EV can operate through a 

traffic fleet. Obenauf et al. developed a framework to estimate the influence of CAV 

implementation on EV response time and mortality rate (Obenauf et al., 2019). Lenné et 

al. investigated the impact of utilizing advanced warning device (AWD) on the responses 

of vehicles to EVs in different scenarios in a driving simulator study. AWD helped drivers 

to detect an approaching EV up to 400 meters away. The results showed that the use of 

AWD was accompanied by an earlier speed reduction at intersections while it was 

associated with an earlier lane-changing on road segments compared to no AWD (Lenné 

et al., 2008). Few studies have linked lane-changing behavior and technologies in 

emergencies. Weinert and Düring’s research is one of these studies in which the lane- 

changing behavior of CAVs was investigated to make a rescue lane for EV (Weinert & 

Düring, 2015). And among these few studies, none investigated the desired combination 

of lane-changing and stopping behaviors of CAVs to facilitate EV’s movement. 

2.4 Cooperative Behavior 

 
With the advent of autonomous vehicles, cooperative behavior has been implemented for 

CAV fleets to improve safety and efficiency of traffic networks. In a multi-agent 

environment, cooperative behavior is defined as a behavior algorithm enabling agents to 

move towards the common benefit of group (Fujii et al., 2010). Miculescu and Karaman 

developed a coordination control algorithm to adjust autonomous vehicles speeds with the 

goal of reducing delay and prohibiting crash at intersection (Miculescu & Karaman, 2019). 

Zheng et al. also developed a rule-based cellular automation model to simulate the 

cooperative driving using V2V communications (Zheng et al., 2021). Bai et al. developed 
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a cooperative behavior model for CAVs to eliminate conflicting lane-changings and 

decrease traffic oscillation in weaving areas (Bai et al., 2022). Nageshrao et al. developed 

a decision-making method using reinforcement learning to enable autonomous vehicles 

make better real-time decisions in different scenarios (Nageshrao et al., 2019). Zhou et al. 

developed a framework to model the cooperative lane-changing behavior of autonomous 

vehicles using multi-agent reinforcement learning (Zhou et al., 2022). 

Cooperative behavior has also been employed to facilitate EV movement. Humayun et al. 

developed an emergency vehicle management system to prioritize EVs in traffic networks. 

Their algorithm is able to identify the efficient sequence of autonomous traffic to 

simultaneously prioritize several EVs and considers ordering vehicles to move to shoulder 

to clear EV’s lane (Humayun et al., 2022). Buckman et al. implemented game theory to 

develop semi-cooperative behavior for autonomous EVs and used the social value 

orientation metric to model EV’s impact on the behavior of non-automated traffic 

(Buckman et al., 2021). So et al. developed a driving control strategy controlling 

autonomous EV movements and signal preemption to improve EV’s safety and efficiency. 

The focus of their study was on EV automated driving without considering evasive 

maneuvers for surrounding vehicles to clear EV’s lane (So et al., 2020). 

Parada et al. developed a decentralized multi-agent optimization method to create 

cooperative behavior for autonomous vehicles with the goal of increasing safety and 

efficiency of EV movements (Parada et al., 2023). Decentralized methods improve the 

efficiency and processing time of optimization as gathering and transferring data to a 

central processor is not required. On the other hand, centralized optimization methods can 
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better minimize the objective function as they have access to a larger amount of data ad 

can create larger solution sets. Hence, the behavior of a traffic fleet could be controlled and 

optimized by a central unit to improve the performance of cooperative behavior. Integer 

linear programming (Hannoun et al., 2018) and mixed-integer nonlinear programming (J. 

Wu et al., 2020) were used by Hannoun et al. and Wu et al., respectively, for optimizing 

the behavior of connected vehicles to clear a lane for EV using discrete cell trajectory 

models. 

Because the cooperative behavior algorithms presented by (Hannoun et al., 2018; J. Wu et 

al., 2020) were developed based on discrete cell simulations, they did not consider 

microsimulation car-following and lane-changing models. In discrete cell simulations, 

traffic variables including position and speed are discrete. Since discrete speed might lead 

in unrealistic traffic movements, an integer variable is defined for speed in discrete 

simulations (Hannoun et al., 2018). Hence, developing and evaluating cooperative 

behavior in microsimulation is necessary as it enables cooperative frameworks better adopt 

to real-world applications. Additionally, as realistic lane-changing processes cannot be 

effectively modeled in discrete cell simulations, real-world lane-change conflicts cannot 

be addressed in discrete simulations. Hence, the literature lacks a cooperative behavior 

model optimizing CAV trajectories to prioritize EV which goes beyond the limitations of 

discrete cell simulations and considers more realistic driving behavior models in traffic 

microsimulation. 
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2.5 Research Gaps 

In this dissertation, a comprehensive study was performed on prioritizing EV in CAV 

traffic which was a gap in the literature. EV prioritization impacts traffic on main approach 

and cross approaches. Firstly, the negative impact on cross streets can be counteracted by 

improving preemption and transition strategies. However, the relationship between 

preemption and transition parameters and EV disruption has not been investigated before. 

Secondly, the negative influence of EV on main approach can be counteracted by 

improving lane-changing behavior of CAV traffic. The literature lacks a study 

investigating the best lane-changing and stopping behavior of CAVs to minimize EV and 

traffic delay. As the next step, the literature also lacks a cooperative behavior framework 

able to optimize CAVs trajectories to minimize lane-changing disruption. A summary of 

research gaps identified in the literature is provided: 

1. The first gap was the lack of a model able to explain the creation and dissipation

queues on minor streets during EVP. Hence, a queue estimation model was

developed based shockwave theory. The developed model can estimate EVP

disruption and can be used to recommend solutions for minor streets to recover

sooner.

2. The second gap was the lack of a research investigating lane-changing and stopping

behaviors of CAVs while clearing way for EV. By studying different combinations

of CAVs lane- changing and stopping behaviors, the best behavior setting can be

identified to facilitate EV’s movement. To investigate CAV behavior, a CAV
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behavior control algorithm and a preemption algorithm were developed to prioritize 

EV on urban arterials. 

3. The third gap was the lack of a cooperative behavior framework for CAVs which 

can optimize CAV trajectories to clear EV’s lane. Previous cooperative frameworks 

for CAVs in emergencies was developed based on discrete cell-based simulations. 

Cell-based simulations do not consider car-following and lane-changing details of 

vehicle movements. Traffic microsimulation tools, on the other hand, implement 

car-following and lane-changing models. These models can address the potential 

conflicts happening in real-world maneuvers when CAVs intend to clear EV’s way 

and improve the performance of cooperative framework. To address this gap, an 

optimization approach was developed to optimize vehicle trajectories, and a control 

algorithm was developed to direct CAVs based on optimized trajectories. 
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CHAPTER 3 

USING SHOCKWAVE THEORY TO QUANTIFY THE DISRUPTION 

CREATED BY EMERGENCY VEHICLE PREEMPTION 
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3.1 Objective 

 
The objective of this research was to quantify the effect on the queue length of arterial 

cross streets during and after EVP and provide recommendations to lessen the EVP 

disruption. A shockwave-based queue length estimation model was developed based on 

shockwave theory (Lighthill & Whitham, 1955; Richards, 1956) to determine how EVP 

affects cross street queue length during and after EVP. Using the developed model, the 

influence of signal timing adjustments during EVP and transition algorithms on the queue 

length of cross streets was investigated. The developed model was validated in simulation 

on an isolated signalized intersection in SUMO microsimulation software (Lopez et al., 

2018) to investigate the sensitivity of queue length to influencing variables. 

3.2 Methodology 

 
3.2.1 Queue Length Estimation Model 

 
EVP and transition algorithms modify signal timing to prioritize EV during EVP and 

accelerate corridor recovery after EVP, respectively. As the goal of this research is to 

quantify the disruption created by EVP, the developed queue estimation model should be 

able to capture the influence of signal timing parameters on queue length. The model was 

developed based on an observable initial queue to prevent the limitation of break point 

identification infeasibility (H. X. Liu et al., 2009). All the variables used in the queue 

estimation model and their definitions are provided in Table 3.1. As described in Liu et 

al.’s study, shockwave theory can be used to explain the creation and dissipation process 

of queue at signalized intersections. Four shockwaves, defined in Liu et al.’s research, take 
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part in this process with the speeds calculated using Equations 3.1, 3.2, 3.3 and 3.4 (H. X. 

Liu et al., 2009). Comparing Equations 3.2 and 3.4, it can be observed that shockwaves 𝑣𝑣2 

and 𝑣𝑣4 have the same speed magnitude. 

Table 3.1. Variables used in the queue estimation model. 

Variable symbol Definition 
𝑣𝑣1 The speed of the queue creation shockwave (meters per second) 
𝑣𝑣2 The speed of the queue dissipation shockwave (meters per second) 
𝑣𝑣3 The speed of the queue reduction shockwave (meters per second) 
𝑣𝑣4 The speed of the residual queue shockwave (meters per second) 
𝑞𝑞𝑎𝑎 The flow of arrival traffic (vehicles per second) 
𝑘𝑘𝑎𝑎 The density of arrival traffic (vehicles per meter) 
𝑞𝑞𝑚𝑚 The flow of saturated traffic (vehicles per second) 
𝑘𝑘𝑚𝑚 The density of saturated traffic (vehicles per meter) 
𝑘𝑘𝑗𝑗 The density of jammed traffic (vehicles per meter) 

𝑄𝑄𝑛𝑛−1 
𝑚𝑚𝑚𝑚𝑛𝑛_𝑜𝑜𝑜𝑜𝑜𝑜 The observed minimum queue length of cycle 𝑛𝑛 − 1 (meters) 
𝑇𝑇𝑛𝑛−1 
𝑚𝑚𝑚𝑚𝑛𝑛 The time at which the observed minimum queue of cycle 𝑛𝑛 − 1 occurred (seconds) 
𝑄𝑄𝑛𝑛 𝑚𝑚𝑎𝑎𝑚𝑚 The estimated maximum queue length of cycle 𝑛𝑛 (meters) 
𝑇𝑇𝑛𝑛 𝑚𝑚𝑎𝑎𝑚𝑚 The time at which the estimated maximum queue length of cycle 𝑛𝑛 occurred (seconds) 
𝑄𝑄𝑛𝑛 
𝑚𝑚𝑚𝑚𝑛𝑛 The estimated minimum queue length of cycle 𝑛𝑛 (meters) 
𝑇𝑇𝑛𝑛 
𝑚𝑚𝑚𝑚𝑛𝑛 The time at which the estimated minimum queue length of cycle 𝑛𝑛 occurred (seconds) 
𝑇𝑇𝑛𝑛 𝑟𝑟 The start of effective red time in cycle 𝑛𝑛 (Seconds) 
𝑇𝑇𝑛𝑛 𝑔𝑔 The start of effective green time in cycle 𝑛𝑛 (Seconds) 
𝑇𝑇𝑇 𝑛𝑛 
𝑔𝑔 The adjusted start of effective green time in cycle 𝑛𝑛 (Seconds) 

𝑇𝑇𝑛𝑛+1 𝑟𝑟 The start of effective red time in cycle 𝑛𝑛 + 1 (Seconds) 
𝑇𝑇𝑇 𝑛𝑛+1 𝑟𝑟 The adjusted start of effective red time in cycle 𝑛𝑛 + 1 (Seconds) 
𝑇𝑇𝑛𝑛 𝑎𝑎 The time when 𝑣𝑣1 crosses the horizontal axis (Seconds) 
𝑇𝑇𝑛𝑛 
𝑜𝑜 The time when 𝑣𝑣3 crosses the horizontal axis (Seconds) 
𝑅𝑅 The effective red time assigned to the studied approach in one cycle (Seconds) 
𝐺𝐺 The effective green time assigned to the studied approach in one cycle (Seconds) 
𝑜𝑜 The number of transition cycles 

∆𝑄𝑄0 
𝑚𝑚𝑎𝑎𝑚𝑚 The induced change in 𝑄𝑄𝑚𝑚𝑎𝑎𝑚𝑚 in the preemption cycle compared to before preemption 

∆𝑄𝑄0 
𝑚𝑚𝑚𝑚𝑛𝑛 The induced change in 𝑄𝑄𝑚𝑚𝑚𝑚𝑛𝑛 in the preemption cycle compared to before preemption 

∆𝑄𝑄𝑜𝑜 
𝑚𝑚𝑎𝑎𝑚𝑚 The induced change in 𝑄𝑄𝑚𝑚𝑎𝑎𝑚𝑚 in 𝑜𝑜 transition cycles compared to before preemption 

∆𝑄𝑄𝑜𝑜 
𝑚𝑚𝑚𝑚𝑛𝑛 The induced change in 𝑄𝑄𝑚𝑚𝑚𝑚𝑛𝑛 in 𝑜𝑜 transition cycles compared to before preemption 

∆𝑅𝑅𝑃𝑃 The change in the effective red time of the preemption cycle 
∆𝐺𝐺𝑇𝑇0 The change in the effective green time of the preemption cycle 
∆𝑅𝑅𝑇𝑇𝑇𝑇 The change in the effective red time of the 𝑇𝑇th transition cycle 
∆𝐺𝐺𝑇𝑇𝑇𝑇 The change in the effective green time of the 𝑇𝑇th transition cycle 
𝑚𝑚 It is 1 if 𝑜𝑜 is equal or more than 1. Otherwise, it is 0. 
𝑦𝑦 It is 1 if 𝑜𝑜 is equal or more than 0. Otherwise, it is 0. 
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0 − 𝑞𝑞𝑎𝑎 
𝑣𝑣1 = 

𝑗𝑗 − 𝑘𝑘𝑎𝑎 
3.1 

𝑞𝑞𝑚𝑚 − 0 
𝑣𝑣2 = 

𝑚𝑚 − 𝑘𝑘𝑗𝑗 
3.2 

𝑞𝑞𝑚𝑚 − 𝑞𝑞𝑎𝑎 
𝑣𝑣3 = 

𝑚𝑚 − 𝑘𝑘𝑎𝑎 
3.3 

0 − 𝑞𝑞𝑚𝑚 
𝑣𝑣4 = 

𝑗𝑗 − 𝑘𝑘𝑚𝑚
3.4 

𝑘𝑘 

𝑘𝑘 

𝑘𝑘 

𝑘𝑘 
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Figure 1. (a) Shockwave profiles of a signalized intersection without initial residual queue (H. X. Liu et al., 

2009) 
(b) with initial residual queue. 
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In this study, queue length is considered as the distance between the stop line and the rear 

bumper of the last stopped vehicle in queue. Figure 1 shows shockwave profiles of a 

signalized intersection with and without initial residual queue remained from the previous 

cycle, 𝑄𝑄𝑛𝑛−1  . n represents the number of the studied cycle for which the maximum and 

minimum queue lengths are estimated. Figure 1 (a) is a special case of Figure 1 (b) when 

𝑄𝑄𝑛𝑛−1   is equal to 0. Hence, the queue estimation model was developed for a cycle with 

𝑄𝑄𝑛𝑛−1  . Figure 1 (a) is derived from Liu et al.’s study. Liu et al.’s queue estimation model 

was based on identifying the breakpoints at which queue crosses the detector’s position (H. 

X. Liu et al., 2009). However, our model is based on the points at which shockwaves 𝑣𝑣1 

and 𝑣𝑣3 intersect the horizontal axis. Therefore, the points 𝑇𝑇𝑛𝑛 and 𝑇𝑇𝑛𝑛 were added in Figure
𝑎𝑎 𝑜𝑜 

1 (b). According to Figure 1 (b), Equations 3.5, 3.6, 3.7 and 3.8 were derived to calculate 

𝑄𝑄𝑛𝑛 , 𝑇𝑇𝑛𝑛 , 𝑄𝑄𝑛𝑛 and 𝑇𝑇𝑛𝑛  , respectively. The details of deriving these equations are 
𝑚𝑚𝑎𝑎𝑚𝑚 𝑚𝑚𝑎𝑎𝑚𝑚 𝑚𝑚𝑚𝑚𝑛𝑛 𝑚𝑚𝑚𝑚𝑛𝑛 

provided in Appendix A. 

𝑅𝑅 + 𝑄𝑄𝑛𝑛−1 ( 1 −  1 ) 
𝑛𝑛 
𝑚𝑚𝑎𝑎𝑚𝑚 

𝑚𝑚𝑚𝑚𝑛𝑛_𝑜𝑜𝑜𝑜𝑜𝑜 
1 

𝑣𝑣1 1 
𝑣𝑣2 3.5 

(𝑣𝑣1 
− 𝑣𝑣2

)

𝑄𝑄𝑛𝑛−1 (𝑄𝑄𝑛𝑛 − 𝑄𝑄𝑛𝑛−1 ) 
𝑇𝑇𝑛𝑛 = 𝑇𝑇𝑛𝑛 +  𝑚𝑚𝑚𝑚𝑛𝑛_𝑜𝑜𝑜𝑜𝑜𝑜 +   𝑚𝑚𝑎𝑎𝑚𝑚 𝑚𝑚𝑚𝑚𝑛𝑛_𝑜𝑜𝑜𝑜𝑜𝑜  3.6 
𝑚𝑚𝑎𝑎𝑚𝑚 𝑟𝑟 𝑣𝑣2 𝑣𝑣1 

𝑄𝑄𝑛𝑛 ( 1 +  1 ) − 𝑄𝑄𝑛𝑛−1 ( 1 −  1 ) − (𝑅𝑅 + 𝐺𝐺)
𝑚𝑚𝑎𝑎𝑚𝑚 𝑛𝑛 𝑣𝑣1 𝑣𝑣3 𝑚𝑚𝑚𝑚𝑛𝑛_𝑜𝑜𝑜𝑜𝑜𝑜 𝑣𝑣1 𝑣𝑣2 

𝑄𝑄𝑚𝑚𝑚𝑚𝑛𝑛 = 1  1 3.7 
(𝑣𝑣2 

+ 𝑣𝑣3
)

𝑛𝑛 𝑛𝑛 

𝑇𝑇𝑛𝑛 = 𝑇𝑇𝑛𝑛 + 𝑚𝑚𝑎𝑎𝑚𝑚 𝑚𝑚𝑚𝑚𝑛𝑛  3.8 
𝑚𝑚𝑚𝑚𝑛𝑛 𝑚𝑚𝑎𝑎𝑚𝑚 𝑣𝑣3 
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𝑚𝑚𝑎𝑎𝑚𝑚 

𝑚𝑚𝑚𝑚𝑛𝑛 

According to Equations 3.5, 3.6, 3.7 and 3.8, 𝑄𝑄𝑛𝑛 , 𝑇𝑇𝑛𝑛 , 𝑄𝑄𝑛𝑛 and 𝑇𝑇𝑛𝑛 are dependent 
𝑚𝑚𝑎𝑎𝑚𝑚 𝑚𝑚𝑎𝑎𝑚𝑚 𝑚𝑚𝑚𝑚𝑛𝑛 𝑚𝑚𝑚𝑚𝑛𝑛 

on shockwave speeds (𝑣𝑣1, 𝑣𝑣2 and 𝑣𝑣3), signal timing parameters (𝑅𝑅 and 𝐺𝐺), and the observed 

initial residual queue (𝑄𝑄𝑛𝑛−1  ). Based on Equations 3.1, 3.2 and 3.3, shockwave speeds 

are dependent on traffic conditions. Hence, Equations 3.5 and 3.7 explain how traffic 

conditions indirectly influence 𝑄𝑄𝑛𝑛  and 𝑄𝑄𝑛𝑛  through shockwave speeds. EVP algorithms 
𝑚𝑚𝑎𝑎𝑚𝑚 𝑚𝑚𝑚𝑚𝑛𝑛 

are used to clear a signal’s approach before EV’s arrival. The preemption threshold 

influences the red time, 𝑅𝑅, for cross streets. According to Equations 3.5 and 3.7, 𝑄𝑄𝑛𝑛 and 

𝑄𝑄𝑛𝑛 are dependent on 𝑅𝑅 which is influenced by preemption threshold. Transition 

algorithms adjust signal timing parameters (𝑅𝑅 and 𝐺𝐺) for several cycles after EVP to clear 

the disruption created by EVP. According to Equations 3.5 and 3.7, 𝑄𝑄𝑛𝑛 and 𝑄𝑄𝑛𝑛 are 𝑚𝑚𝑎𝑎𝑚𝑚 𝑚𝑚𝑚𝑚𝑛𝑛 

dependent on 𝑅𝑅 and 𝐺𝐺 which are identified by the transition algorithm. 

𝑚𝑚𝑚𝑚𝑛𝑛_𝑜𝑜𝑜𝑜
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Figure 2. Induced variations in 𝑄𝑄𝑚𝑚𝑎𝑎𝑚𝑚 and 𝑄𝑄𝑚𝑚𝑚𝑚𝑛𝑛 due to changes in 𝑅𝑅 and 𝐺𝐺 

Figure 2 shows how queue length is influenced by 𝑅𝑅 and 𝐺𝐺 extensions in 1 cycle. Equations 

3.9 and 3.10 are derived from Equations 3.5 and 3.7 to calculate the induced changes in 

𝑄𝑄𝑚𝑚𝑎𝑎𝑚𝑚 and 𝑄𝑄𝑚𝑚𝑚𝑚𝑛𝑛 due to changes in 𝑅𝑅 and 𝐺𝐺 after 𝑜𝑜 transition cycles when all other variables 

are kept constant. 

𝑜𝑜 
∆𝑄𝑄𝑜𝑜 = 

  ∆𝑅𝑅𝑃𝑃 + 𝑚𝑚 (∑∆𝑅𝑅𝑇𝑇𝑇𝑇 

𝑜𝑜−1 
−∑
 

∆𝐺𝐺𝑇𝑇
𝑇𝑇 

) 3.9 

𝑚𝑚𝑎𝑎𝑚𝑚 1  1 1  1 1  1 
(𝑣𝑣1 

− 𝑣𝑣2
) 𝑇𝑇=1 (𝑣𝑣1 

− 𝑣𝑣2
) 𝑚𝑚=0 (𝑣𝑣2 

+ 𝑣𝑣3
)

𝑜𝑜 
∆𝑄𝑄𝑜𝑜 = 

  ∆𝑅𝑅𝑃𝑃 + 𝑚𝑚 ∑∆𝑅𝑅𝑇𝑇𝑇𝑇 
𝑜𝑜 

− 𝑦𝑦 ∑ 
∆𝐺𝐺𝑇𝑇𝑇𝑇 

𝑚𝑚𝑚𝑚𝑛𝑛 1  1 1  1 1  1 3.10 
(𝑣𝑣1 

− 𝑣𝑣2
) 𝑇𝑇=1 (𝑣𝑣1 

− 𝑣𝑣2
) 𝑚𝑚=0 (𝑣𝑣2 

+ 𝑣𝑣3
)
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𝑚𝑚𝑚𝑚𝑛𝑛 

   

The residual queue at the end of transition cycles can be used to identify whether the 

transition algorithm is able to completely clear the disruption created by EVP. To identify 

the required transition settings for this objective, ∆𝑄𝑄𝑜𝑜  is set to 0 in Equation 3.10. Hence, 

Equation 3.11 shows the required relationship between the EVP red time, ∆𝑅𝑅𝑃𝑃, the 

transition red time, ∆𝑅𝑅𝑇𝑇, and the transition green time, ∆𝐺𝐺𝑇𝑇, extensions to fully discharge 

the residual queue at the end of 𝑜𝑜 transition cycles. 

𝑚𝑚 
∆𝑅𝑅 = ∑ ∆𝑅𝑅 

( 1 −  1 ) 𝑚𝑚 
− 𝑣𝑣1 𝑣𝑣2  ∑ ∆𝐺𝐺 3.11 

𝑃𝑃 𝑇𝑇𝑚𝑚 1  1 𝑇𝑇𝑚𝑚 
𝑚𝑚=2 (𝑣𝑣2 

+ 𝑣𝑣3
) 𝑚𝑚=1 

3.2.2 Validation of the Developed Model in EVP Simulation 

As the aim of this research is to study the variation of queue as an indicator of arterial cross 

streets disruption induced by EVP, the developed queue estimation model was validated 

using EVP simulation. SUMO, an opensource traffic microsimulation software, was used 

to simulate EVP in an isolated signalized intersection, and the model was implemented to 

estimate queue at arterial cross streets (Lopez et al., 2018). The simulation network is 

shown in Figure 3. 
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Figure 3. Simulation network 

As shown in Figure 3, the simulated network has 2 approach lanes in major approaches 

and 1 approach lane in minor approaches. The length of each major approach is 1609 

meters (1 mile), and the length of each minor approach is 805 meters (0.5 mile). The speed 

limit is 13.4 meters per second (30 miles per hour); however, EV can move 4.5 meters per 

second (10 miles per hour) faster than general traffic. The signal has a normal cycle length 

of 90 seconds. Figure 3 shows that the effective green time, 𝐺𝐺, is defined as the addition of 

phase 3’s green and yellow time. The effective red time, 𝑅𝑅, is the rest of cycle length. 

Event-based data collected by traffic detectors was used to quantify arrival and saturated 

traffic states. For this context the EV used the Southbound (SB) approach of the arterial, 

and the performance of cross-street’s Westbound (WB) approach was recorded during and 
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after EV passage. Two traffic detectors were placed in the WB approach to obtain the flow 

and density of saturated and arrival traffic. Detector 1 was placed right before the stop line 

to measure the characteristics of vehicles moving in saturated traffic. Detector 2 was placed 

700 meters before the stop line to record the characteristics of arrival traffic. The position 

of Detector 2 was calibrated for the network to ensure queue does not reach this detector. 

According to the developed model, the sensitivity of 𝑄𝑄𝑛𝑛   and 𝑄𝑄𝑛𝑛  to each influencing 
𝑚𝑚𝑎𝑎𝑚𝑚 𝑚𝑚𝑚𝑚𝑛𝑛 

variable was studied. Equations 3.5 and 3.7 show that 𝑄𝑄𝑛𝑛 and 𝑄𝑄𝑛𝑛 are dependent on 
𝑚𝑚𝑎𝑎𝑚𝑚 𝑚𝑚𝑚𝑚𝑛𝑛 

shockwave speeds, 𝑣𝑣1, 𝑣𝑣2 and 𝑣𝑣3. It was assumed that 𝑞𝑞m, 𝑘𝑘m and 𝑘𝑘j are constant in our 

simulation settings. Hence, based on Equation 3.2, 𝑣𝑣2 is constant. According to Equations 

3.1 and 3.3, 𝑣𝑣1 and 𝑣𝑣3 are dependent on the values of 𝑞𝑞a and 𝑘𝑘a. The value of 𝑞𝑞a, which is 

the WB approach’s traffic flow, can be directly manipulated in simulation. Therefore, 

different values of 𝑞𝑞a, which influences 𝑣𝑣1 and 𝑣𝑣3, were used in simulation to study the 

sensitivity of 𝑄𝑄𝑛𝑛 and 𝑄𝑄𝑛𝑛 to 𝑞𝑞 . 
𝑚𝑚𝑎𝑎𝑚𝑚 𝑚𝑚𝑚𝑚𝑛𝑛 a 

EVP was used to clear the SB approach before EV reaches the stop line. As preemption 

threshold identification was not the focus of our research, the value of preemption threshold 

was set directly in simulation to study the influence of preemption threshold on queue 

length. According to Equations 3.5 and 3.7, 𝑄𝑄𝑛𝑛   and 𝑄𝑄𝑛𝑛  are dependent on 𝑅𝑅 which is 
𝑚𝑚𝑎𝑎𝑚𝑚 𝑚𝑚𝑚𝑚𝑛𝑛 

directly related to preemption threshold. In our simulation settings, it was assumed as 

preemption threshold increased 𝑚𝑚 seconds, 𝑚𝑚 seconds was also added to the duration of red 

phase of WB approach, 𝑅𝑅. Therefore, different values of 𝑅𝑅 were tested in simulation 

environment to investigate the sensitivity of 𝑄𝑄𝑛𝑛   and 𝑄𝑄𝑛𝑛  to 𝑅𝑅. 
𝑚𝑚𝑎𝑎𝑚𝑚 𝑚𝑚𝑚𝑚𝑛𝑛 
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𝑚𝑚𝑚𝑚𝑛𝑛 

𝑚𝑚𝑚𝑚𝑛𝑛_𝑜𝑜𝑜𝑜
 

In this research, a transition method was implemented to aid cross streets discharge the 

residual queue created by EVP. According to Equation 3.7, 𝑄𝑄𝑛𝑛  is dependent on 𝐺𝐺. Hence, 

the implemented transition method increased WB approach’s green phase duration, 𝐺𝐺, for 

three cycles after EVP. Different values of 𝐺𝐺 were used in simulation to study the 

sensitivity of 𝑄𝑄𝑛𝑛   and 𝑄𝑄𝑛𝑛  to 𝐺𝐺. 
𝑚𝑚𝑎𝑎𝑚𝑚 𝑚𝑚𝑚𝑚𝑛𝑛 

MAE and Mean Absolute Percentage Error (MAPE) measures were used to evaluate the 

performance of the developed model. Equations 3.12 and 3.13 were used to calculate these 

performance measures. 

𝑚𝑚 1 
𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑚𝑚 ∑

|𝑂𝑂𝑚𝑚 − 𝑀𝑀𝑚𝑚| 
𝑚𝑚=1 

3.12 

𝑀𝑀𝑀𝑀𝑃𝑃𝑀𝑀 = 

𝑚𝑚 
1 

 ∑ (| 
𝑚𝑚 

𝑚𝑚=1 

𝑂𝑂𝑚𝑚 − 𝑀𝑀𝑚𝑚 
 

𝑂𝑂𝑚𝑚 
| × 100) 3.13 

Where, 𝑂𝑂𝑚𝑚 is the 𝑚𝑚𝑡𝑡ℎ observed value, 𝑀𝑀𝑚𝑚 is the 𝑚𝑚𝑡𝑡ℎ estimated value, and 𝑚𝑚 is the number of 

observations. 

3.3 Results and discussion 

Each simulation run lasted 6000 seconds, and EV entered the network 3000 seconds after 

the simulation started. It was assumed that demand was constant spanning an individual 

simulation run. Additionally, it was assumed 𝑄𝑄𝑛𝑛−1  is 0 for the preemption cycle, i.e., 

traffic was uncongested. 15 simulation runs with different traffic flows on the study 

approach, 𝑞𝑞a, were taken. The variations of shockwaves speeds are illustrated in Figure 4. 

Figure 4 shows 𝑣𝑣1 increased, 𝑣𝑣2 remained constant, and 𝑣𝑣3 reduced as 𝑞𝑞a increased. The 



34  

maximum and minimum queue lengths, 𝑄𝑄𝑛𝑛 and 𝑄𝑄𝑛𝑛 , during the preemption cycle were 
𝑚𝑚𝑎𝑎𝑚𝑚 𝑚𝑚𝑚𝑚𝑛𝑛 

recorded in each simulation run and provided in Figure 5 (b) along with the estimated 

values. Figure 5 (a) illustrates the estimated and observed values of 𝑄𝑄𝑛𝑛 and 𝑄𝑄𝑛𝑛 in the 
𝑚𝑚𝑎𝑎𝑚𝑚 𝑚𝑚𝑚𝑚𝑛𝑛 

preemption cycle. For each simulation run, with a specific 𝑞𝑞a, these values were obtained 

and shown in Figure 5 (b). As it is observed in Figure 5 (b), both 𝑄𝑄𝑛𝑛 and 𝑄𝑄𝑛𝑛 increased 
𝑚𝑚𝑎𝑎𝑚𝑚 𝑚𝑚𝑚𝑚𝑛𝑛 

with a constant slope as 𝑞𝑞a increased. The induced increases in 𝑄𝑄𝑛𝑛 and 𝑄𝑄𝑛𝑛 due to the 
𝑚𝑚𝑎𝑎𝑚𝑚 𝑚𝑚𝑚𝑚𝑛𝑛 

changes in 𝑣𝑣1and 𝑣𝑣3, keeping all other variables in Equations 3.5 and 3.7 constant, can be 

explained using shockwave theory, shown in Figure 6. According to Figure 6, as 𝑄𝑄𝑛𝑛 

occurs at the intersection of 𝑣𝑣1 and 𝑣𝑣2, keeping 𝑣𝑣2 constant, an increase in 𝑣𝑣1 accelerates 

the queue creation process and leads in higher 𝑄𝑄𝑛𝑛 . Additionally, Figure 6 shows 𝑄𝑄𝑛𝑛 
𝑚𝑚𝑎𝑎𝑚𝑚 𝑚𝑚𝑚𝑚𝑛𝑛 

occurs at the intersection of 𝑣𝑣3 and 𝑣𝑣4. It is deducted that keeping 𝑣𝑣4, which has the same 

speed magnitude as 𝑣𝑣2, constant and reducing 𝑣𝑣3 slows down the queue reduction process 

and results in higher 𝑄𝑄𝑛𝑛  values. Figure 5 (b) also illustrates the linear regressions fitted 

to observed 𝑄𝑄𝑛𝑛   and 𝑄𝑄𝑛𝑛  . The fitted regression lines show the high accuracy of the 
𝑚𝑚𝑎𝑎𝑚𝑚 𝑚𝑚𝑚𝑚𝑛𝑛 

developed model as the regression lines closely follow the estimated queue. The 𝑅𝑅2 values 

of regression lines are provided in Table 3.2. 

𝑚𝑚𝑎𝑎𝑚𝑚 

𝑚𝑚𝑚𝑚𝑛𝑛 
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Figure 4.Variations of 𝑣𝑣1, 𝑣𝑣2 and 𝑣𝑣3 of the preemption cycle based on 𝑞𝑞𝑎𝑎. 
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Figure 5. Variations of 𝑄𝑄𝑛𝑛 and 𝑄𝑄𝑛𝑛 of the preemption cycle based on 𝑞𝑞 . 
𝑚𝑚𝑎𝑎𝑚𝑚 𝑚𝑚𝑚𝑚𝑛𝑛 𝑎𝑎 
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𝑚𝑚𝑎𝑎𝑚𝑚 

Figure 6. Variations of 𝑄𝑄𝑛𝑛 and 𝑄𝑄𝑛𝑛 while increasing 𝑣𝑣 and reducing 𝑣𝑣 
𝑚𝑚𝑎𝑎𝑚𝑚 𝑚𝑚𝑚𝑚𝑛𝑛 1 3 

The MAPE and MAE are provided in Table 3.2. The calculated MAE and MAPE values 

show higher estimation error in 𝑄𝑄𝑛𝑛 than in 𝑄𝑄𝑛𝑛 . The higher error in 𝑄𝑄𝑛𝑛 estimation 
𝑚𝑚𝑚𝑚𝑛𝑛 𝑚𝑚𝑎𝑎𝑚𝑚 𝑚𝑚𝑚𝑚𝑛𝑛 

can be explained with shockwave theory. As stated before, 𝑄𝑄𝑛𝑛 is occurs at the 

intersection of shockwaves 𝑣𝑣1 and 𝑣𝑣2, and 𝑄𝑄𝑛𝑛 occurs at the intersection of shockwaves 

𝑣𝑣3 and 𝑣𝑣4, equal to |𝑣𝑣2|. Eliminating 𝑣𝑣2 since it is common in both 𝑄𝑄𝑛𝑛 and 𝑄𝑄𝑛𝑛 , it can 
𝑚𝑚𝑎𝑎𝑚𝑚 𝑚𝑚𝑚𝑚𝑛𝑛 

be deducted that the speeds of 𝑣𝑣1 and 𝑣𝑣3 influence 𝑄𝑄𝑛𝑛 and 𝑄𝑄𝑛𝑛 , respectively. It is 
𝑚𝑚𝑎𝑎𝑚𝑚 𝑚𝑚𝑚𝑚𝑛𝑛 

observed in Figure 4 that 𝑣𝑣3 generally has higher speed than 𝑣𝑣1. Assuming 𝑣𝑣3 and 𝑣𝑣1 are 

estimated using the same process, higher magnitude of 𝑣𝑣3 should lead in higher estimation 

error than 𝑣𝑣1. Hence, as 𝑣𝑣3 identifies the coordinates of 𝑄𝑄𝑛𝑛  in the queue diagram, higher 

errors are observed in the estimation of 𝑄𝑄𝑛𝑛 than 𝑄𝑄𝑛𝑛 . 
𝑚𝑚𝑚𝑚𝑛𝑛 𝑚𝑚𝑎𝑎𝑚𝑚 

𝑚𝑚𝑚𝑚𝑛𝑛 

𝑚𝑚𝑚𝑚𝑛𝑛 
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Table 3.2. 𝑄𝑄𝑛𝑛 and 𝑄𝑄𝑛𝑛 estimation errors of the preemption cycle in simulations with different 𝑞𝑞 . 
𝑚𝑚𝑎𝑎𝑚𝑚 𝑚𝑚𝑚𝑚𝑛𝑛 𝑎𝑎 

 
 MAE (meters) MAPE (percent) 𝑅𝑅2 

𝑄𝑄𝑛𝑛 𝑚𝑚𝑎𝑎𝑚𝑚 3.68 3.51 0.98 
𝑄𝑄𝑛𝑛 
𝑚𝑚𝑚𝑚𝑛𝑛 3.76 8.24 0.97 

 
 

 
33 simulation runs were taken with different red time (𝑅𝑅) values, and the results are 

provided in Figure 7. As illustrated in Figure 5 (a) the estimated and observed values of 

𝑄𝑄𝑛𝑛 and 𝑄𝑄𝑛𝑛 of the preemption cycle in each simulation run, with a specific 𝑅𝑅, were 
𝑚𝑚𝑎𝑎𝑚𝑚 𝑚𝑚𝑚𝑚𝑛𝑛 

obtained and shown in Figure 7. Figure 7 shows that there is an overall increasing trend for 
 

𝑄𝑄𝑛𝑛 and 𝑄𝑄𝑛𝑛 in response to increasing 𝑅𝑅. According to Equations 3.9 and 3.10, for the 
𝑚𝑚𝑎𝑎𝑚𝑚 𝑚𝑚𝑚𝑚𝑛𝑛 

preemption cycle (S = 0) when the green time extension, ∆𝐺𝐺𝑇𝑇 , is 0, ∆𝑄𝑄0 and ∆𝑄𝑄0 

0 𝑚𝑚𝑎𝑎𝑚𝑚 𝑚𝑚𝑚𝑚𝑛𝑛 

becomes equal that verifies the observed trend in Figure 7. Figure 7 also shows the linear 

regressions fitted to observed 𝑄𝑄𝑛𝑛 and 𝑄𝑄𝑛𝑛 . The fitted lines verify the model’s 
𝑚𝑚𝑎𝑎𝑚𝑚 𝑚𝑚𝑚𝑚𝑛𝑛 

performance as they are very close to the estimated results. The fitted regression lines 𝑅𝑅2 

values are provided in Table 3.3. 
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𝑚𝑚𝑚𝑚𝑛𝑛 

Figure 7. Variations 𝑄𝑄𝑛𝑛 and 𝑄𝑄𝑛𝑛 of the preemption cycle based on 𝑅𝑅 
𝑚𝑚𝑎𝑎𝑚𝑚 𝑚𝑚𝑚𝑚𝑛𝑛 

Estimation errors of 𝑄𝑄𝑛𝑛 and 𝑄𝑄𝑛𝑛 in simulation runs with different 𝑅𝑅 values were 
𝑚𝑚𝑎𝑎𝑚𝑚 𝑚𝑚𝑚𝑚𝑛𝑛 

measured and provided in Table 3.3. It is observed that the estimation error in 𝑄𝑄𝑛𝑛  is more 

than in 𝑄𝑄𝑛𝑛 . The same explanation provided for the estimation error of simulation runs 

with different 𝑞𝑞a is viable here. 6 simulation runs were taken with different values of 𝐺𝐺 

extensions in transition cycles. Figure 8 illustrates the trajectory of observed and estimated 

queue lengths during preemption and transition cycles for each value of 𝐺𝐺. 

Table 3.3. 𝑄𝑄𝑛𝑛 and 𝑄𝑄𝑛𝑛 estimation errors of the preemption cycle in simulations with different 𝑅𝑅. 
𝑚𝑚𝑎𝑎𝑚𝑚 𝑚𝑚𝑚𝑚𝑛𝑛 

MAE (meters) MAPE (percent) 𝑅𝑅2 

𝑄𝑄𝑛𝑛 𝑚𝑚𝑎𝑎𝑚𝑚 5.63 5.93 0.94 
𝑄𝑄𝑛𝑛 
𝑚𝑚𝑚𝑚𝑛𝑛 6.72 28.82 0.92 

𝑚𝑚𝑎𝑎𝑚𝑚 



Figure 8. Queue trajectory in preemption and transition cycles for different values of 𝐺𝐺. 
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Figure 8 illustrates how the model estimates the trajectory of the tail of queue. This figure 

verifies the developed queue estimation model can identify the number of required 

transition cycles to discharge the residual queue created by EVP. The developed model can 

be used to estimate queue for several consecutive cycles. In the first cycle, using Equations 

3.5 and 3.7, 𝑄𝑄1 and 𝑄𝑄1 are estimated based on the initial queue, 𝑄𝑄0 which was 
𝑚𝑚𝑎𝑎𝑚𝑚 𝑚𝑚𝑚𝑚𝑛𝑛 𝑚𝑚𝑚𝑚𝑛𝑛_𝑜𝑜𝑜𝑜𝑜𝑜 

0 in our simulation settings as traffic was assumed to be uncongested. Then, the estimated 

𝑄𝑄1 is used as 𝑄𝑄1 in Equations 3.5 and 3.7 to estimate 𝑄𝑄2 and 𝑄𝑄2 in the second 
𝑚𝑚𝑚𝑚𝑛𝑛 𝑚𝑚𝑚𝑚𝑛𝑛_𝑜𝑜𝑜𝑜𝑜𝑜 𝑚𝑚𝑎𝑎𝑚𝑚 𝑚𝑚𝑚𝑚𝑛𝑛 

cycle. The same process is repeated for next transition cycles. In this way, the residual 

queue at the end of transition cycles can be estimated without requiring the observed initial 

queue for every cycle. The drawback of this method is that the estimation error aggregates 

as the estimated values of a cycle are used to estimate the queue of the next cycle. To 

reduce the aggregated estimation error, the developed model can be calibrated using the 

observed initial queue at the beginning of every cycle, i.e., the observed residual queue at 

the end of cycle 𝑛𝑛 − 1, 𝑄𝑄𝑛𝑛−1   , is used to estimate 𝑄𝑄𝑛𝑛   and 𝑄𝑄𝑛𝑛  . The estimation results 
𝑚𝑚𝑚𝑚𝑛𝑛_𝑜𝑜𝑜𝑜𝑜𝑜 𝑚𝑚𝑎𝑎𝑚𝑚 𝑚𝑚𝑚𝑚𝑛𝑛 

of both methods are provided in Figure 8. In Figure 8 (a) to (f), each section shows the 

results of simulation with a different 𝐺𝐺 value, varying between 18 (the default value in 

signal timing) and 28. Moving from Figure 8 (a) to (f), in each simulation, 2 seconds were 

added to the green time of each cross street in transition cycles, i.e., both 𝐺𝐺 and 𝑅𝑅 increased 

2 seconds for the WB approach. It is observed in Figure 8 (e) that by adding 8 seconds to 

𝐺𝐺, the residual queue created by EVP at the end of the preemption cycle was completely 

discharged in 2 transition cycles. 
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𝑚𝑚𝑚𝑚𝑛𝑛 

𝑚𝑚𝑚𝑚𝑛𝑛 

𝑚𝑚𝑚𝑚𝑛𝑛 

𝑚𝑚𝑚𝑚𝑛𝑛 

The trend of residual queue dissipation during preemption and transition cycles is 

illustrated in Figure 9. When residual queue, ∆𝑄𝑄𝑜𝑜 , becomes 0, EVP’s disruption is 

completely dissolved, and the approach is recovered. ∆𝑄𝑄𝑜𝑜 was calculated for different 

values of ∆𝐺𝐺 based on Equations 3.9 and 3.10 and illustrated in Figure 9 along with the 

observed values. Figure 9 (a) shows the residual queue created by EVP, ∆𝑄𝑄0  , at the end 

of the preemption cycle. Figure 9 (b), (c) and (d) show ∆𝑄𝑄𝑜𝑜  for the 1st, 2nd and 3rd cycles 

of transition. Figure 9 illustrates as ∆𝐺𝐺 increases, more stopped vehicles are discharged, 

and ∆𝑄𝑄𝑜𝑜  decreases. The calculated errors are provided in Table 3.4. According to Figure 

9, the estimation error of the method using 𝑄𝑄𝑛𝑛−1 were aggregated cycle by cycle as the 

model were not calibrated using 𝑄𝑄𝑛𝑛−1  . However, low MAE values of less than 10 

meters verify the application of Equations 3.9 and 3.10 in identifying the required transition 

settings to discharge the EVP’s disruption. 

𝑚𝑚𝑚𝑚𝑛𝑛 

𝑚𝑚𝑚𝑚𝑛𝑛 

𝑚𝑚𝑚𝑚𝑛𝑛_𝑜𝑜𝑜𝑜
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𝑚𝑚𝑚𝑚𝑛𝑛 

𝑚𝑚𝑚𝑚𝑛𝑛 

 
 

Figure 9. ∆𝑄𝑄𝑜𝑜 in preemption and transition cycles for different values of ∆𝐺𝐺 
 

Table 3.4. ∆𝑄𝑄𝑜𝑜 estimation errors in simulations with different ∆𝐺𝐺 in preemption and transition cycles 
 

Cycle MAE 
(meters) 

MAPE 
(percent) 

Preemption 
cycle 

∆𝑄𝑄0 
𝑚𝑚𝑚𝑚𝑛𝑛 2.9 4.75 

Transition 
cycle 1 

∆𝑄𝑄1 
𝑚𝑚𝑚𝑚𝑛𝑛 5.33 11.88 

Transition 
cycle2 

∆𝑄𝑄2 
𝑚𝑚𝑚𝑚𝑛𝑛 9.26 46.17 

Transition 
cycle 3 

∆𝑄𝑄3 
𝑚𝑚𝑚𝑚𝑛𝑛 4.96 42 
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3.4 Conclusions 

The aim of this research was to quantify the disruption induced by EVP in arterial cross 

streets at signalized intersections and provide recommendations to aid cross streets in 

discharging the disruption. Queue length was considered as the representative of the 

induced disruption. Hence, a queue estimation model was developed based on shockwave 

theory to investigate the disruption. Then, the developed model was validated though 

simulating EVP at an isolated signalized intersection in SUMO. The model was used to 

estimate the maximum and minimum queue lengths of preemption and transition cycles, 

and estimation errors were calculated. Additionally, the sensitivity of residual queue 

created by EVP to the influencing parameters were investigated. Using the results of 

sensitivity analysis, recommendations were provided to aid arterial cross streets in clearing 

the disruption created by EVP. 

The results showed by increasing the traffic flow of cross street in uncongested traffic, 

maximum and minimum queue lengths of the preemption cycle increased with a constant 

slope. It was also observed that increasing preemption time reached in increased maximum 

and minimum queue lengths of preemption cycle. By comparing the regression lines fitted 

to the observed values and the estimated values, it was verified that the developed model 

can accurately estimate the sensitivity of queue to traffic flow and signal timing settings. 

The results also verified the model was able to quantify how the disruption created by EVP 

should be counteracted by adjusting signal timing in transition cycles. The model estimated 
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the residual queue at the end of transition to evaluate the transition method in eliminating 

the residual queue. 

This research showed that shockwave theory can quantify the disruption created by EVP 

and investigate solutions to counteract the disruption which was a gap in the literature. The 

goal was to develop a model able to explain the creation and dissipation of EVP disruption 

on minor streets which was addressed using the obtained model. The developed model can 

be used in transportation network management to adjust EV routing and EVP algorithms 

to lessen the disruption. The influence of different parameters including preemption, 

transition, signal timing, and traffic can be investigated on the disruption. Using the 

developed model, the strategies to prevent the disruption can be designed, and if the 

disruption is not preventable, the solutions to aid the approaches recover quickly after EVP 

can be investigated. The results obtained in this research can be validated in future studies 

with different networks and different traffic conditions. The proposed model is limited to 

one lane approaches with the current formulation. Future research can investigate the 

required adaptations to enable the model to estimate queue in multi-lane approaches. 

Additionally, the influence of initial residual queue can be investigated on the EVP 

disruption in future studies. The developed model can be further evaluated in corridors with 

various geometries and signal timing strategies, and the estimated results can be validated 

with real queue data. 
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CHAPTER 4 

LANE-CHANGING BEHAVIOR OF CONNECTED AND 

AUTONOMOUS VEHICLES IN EMERGENCIES 
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4.1 Objective 

In this chapter, the lane-changing and stopping behaviors of CAVs were explored on an 

arterial corridor to investigate how these behaviors affect the delay of EV and CAV traffic. 

The objective was to establish and tune an algorithm specifying the driving behavior and 

parameters associated with the EV’s and CAVs’ movements in an urban arterial corridor 

using microsimulation. This algorithm specified what CAVs should do when alerted to an 

approaching EV and when they should return to normal driving behavior to guide how 

technology should be used to provide the advance warnings of approaching EVs. Then, 

this algorithm was used in different microsimulation scenarios to study the influence of 

lane-changing and stopping behaviors on the delays of EV and surrounding traffic. At the 

end, the proposed algorithm was compared with an existing algorithm. 

4.2 Methodology 

In this study, simulations were performed in SUMO software. SUMO is an open-source 

microscopic traffic simulation software in which some characteristics for EVs to simulate 

their particular driving behavior are already defined (Lopez et al., 2018). In SUMO, some 

permissions are given to EVs. For approaching EVs, the vehicles in the leftmost lane move 

to the leftmost sublane of their lanes, and the vehicles in all other lanes move to the 

rightmost sublane of their lanes. The result is an open space between the left lane and other 

lanes, denoted as the emergency lane. Only EVs can pass through the emergency lane 

(Bieker-Walz et al., 2018). In SUMO, each lane is divided to several sublanes. Vehicles 

can move between different sublanes to change their lateral position inside a lane. 
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With the advent of CAVs, control of vehicles can be improved with the objective of 

minimizing impact of EVs on overall network performance while simultaneously ensuring 

a safe and efficient passage of a vehicle with priority status. Additionally, CAVs can 

transmit messages to alert each other of an approaching EV at far distances, reducing or 

eliminating human errors and sub-optimal behaviors. 

In this research, the desired behavior of CAVs in emergencies in an arterial road network 

is investigated. One objective of this research was to establish a driving behavior algorithm 

for CAVs to preclear an EV’s lane on an arterial corridor. Since the studied simulation 

traffic network included road segments passing through signalized intersections, a 

preemption algorithm was required to prioritize EVs in signal phasing. By testing different 

scenarios in microscopic traffic simulation, the sensitivity of travel time delays of EVs and 

surrounding traffic to the driving behavior and traffic conditions can be investigated in a 

connected and autonomous traffic environment. 

4.2.1 Simulation network 

 
Simulations were performed on a 6437 m (4-mile) urban divided arterial road network. The 

corridor had 2 lanes in each direction and three intersections with 183 m (600 ft) left-turn 

lane on the main approaches. The perpendicular approaches had the length of 183 m. The 

simulation network is shown in Figure 10. Signal phasing, intersection areas, and exclusive 

left-turn lanes are also shown in this figure. The speed limit was 13.4 meters per second 

(30 miles per hour) on all road segments. In this study, as well as in the literature, EVs 

were allowed to move with a maximum speed 4.5 meters per second (10 miles per hour) 
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higher than the road segment’s posted speed limit (Henchey et al., 2014; Weinert & Düring, 

2015). 



Figure 10. Simulation network 
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4.2.2 The driving behavior algorithm 

An algorithm was written to establish the driving behavior of CAVs in the presence of an 

approaching EV. It was assumed that the EV enters the simulation network from the left 

lane and continues moving in this lane. Clearing the EV’s path is completed in two steps. 

Two new threshold distance parameters were defined, relative to the front of the EV, 

including the lane-changing and stopping thresholds. The area between the EV and the 

stopping threshold distance creates stopping area while the distance between the stopping 

threshold and the lane changing threshold creates the lane-changing area. CAVs that enter 

the lane-changing area move to the right lane. Then, when CAVs enter the stopping area, 

they move to the rightmost sublane and stop. One of the benefits of CAVs is that both 

threshold distances are not limited by the limitations of human senses (for example hearing 

and locating the siren), therefore we assume that all vehicles are aware of the approaching 

EV and behave uniformly based on the threshold. Figure 11 (a) and (b) visualized the 

stopping and lane-changing areas, respectively. 
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Figure 11. Stopping and lane-changing thresholds and areas 

The new variables used in the driving behavior algorithm are provided in Table 4.1. 

Table 4.1. Variables used in the driving behavior algorithm 

Variable 
symbol 

Definition 

l(i, t) The index of the lane on which CAV i is at time step t (0 refers to the right lane, 1 to the left lane, 
and 2 to the exclusive left-turn lane, which is present only near intersections in EB/WB 
approaches). The lane indices are shown in Figure 12. 

p(i, t) The lateral sublane position of CAV i at time step t (Three lateral sublane positions were 
considered including “Right,” “Center,” and “Left”). Different lateral sublane positions are shown 
in Figure 13. 

s(i, t) The desired speed of CAV i at time step t. 
d(i, t) The longitudinal distance between CAV i and the EV at time step t (positive when the CAV is in 

front of the EV and negative when the CAV is behind the EV). 
tr1 The stopping threshold is a threshold distance of CAVs to an EV in which the CAVs that are in 

the right lane move to the rightmost sublane and stop. 
tr2 The lane-changing threshold is a threshold distance beyond the stopping threshold in which 

CAVs move to the right lane and continue moving on this lane. 
c A coefficient (between 0 and 1) that is multiplied by tr2 and results in tr1.
di(i, t) The longitudinal distance between CAV i and the center of intersection at time step t (positive 

when the CAV has passed the intersection and negative when the CAV has not passed the 
intersection). 

r The distance between the stop line and the center of the intersection. 
inf The vector of the CAVs whose behaviors were influenced by an EV. This vector contains all the 

CAVs whose distances to the EV were once between 0 and tr2. 
et(i) The time step at which the EV passes CAV i (the time at which d(i, t) = 0). 
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Figure 12. Lane indices 

Figure 13. Lateral positions 

To study the delay of EV and surrounding traffic in a connected and autonomous traffic 

environment, different stopping and lane-changing threshold values were tested in 

microsimulation environment. The relationship between stopping threshold, 𝑡𝑡𝑟𝑟1, and lane- 

changing threshold, 𝑡𝑡𝑟𝑟2, is defined in equation. 

𝑡𝑡𝑟𝑟1 = c × 𝑡𝑡𝑟𝑟2 4.1 

In this research, three values of 0, 0.5 and 1 were used for c. Hence, three threshold settings 

including using only a stopping area (stopping threshold equal to lane-changing threshold), 

using both stopping and lane-changing areas (stopping threshold equal to half lane- 

changing threshold), and using only lane-changing area (stopping threshold equal to 0) 

were tested. 

The driving behavior algorithm of the CAVs interacting with an EV is provided in Figure 

14.
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Figure 14. Driving behavior algorithm for the CAVs interacting with an EV 

Based on Figure 5, first, the algorithm checks whether the vehicle is inside the intersection. 

If it is inside the intersection, the algorithm does not send lane change or speed change 

requests to the vehicle to prevent blocking the intersection. Next, it checks whether the 

vehicle is in the lane-changing or stopping areas. If the vehicle is in one of the areas, lane 

change, lateral sublane position change and/or speed change requests are sent to it based 
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on its lane index. At the end, when the EV passes the stopped vehicles, they start moving 

after one second. These checks are performed at each simulation time step. 

The driving behavior algorithm sends the requests of lane change orders when they are 

necessary. These requests are checked by the SUMO lane-changing model, SL2015 

(Erdmann, 2015). If a lane change was recognized to be feasible by the model, a lane 

change command is executed. SUMO’s lane-changing model may recognize lane-changing 

is not feasible at time i. Therefore, it may take several time steps until the CAV starts 

changing lane. The same is true for changing lateral sublane position and speed. The 

algorithm sends speed change requests. Then, the request is checked by SUMO car 

following model, Krauss model (Krauß, 1998) to execute a speed change command. This 

process is shown in Figure 15. 
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Figure 15. Process of checking the driving behavior algorithm requests in SUMO 

In Figure 16, a two-lane one-way road segment is depicted. Figure 16 (a) shows that there 

are two CAVs in front of the EV in the left lane. There are also five CAVs in the right lane. 

Figure 16 (b) illustrates turn signal for the CAVs in the left lane indicating that the driving 

behavior algorithm induced lane-changes for these CAVs. Also, four of the five CAVs in 

the right lane have pulled over and stopped implying that they are in the stopping area. In 

Figure 16 (c), the lane changes are completed, and the left lane is free for the passage of 

EV. The fifth CAV in the right lane has stopped indicating that it is now in the stopping 

area. Also, two of the CAVs behind the EV have started moving meaning that they have 

come back to the normal driving behavior. 
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A road segment with an exclusive left-turn lane is shown in Figure 17. The same behavior 

as shown in Figure 16 is observed here for the CAVs in the right and left lanes. The only 

difference is the behavior of the CAV that is in the exclusive left-turn lane. In Figure 17 (a 

and b), this CAV has not entered the stopping area. In Figure 17 (c), the CAV is in the 

stopping area and has stopped. 

 

Figure 16. An example of CAVs’ response to an EV in a two-lane road segment 
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Figure 17. An example of CAVs’ response to an EV in a two-lane road segment with an exclusive left-turn 
lane 

4.2.3 The preemption algorithm 

The delay of vehicles in a traffic network consists of two components: road segment delay 

and control delay (C. Cheng et al., 2016). The presented driving behavior algorithm was 

developed to decrease the road segment delay of EV. In order to reduce or, if applicable, 

eliminate control delay, a preemption strategy was utilized to prioritize EV’s approach in 

signal timing. The signal planning was shown in Figure 10. The new variables used in the 

preemption algorithm are defined in Table 4.2. 
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Table 4.2. Variables used in the preemption algorithm 
 

Variable 
symbol 

Definition 

n(t) The number of CAVs in the left lane between the EV and the intersection at time step t. 
pt(t) The calculated preemption threshold at time step t. When the distance between the EV and the 

intersection reaches to this threshold, the preemption should start. 
ed(t) The distance between the EV and the intersection at time step t (Positive when the EV has not 

passed the intersection and negative when the EV has passed the intersection). 
y Yellow time. 
h Saturation headway. 
es The desired speed of EV. 
ss(j) The signal state at signal step j. The signal step (j) increases when the state of signal changes. 

Since phases 1, 2, and 3 occurs the same time as phases 4, 5, and 6, respectively, only phases 1, 
2, and 3 are considered in preemption. Signal states are provided in Table 4.3. 

 
Table 4.3. Signal states 

 
Signal state name Definition 
g1 The signal state in which the signal color is green for phase 1. 
y1 The signal state in which the signal color is yellow for phase 1. 
g2 The signal state in which the signal color is green for phase 2. 
y2 The signal state in which the signal color is yellow for phase 2. 
g3 The signal state in which the signal color is green for phase 3. 
y3 The signal state in which the signal color is yellow for phase 3. 

 
Noori et al. developed an EVP strategy for connected vehicle environments (Noori et al., 

2016). Their method was adapted in our research with the addition of using the yellow time 

in transition between other phases to the EV’s phase. The algorithm presented in Figure 18 

was developed for signal preemption. 
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Figure 18. Preemption algorithm 

Based on Figure 9, first, the preemption threshold is calculated based on the number of 

CAVs between the EV and the intersection in the left lane. The preemption was activated 

based on the amount of time it will take the existing queue and the approaching EV to clear 

the intersection. The distance at which the preemption activates was calculated based on 

the desired speed of the EV, the yellow time, the number of vehicles in the queue, and the 

saturation headway. This algorithm is checked every simulation time step and when the 

EV crosses the intersection, the signal timing returns to the original timing plan. 
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The signal timing is generally controlled by SUMO internal model. If a signal state change 

request is sent from the preemption algorithm, the priority is with the preemption algorithm 

request. If there is no request from the preemption algorithm, the next signal state is 

determined by SUMO signal control model. When the preemption ends, SUMO signal 

control model starts controlling the signal timing from where it was left by the preemption. 

4.2.4 Simulation parameters 

The desired driving behavior and preemption strategy were written in algorithms using 

Python (Guido Van Rossum & Drake Jr, 2009). To implement the developed algorithms, 

traffic control interface (TraCI) module was used as a connection between Python and 

SUMO. The SUMO’s default car following model, Krauss model, was utilized. To 

simulate the behavior of CAVs, the default parameters of Krauss model were adjusted as 

shown in Table 4.4 based on the literature review (Atkins, 2016; Qiong Lu et al., 2018). 

The CAVs used in this research were considered to have the level 5 of autonomation 

according to SAE J3016 (Standard, 2018). The simulation time step was 0.5 seconds. A 

warm-up time of 600 seconds was used. Therefore, in each simulation run, one EV entered 

northbound approach 600 seconds after the start of simulation. 

Table 4.4. Adjusted Krauss car following model parameters 

Minimum 
gap (m) 

Acceleration 
(m/s2) 

Deceleration 
(m/s2) 

Emergency 
deceleration (m/s2) 

Driver 
imperfection 

Reaction time 
(s) 

0.5 3.8 4.5 8 0 0.6 
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4.2.5 Design of experiments 

To investigate the sensitivity of the relationship between the threshold values and the delay 

on the arterial segment, several traffic levels were defined and used in simulation scenarios. 

Different traffic levels and their traffic distributions at intersections are shown in Table 4.5. 

Table 4.5. Distribution of intersection movements at different traffic levels (vehicles per hour) 

Traffic 
level 

EB/WB 
through 

EB/WB 
right-turn 

EB/WB 
left-turn 

EB/WB 
total 

NB/SB 
through 

NB/SB 
right-turn 

NB/SB 
left-turn 

NB/SB 
total 

1 960 120 120 1200 120 120 120 360 
2 1600 200 200 2000 200 200 200 600 
3 2240 280 280 2800 280 280 280 840 

In the first, second and third traffic levels, 600, 1000, and 1400 vehicles per hour per lane 

entered the network in the EV's approach, EB/WB. 9 simulation scenarios were defined by 

considering three threshold settings and three traffic levels. For each simulation scenario, 

40 runs with different random seeds were implemented. The value of lane-changing 

threshold varied in different simulation runs to cover the range of 10 to 400 meters with 10 

meters intervals. 

4.3 Results and discussion 

4.3.1 The proposed model 

360 simulation runs were implemented in total. The delay of EV and the average delay of 

the CAVs influenced by EV in each run were extracted for further analysis. The influenced 

CAVs were the vehicles that moved in the same approach as EV and has been in the 

stopping or lane-changing areas. Then, the delay of EV and the average delay of influenced 

CAVs were plotted versus the lane-changing threshold and provided in Figure 19. To 
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compare the relationship between the delay and the lane-changing threshold in different 

scenarios, regression functions were fitted to this relationship. The statistical process was 

performed using ordinary least squares (OLS) in R programming language (R Core Team, 

2019). 



Figure 19. Delay of EV and CAVs versus lane-changing threshold in different simulation scenarios 
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In Figure 19 (a, b, and c), the relationship between the EV delay and the lane-changing 

threshold was fitted using a regression function that converges to a horizontal and a vertical 

asymptote. As the lane-changing threshold increased from zero, a sudden drop was 

observed in the EV delay. Then, the delay became approximately constant indicating 

additional lane-changing threshold distance does not impact EV delay beyond a certain 

point. Figure 19 (a, b, and c) shows that the threshold setting in which tr1 is 0 resulted in 

higher delay for EV compared to other settings. The reason lies in the lane-changing 

behavior of vehicles. According to this setting, vehicles do not stop within the lane- 

changing threshold since there is no stopping area. When all the vehicles in the right lane 

are moving, lane-changing and moving to the right lane is more difficult for the vehicles 

in the left lane. This is owing to the lower speed differences between the vehicles in the 

right and left lanes resulting in fewer gaps. Figure 19 (a, b, and c) also illustrates that the 

setting in which tr1 is equal to tr2 and the setting in which tr1 is half tr2 did not have 

considerable difference in terms of EV delay. The fitted regressions for these two settings 

converge as the lane-changing threshold increases. These findings are observed in all three 

traffic levels, and no considerable difference is between them. It can be deduced from 

Figure 19 (a, b, and c) that the presence of stopping area was influential in reducing the EV 

delay. The absence of stopping area in the setting in which tr1 is 0 was accompanied with 

higher EV delay. The minimum EV delay was observed to be zero. Meaning that the 

preemption algorithm worked properly, and, using it, the control delay was eliminated for 

EVs in some simulation runs. 
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Figure 19 (d, e, and f) shows that a direct relationship exists between the average delay of 

CAVs influenced by EV and the lane-changing threshold. A linear regression was fitted to 

this relationship. Figure 19 (d, e, and f) illustrates that the highest delays for CAVs, 

between the three threshold settings, were observed in the setting in which tr1 is equal to 

tr2 and only stopping area was used. In the setting in which tr1 is 0.5 x tr2, lower delays 

were observed compared to the setting in which tr1 is equal to tr2. The lowest delays were 

observed when tr1 = 0 and the stopping area was not utilized. Therefore, as the stopping 

area became smaller from the setting in which tr1 is equal to tr2 to the setting in which tr1 

is 0, the CAV average delay decreased. This direct relationship between the size of 

stopping area and the CAV average delay is because CAVs had to pull over and stop within 

the stopping area. The stopped delay in the stopping area increased the average delay of 

CAVs. As the stopping area became smaller (the setting in which tr1 is half tr2) or 

eliminated (the setting in which tr1 is 0), the stopped delay and, as a result, the CAV 

average delay decreased. These findings are observed in all the traffic levels. Based on the 

fitted regressions presented in Figure 19 (d, e, and f), the steepest regression line, between 

the three settings, was obtained in the setting in which tr1 is equal to tr2. And the smallest 

slope was observed in the setting in which tr1 is 0. According to this observation, the slope 

of the fitted regression line reduced as the stopping area became smaller. With this 

observation, it can be inferred that as the stopping area became smaller, the CAV delay 

became less sensitive to the lane-changing threshold. In Figure 19 (f), the slope is close to 

zero for the scenario in which tr1 is 0, meaning that by changing the lane-changing 
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threshold, approximately no variation is observed in the CAV delay. These trends are 

observed in all three traffic levels. 

In general, the fits of the regression curves are worse at higher traffic volumes and lower 

stopping threshold distances. This is due to failure of requests sent by the behavior 

algorithm to turn into immediate action, due to interference from other traffic. When the 

vehicles did not have to stop, fewer gaps were created by changing speeds between lanes. 

Appendix B shows the individual regression curves. 

When comparing the CAV and EV families of curves, there is an apparent tradeoff between 

total delay. The cases with the highest CAV delay consistently have the lowest EV delay 

and vice versa. Applications that focus on pre-clearing the EV’s lane approach a horizontal 

asymptote between 40-120 m in front of the EV, depending on the conditions. This 

information can be fine-tuned and used to select a threshold for connected EVs to request 

a lane change from CAVs in advance and ensure little delay while only minimally 

impacting CAV delay. 

4.3.2 Comparing the proposed model with an existing model 

 
The proposed algorithm was compared to an existing algorithm to illustrate the advantage 

of our strategy. Based on Weinert and Düring’s behavior algorithm, CAVs change lane 

when their distances to an EV reach to 150 m and CAVs speeds are higher than 10 m/s to 

create a rescue lane for the EV. Based on the results presented in Figure 19, the proposed 

algorithm with tr1 equal to half tr2 was used since it reduced the delay for both EV and 

CAV. Therefore, the proposed algorithm with tr1 of 75 m and tr2 of 150 m was used. The 



68 

same simulation network and preemption strategy was used for both algorithms. 40 

simulation runs were performed for each algorithm and each traffic level (240 runs totally). 

EV and CAV delay are presented as boxplots for two algorithms in different traffic levels 

in Figure 20. 



Figure 20. Delays of EVs and CAVs for proposed and Weinert and Düring 's algorithms in different traffic volumes 
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Based on Figure 20 (a), using the proposed algorithm resulted in higher delay for CAVs 

compared to Weinert and Düring’s algorithm in all traffic levels. Figure 20 (b) shows lower 

EV delay in the proposed algorithm compared to Weinert and Düring’s algorithm. Weinert 

and Düring’s algorithm is similar to our proposed algorithm with tr1 of zero. The obtained 

results in Figure 20 are in consistency with the results provided in Figure 19 when 

comparing the scenario in which tr1 is zero (similar to Weinert and Düring’s algorithm) 

and the scenario in which tr1 is half tr2. Since stopping behavior was not used in Weinert 

and Düring’s algorithm, CAVs experienced lower delays using their algorithm. Our 

proposed algorithm was more successful in reducing the delay of EV as using both stopping 

and lane-changing behaviors reached in faster CAV lane-changing and lane pre-clearing 

for EV. Appendix C provides the summary statistics of EV and CAV delay for different 

algorithms and traffic volumes. 
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4.4 Conclusions 

In this research, the lane-changing and stopping behaviors of CAVs were explored on an 

arterial corridor to investigate how different combinations of these behaviors influence the 

delays of EV and surrounding traffic which was lacked in the literature. As the objective 

was to study CAVs behavior to prioritize EV, an algorithm was written to define the desired 

driving behavior of CAVs, and a preemption algorithm was developed to prioritize the 

EV’s approach at signalized intersections. To obtain the desired lane-changing behavior, 

two parameters including the stopping and the lane-changing thresholds were introduced. 

9 simulation scenarios were defined considering different traffic volumes and different 

threshold combinations. The delay of EV and the average delay of influenced CAVs were 

extracted from simulation results and plotted against the lane-changing threshold. 

Regression functions were fitted to the data to better compare the performance of different 

scenarios with each other. 

The results showed that the use of stopping area was accompanied by reducing the delay 

of EV while it resulted in increasing the delay of CAVs influenced by EV. The intermediate 

setting where the stopping threshold is half the lane-changing threshold is more favorable 

regarding the delays of both EVs and CAVs. The reason is that a considerable difference 

was not observed in the EV delay between the setting in which only the stopping area was 

used and the setting in which both areas were used based on the fitted curves. However, 

lower delays were obtained for the CAVs in the setting in which both areas were used 

compared to the other setting. Therefore, using the setting in which both areas were used 

was observed to reduce the CAV delay while not considerably increase the EV delay. 
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Hence, this setting resulted in better outcomes in terms of the delays of both EVs and CAVs 

compared to the other two settings. Also, according to the fitted curves, the EV delay was 

observed to reduce and become constant as the lane-changing threshold increased. It can 

be deduced that there was an optimum lane-changing threshold after which the EV delay 

variation was not considerable. On the other hand, a linear regression was fitted to the 

relationship between the CAV delay and the lane-changing threshold. Therefore, using the 

optimum lane-changing threshold would be accompanied by the minimum delay for EV 

and prevent the increasing of CAV delay. Hence, the main goal which was obtaining 

desired CAV lane-changing and stopping behavior was addressed. The proposed behavior 

algorithm was compared to an existing algorithm to evaluate its performance. 

The results of this research will serve as a benchmark for future research into more complex 

or cooperative behavior algorithms. Since several traffic levels were simulated in this 

research, the sensitivity of the developed algorithm was evaluated in response to traffic 

volume. Hence, in new scenarios with different traffic volumes, the variation of delay can 

be anticipated according to the results obtained in this research. Also, as different 

combinations of lane-changing and stopping thresholds were tested in simulations, the 

results of this study can be generalized to new threshold combinations. Further studies are 

required to evaluate the generalization of the results to other scenarios. A preemption 

algorithm was developed in this research with the objective of eliminating control delay 

for the EV. Preemption algorithms could be developed in future research to optimize the 

transition between the preemption state and normal state. Hence, the delay of EV could be 

minimized  without  having  considerable  influence  on  the  delays  of  vehicles  in 
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perpendicular approaches. One ability of CAVs is that their trajectories could be controlled 

by a processing center. Therefore, their trajectories could be optimized by a model to 

minimize a specific objective function. A future topic could be optimizing the trajectories 

of CAVs to minimize the response time of EV. Very little is known about human behaviors 

during EV encounters. Most of our cited work makes assumptions about behaviors (e.g. 

compliance to messages or uniform actions). In future research, the human aspect of 

behaviors could be studied to enable the simulation of human drivers in emergencies so 

that the improvement of CAVs can be measured compared to human drivers. The 

algorithms developed in this research were tested in a fully connected and autonomous 

traffic environment. The cooperative behavior of CAVs in emergencies could be 

investigated in mixed traffic environments with different market penetration rates in future 

studies. 
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CHAPTER 5 

COOPERATIVE BEHAVIOR FOR CONNECTED AND 

AUTONOMOUS VEHICLES TO PRIORITIZE EMERGENCY 

VEHICLES 
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5.1 Objective 

 
The objectives of this research are two-fold. The first objective is to establish a 

methodology for optimizing CAVs trajectories when an EV enters a freeway segment. The 

optimized trajectories are obtained to minimize the delay of the EV and surrounding CAVs 

by minimizing a lane-changing cost function. The second objective is to develop a control 

algorithm to facilitate CAV movements during emergencies using the optimization results. 

The trajectory optimization method and the control algorithm together form a proposed 

cooperative behavior framework for CAVs to facilitate EV passage of the segment. The 

developed framework was evaluated in traffic microsimulation on a three-lane freeway 

with a right shoulder. The same methodology could be implemented in freeway segments 

with different number of lanes. 

5.2 Methodology 

 
In this research, a cooperative behavior framework was established to identify optimal 

trajectories for CAVs and order CAVs to move based on the trajectories to clear a lane for 

an EV. The optimal trajectories were estimated recursively using binary linear 

programming, implemented in the Gurobi module of Python (Gurobi Optimization, 2021; 

G Van Rossum & Drake, 2009). Traffic simulations were performed in SUMO software 

(Lopez et al., 2018). SUMO and its associated TraCI were used to send and receive CAVs 

information to Python, control CAVs based on optimization results and measure the 

effectiveness of optimization methodology. A control algorithm was defined to specify the 

behavior of CAVs and order them to move based on the optimized trajectories. The control 
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algorithm sends lane change and speed change requests to SUMO. These requests are 

checked by SUMO’s car following model, Krauss (Krauß, 1998) and lane-changing model, 

SL2015 (Erdmann, 2015). Then, the requests are executed if they are recognized safe and 

feasible by SUMO. The simulation framework is shown in Figure 21. The optimization 

was implemented in simulation on a 1-mile (1609 m) segment of a three-lane freeway with 

a shoulder on the right side. The freeway and shoulder lanes widths were 13 ft (3.96 m) 

and 10 ft (3.05 m), respectively. The freeway speed limit was 55 mile/h (24.59 m/s). EVs 

were granted permission to move 10 mile/h (4.47 m/s) faster than regular traffic could 

move in the travel lane (Henchey et al., 2014; Weinert & Düring, 2015). It was assumed 

that shoulder could be used in emergencies by EVs and CAVs with the speed limit of 35 

mile/h (15.65 m/s). The simulation network is illustrated in Figure 22. The car-following 

parameters provided in Table 5.1 were used to adjust Krauss model in SUMO for the 

behavior of CAVs (Atkins, 2016; Qiong Lu et al., 2018). CAVs were assumed to have level 

5 of autonomation according to SAE J3016 (Standard, 2018). 
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Figure 21. Simulation framework 

Figure 22. Simulation network 

Table 5.1. Adjusted Krauss car following model parameters for CAVs. 

Minimum 
gap (m) 

Acceleration 
(m/s2) 

Deceleration 
(m/s2) 

Emergency 
deceleration (m/s2) 

Driver 
imperfection 

Reaction time 
(s) 

0.5 3.8 4.5 8 0 0.6 
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5.2.1 Optimization 

 
The optimization method developed in this research is based on optimization approaches 

implemented by (Hannoun et al., 2018) and (J. Wu et al., 2020). As discussed in the 

literature review, microsimulation driving behavior models have not been considered in 

the cooperative behavior algorithms developed in discrete cell simulations (Hannoun et al., 

2018; J. Wu et al., 2020). Hence, our study focused on developing a cooperative behavior 

framework applicable in microsimulation. The optimization approach implemented in this 

study aimed to minimize the costs associated with CAVs following optimized trajectories 

in microsimulation. A new cost function was developed to minimize the lane-changing cost 

of traffic when clearing lane for EV. Several new constraints were added to eliminate 

infeasible trajectories and reduce the lane-changing conflicts. A control algorithm, 

provided in the next section, was developed to order CAVs to move based on the optimized 

trajectories which was absent previously. 

The proposed optimization algorithm identifies the fastest approach to clear an EV’s lane 

recursively during simulation. For this goal, the positions of CAVs and gaps are identified 

and parameterized. Then, the algorithm optimizes the assignment of CAVs to gaps with 

the aim of reducing CAV’s lane-changing conflicts. The algorithm also identifies the 

necessity of using shoulder and allow use of shoulder when CAVs outnumber gaps in 

freeway lanes. The following assumptions were considered in this research: 
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1. The EV could enter from any lane and does not change lane after entering the

road segment. CAVs should clear EV’s lane as soon as possible so the EV does

not reduce speed.

2. The positions and speeds of EV and CAVs are transmitted to a central

processing unit in real-time.

3. All CAVs apply the optimized trajectories whenever the trajectories are safe

and feasible.

4. The shoulder is empty of obstacles.

The objective of optimization is to minimize the cost of lane-changing for the CAVs and 

provide an organized approach to clearing the right of way to the EV as a group, rather 

than individually. The cost of lane-changing is defined as a function of the time required 

for a CAV to reach an assigned gap and complete a lane change. To this end, the positions 

and speeds of CAVs are transmitted to a central processor. In this application, Python acts 

as the central processor. Based on CAVs’ positions, the central processor calculates the 

positions of eligible gaps between CAVs. Then, each CAV is assigned to an eligible gap 

using binary linear programming. The following parameters are utilized to identify the 

optimization zone and eligible gaps: 

𝐿𝐿 = Rolling buffer zone length. The CAVs that are in front of the EV and within this zone 

are included in the optimization. Figure 23 illustrates the rolling buffer zone length. 
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Figure 23. Rolling buffer zone length 
 

𝑔𝑔𝑚𝑚𝑚𝑚𝑛𝑛 = Minimum eligible gap length. When the distance between two CAVs is more than 

or equal to the minimum eligible gap length, the open area between them is identified as 

one or multiple eligible gaps. An eligible gap should be long enough so a CAV can change 

lane and move to it. Figure 24 illustrates the minimum eligible gap length. 

 

Figure 24. Minimum eligible gap length 
 

All the variables and parameters implemented in optimization are shown in Table 5.2 and 

Table 5.3. 

Table 5.2. Optimization variables 
 

Variable Definition 
𝑤𝑤𝑗𝑗 
𝑚𝑚 

Assignment variable: A binary variable that shows whether CAV I is assigned to gap j or not. 
The value is 1 when it is assigned; otherwise, it is 0. 
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Table 5.3. Optimization parameters 

Parameter Definition 
𝐶𝐶 𝑗𝑗 𝑚𝑚 Cost of moving CAV I to gap j. 
𝑐𝑐1 A constant showing the cost of a lane change. 
𝑐𝑐2 A constant showing the cost of moving forward unit length related to surrounding CAVs 

in the current lane. 
𝑆𝑆𝑎𝑎𝑣𝑣𝑔𝑔 Average speed of CAVs. 

𝑚𝑚𝐶𝐶𝑀𝑀𝐶𝐶(𝑡𝑡) 
𝑚𝑚 Longitudinal distance between rear bumper of CAV I and front bumper of the EV at time 

step t. An example is provided in Figure 25. 
𝑚𝑚𝐺𝐺𝑀𝑀𝑃𝑃(𝑡𝑡) 
𝑗𝑗 Longitudinal distance between rear side of gap j and front bumper of the EV at time step 

t. An example is provided in Figure 25.
𝑦𝑦𝐶𝐶𝑀𝑀𝐶𝐶(𝑡𝑡) 𝑚𝑚 Lane index of CAV I at time step t. An example of lane indices is shown in Figure 26. 
𝑦𝑦𝐺𝐺𝑀𝑀𝑃𝑃(𝑡𝑡) 𝑗𝑗 Lane index of gap j at time step t. 
𝑚𝑚𝑀𝑀𝐶𝐶(𝑡𝑡) Longitudinal distance of EV from segment’s starting point at time step t. 
𝑚𝑚𝑂𝑂𝑃𝑃𝑇𝑇 Optimization repetition threshold. Its default value is 0 at the start of simulation. 

Whenever the EV crosses this threshold, optimization is repeated. 
𝑛𝑛 Number of CAVs in the buffer zone. 
𝑚𝑚 Number of eligible gaps in the buffer zone. 
𝑔𝑔𝑎𝑎 Length of the available gap between two CAVs 
𝑛𝑛𝑔𝑔 Number of eligible gaps in the available gap. 
𝑔𝑔𝑒𝑒 Length of eligible gap. 

𝐶𝐶𝑀𝑀𝐶𝐶𝑜𝑜𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑡𝑡) A list containing the IDs of CAVs which are inside the buffer zone at time step t. 

An example of longitudinal distances of CAVs and gaps to the EV is illustrated in Figure 

25. 

Figure 25. Longitudinal distances between CAVs and the EV and between gaps and the EV. 
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Figure 26. Lane indices 
 

As it is illustrated in Figure 26, lane index starts from 0 in shoulder and increases as it gets 

closer to center of road’s cross section. Lane index can be higher than 3 if there are more 

than 3 road lanes. 

Hannoun et al. and Wu et al. divided road segment to identical cells and positioned vehicles 

and gaps inside these cells (Hannoun et al., 2018; J. Wu et al., 2020). As this approach is 

not possible in microsimulation where vehicle movements are continuous, gaps are defined 

based on vehicle positions in this study. First, the length of available gap between any two 

CAVs are identified. Then, Equations 5.1 and 5.2 identifies number and length of eligible 

gaps in this available gap. Based on Equation 5.1, the available gap length is divided by 

minimum eligible gap length, and number of eligible gaps is obtained by flooring the 

division result. Then, the available gap length is divided by the obtained number of eligible 

gaps, and floor of division give us the length of eligible gaps according to Equation 5.2. It 

is derived that eligible gap length is equal or higher than minimum gap length and less than 

twice minimum gap length. 

 
 

𝑛𝑛𝑔𝑔 = ⌊ 
𝑔𝑔𝑎𝑎 

 
 

𝑔𝑔𝑚𝑚𝑚𝑚𝑛𝑛 

 
⌋ 5.1 

 
 

𝑔𝑔𝑒𝑒 = ⌊ 
𝑔𝑔𝑎𝑎 
 

 

𝑛𝑛𝑔𝑔 ⌋ 5.2 
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Figure 27 illustrates an example of eligible gap identification. In this example, the available 

gap is divided into two eligible gaps. 

Figure 27. An example of eligible gap identification 

Optimization is only performed for the CAVs and eligible gaps that are inside the buffer 

zone. Once the optimization is completed, the assigned trajectories are transmitted to CAVs 

using TraCI. If the EV enters from the right or left lanes, the CAVs in the middle lane may 

be required to change lanes to create gaps for other CAVs in the EV’s lane. Hence, the 

positions of CAVs are also defined as eligible gaps except for the CAVs in the EV’s lane. 

The optimization then decides whether the CAVs in other lanes should change lane or not. 

All CAVs and eligible gaps are numbered to be used in optimization. An example of 

numbering is illustrated in Figure 28. The numbers of CAVs and gaps are shown with 

parameters I and j, respectively. 

Figure 28. An example of the numbering of CAVs and gaps 
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𝑚𝑚 

The objective function is defined considering the cost of lane-changing. The cost of lane- 

changing is estimated using two parameters including the time required to continue moving 

in the current lane to reach the assigned gap and the time required to perform lane-changing 

and enter the target lane. Therefore, the cost function had two components: a term 

dependent on the longitudinal distance between a CAV and its assigned gap and the speed 

difference between the CAV and other CAVs and another term related to the lane-changing 

process. 

Binary linear programming was used to minimize the objective function. Generally, linear 

programming minimizes or maximizes a linear function of variables limited by a set of 

linear constraints. When only one binary variable is used, the optimization problem 

becomes binary linear programming (Soudi & Tomsovic, 1998). The objective and cost 

functions are provided in Equations 5.3 and 5.4, respectively. 

 
 

𝑛𝑛  𝑚𝑚 

𝑚𝑚𝑚𝑚𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒 ∑ ∑ 𝐶𝐶 𝑗𝑗 5.3 
𝑚𝑚=1 𝑗𝑗=1 

𝐶𝐶 𝑗𝑗 = (𝑐𝑐 |𝑦𝑦𝐺𝐺𝑀𝑀𝑃𝑃(𝑡𝑡) − 𝑦𝑦𝐶𝐶𝑀𝑀𝐶𝐶(𝑡𝑡)| + 𝑐𝑐 (𝑚𝑚𝐺𝐺𝑀𝑀𝑃𝑃(𝑡𝑡) − 𝑚𝑚𝐶𝐶𝑀𝑀𝐶𝐶(𝑡𝑡)))𝑤𝑤𝑗𝑗 5.4 
𝑚𝑚 1  𝑗𝑗 𝑚𝑚 2  𝑗𝑗 𝑚𝑚 𝑚𝑚 

The parameters of 𝑐𝑐1 and 𝑐𝑐2 should be calibrated for any application based on the average 

time required to complete a lane change and the difference between the speed of a CAV 

and the average speed of CAVs when the CAV needs to move forward and reach its 

assigned gap. In our simulation setting, it was observed that, on average, it took 2 seconds 

for a CAV to complete a lane change. Therefore, 𝑐𝑐1 was set to 2 seconds. The value of 𝑐𝑐2 

was dependent on the speed difference between a CAV and its surrounding CAVs. In our 
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𝑚𝑚 

𝑚𝑚 

control algorithm, it was assumed that when a CAV needs to move forward to reach its 

assigned gap, it can increase its speed up to 20 percent. Hence, the value of 𝑐𝑐2 was 

calculated as the time required to move forward a unit length related to surrounding CAVs 

according to Equation 5.5. 

𝑐𝑐2 
1 

= 𝑆𝑆𝑎𝑎𝑣𝑣𝑔𝑔 × 0.2 5.5 

Five constraints were defined in the optimization process as follows. The first two 

constraints are based on (Hannoun et al., 2018) and (J. Wu et al., 2020). The next 

constraints were added to eliminate infeasible trajectories and reduce lane-changing 

conflicts. 

1) One CAV per gap: The first constraint, shown in Equation 5.6, ensured that each

gap was assigned to a maximum of one CAV. In other words, at each gap, the sum

of assignment variables for CAVs should be equal to 0 or 1.

𝑛𝑛 

∑ 𝑤𝑤𝑗𝑗 ≤ 1; ∀𝑗𝑗 = 1,2, … , 𝑚𝑚 5.6 
𝑚𝑚=1 

2) One gap per CAV. This constraint, provided in Equation 5.7, checked that each

CAV was assigned to a single gap. Based on this constraint, for each CAV, the

sum of assignment variables at different gaps should be equal to 1.

𝑚𝑚 

∑ 𝑤𝑤𝑗𝑗 = 1; ∀𝑚𝑚 = 1,2, … , 𝑛𝑛 5.7 
𝑗𝑗=1 
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3) Forward movement. Using to this constraint, CAVs were assigned to the gaps that 

were in front of them. This ensured that they did not need to decrease their speeds 

to reach the assigned gaps behind them. Therefore, the EV is not required to 

decrease its speed due to the speed reductions of CAVs. Equation 5.8 shows the 

forward movement constraint. 

 
 

𝑚𝑚 
∑(𝑚𝑚𝐺𝐺𝑀𝑀𝑃𝑃(𝑡𝑡) − 𝑚𝑚𝐶𝐶𝑀𝑀𝐶𝐶(𝑡𝑡))𝑤𝑤𝑗𝑗 ≥ 0; ∀𝑚𝑚 = 1,2, … , 𝑛𝑛 5.8 

𝑗𝑗 
𝑗𝑗=1 

𝑚𝑚 𝑚𝑚 

4) One lane change limitation. This constraint, formulated in Equation 5.9, ensured 

lane changes were feasible. If a CAV required two lane changes to reach its 

assigned gap, there might be another CAV in the middle lane, between the CAV 

and its assigned gap, making the lane change infeasible. Therefore, lane changes 

were limited to one lane change. 

𝑚𝑚 
∑|𝑦𝑦𝐺𝐺𝑀𝑀𝑃𝑃(𝑡𝑡) − 𝑦𝑦𝐶𝐶𝑀𝑀𝐶𝐶(𝑡𝑡)|𝑤𝑤𝑗𝑗 ≤ 1; ∀𝑚𝑚 = 1,2, … , 𝑛𝑛 5.9 

𝑗𝑗 
𝑗𝑗=1 

𝑚𝑚 𝑚𝑚 

5) No relative forward movement without lane change. To reduce the conflict between 

CAVs, the assignment of CAVs to other gaps in the same lane were restricted. 

Hence, only the CAVs required to change lane may move forward relative to CAV 

platoon to reach their assigned gaps and other CAVs do not change speed. This 

constraint is formulated in Equation 5.10. 

𝑚𝑚 
∑(𝑚𝑚𝐺𝐺𝑀𝑀𝑃𝑃(𝑡𝑡) − 𝑚𝑚𝐶𝐶𝑀𝑀𝐶𝐶(𝑡𝑡))𝑤𝑤𝑗𝑗𝑚𝑚𝑗𝑗 ≥ 0; ∀𝑚𝑚 = 1,2, … , 𝑛𝑛 5.10 

𝑗𝑗 
𝑗𝑗=1 

𝑚𝑚 𝑚𝑚  𝑚𝑚 
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𝑚𝑚 Where 𝑚𝑚𝑗𝑗 is defined in Equation 5.11. 

1 𝑚𝑚𝑖𝑖|𝑦𝑦𝐺𝐺𝑀𝑀𝑃𝑃(𝑡𝑡) − 𝑦𝑦𝐶𝐶𝑀𝑀𝐶𝐶(𝑡𝑡)| = 0 
𝑚𝑚𝑗𝑗 = { 𝑗𝑗 𝑚𝑚 ; ∀𝑚𝑚 = 1,2, … , 𝑛𝑛 ; ∀𝑗𝑗 = 1,2, … , 𝑚𝑚 5.11 
𝑚𝑚 0 𝑚𝑚𝑖𝑖|𝑦𝑦𝐺𝐺𝑀𝑀𝑃𝑃(𝑡𝑡) − 𝑦𝑦𝐶𝐶𝑀𝑀𝐶𝐶(𝑡𝑡)| > 0 

𝑗𝑗 𝑚𝑚 

Optimization is performed based on the algorithm provided in Figure 29. This algorithm is 

performed at every simulation step and first checks if the conditions for optimization are 

met. Optimization is repeated at intervals of L/2 to ensure that CAVs had time to reach 

their assigned gap before receiving a new assignment. 

Figure 29. Optimization algorithm 
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According to Figure 29, there is a check if the EV’s longitudinal position is higher than the 

optimization repetition threshold. If so, the number of CAVs in the buffer zone are checked. 

If there are any CAVs in the buffer zone, optimization is performed. When there are more 

CAVs than eligible gaps in the buffer zone, the optimization is infeasible. In this condition 

optimization cannot meet “one gap per CAV” constraint, provided in Equation 5.7,since 

the optimization cannot find available gaps for all CAVs. If optimization is infeasible using 

three freeway lanes, the shoulder is used to add additional gaps to the buffer zone, and 

optimization is repeated. At the end, half buffer length is added to the repletion threshold. 

The output of the optimization process is a set of assigned gaps for CAVs. The control 

algorithm, described in the next section, will be used to meet those assignments. 

5.2.2 Cooperative control algorithm 

 
To specify the cooperative behavior in SUMO, a control algorithm was written in Python 

and added to SUMO through the TraCI module. The proposed cooperative control 

algorithm is provided in Figure 31. The parameters utilized in the cooperative algorithm 

are presented in Table 5.4. In the previous section, optimized trajectories were obtained 

based on the positions of CAVs and gaps relative to the EV, 𝑚𝑚𝐶𝐶𝑀𝑀𝐶𝐶 and 𝑚𝑚𝐺𝐺𝑀𝑀𝑃𝑃. However, these 
𝑚𝑚 𝑗𝑗 

relative positions cannot be used by CAVs to follow optimized trajectories, as the EV 

moves faster than CAV traffic. Hence, a CAV which moves with the same speed as traffic 

should be used as the origin of positioning. Positioning origin for every CAV i and its 

assigned gap j was defined the lag CAV which is behind gap j in the same lane. An example 

of positioning relative to the lag CAV is provided in Figure 30. 
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Table 5.4. Parameters used in the cooperative algorithm. 

Parameter Definition 
𝑆𝑆𝐶𝐶𝑀𝑀𝐶𝐶(𝑡𝑡) 𝑚𝑚 Speed of CAV i at time t. 

c A constant that is used to increase the speed of a CAV to reach its assigned gap which 
is 1.2. 

𝑚𝑚𝐶𝐶𝑀𝑀𝐶𝐶_𝐿𝐿𝑀𝑀𝐺𝐺 (𝑡𝑡) 𝑚𝑚 
Longitudinal distance between rear bumper of CAV i and front bumper of the lag CAV 
at time t. This variable can be negative when CAV i is behind the lag CAV. An example 
is provided in Figure 30. 

𝑚𝑚𝑀𝑀𝑆𝑆𝑆𝑆𝐴𝐴𝐺𝐺𝐴𝐴_𝐺𝐺𝑀𝑀𝑃𝑃 (𝑡𝑡) (𝑚𝑚,𝑗𝑗) Longitudinal distance between rear side of gap j assigned to CAV i and front bumper of 
the lag CAV at time t. An example is provided in Figure 30. 

𝑦𝑦𝑀𝑀𝑆𝑆𝑆𝑆𝐴𝐴𝐺𝐺𝐴𝐴_𝐺𝐺𝑀𝑀𝑃𝑃 (𝑡𝑡) (𝑚𝑚,𝑗𝑗) Lane index of gap j assigned to CAV i at time t. 
𝑆𝑆𝐿𝐿𝑀𝑀𝐺𝐺(𝑡𝑡) 

(𝑚𝑚,𝑗𝑗) Speed of the lag CAV. If the lag CAV needs to change speed or there is no lag CAV 
behind gap j, then the closest CAV to gap j that does need to change speed is selected 
as the lag CAV. 

Figure 30. Longitudinal distances between CAVs and the lag CAV and between gaps and the lag CAV. 
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Figure 31. Cooperative control algorithm 

 
The algorithm provided in Figure 31 is performed for every CAV at every simulation step. 

The first step checks the distance between the CAV and the EV. If the CAV is in front of 

the EV and within the buffer zone, the CAV should be added to the buffer list of CAVs, 

and all non-cooperative lane changes are disabled. Non-cooperative lane changes are 

defined as lane changes that are not required based on optimized trajectories. Hence, CAVs 

in the buffer zone only perform lane changes requested by the cooperative algorithm. Only 

the CAVs that are in the buffer list are considered for the optimization process. Then, the 

algorithm checks whether a gap was assigned to this CAV by optimization. If the CAV has 

an assigned gap, the lane index of the assigned gap and the CAV are compared. If they 

have different lane indices, the CAV should perform a lane change. Before performing the 



91 

lane change, the longitudinal positions of the CAV and the assigned gap are compared. If 

the assigned gap is in front of the CAV, the CAV may need to increase speed to reach the 

assigned gap. Due to safety concerns, the CAV is only allowed to increase its speed up to 

20 percent higher than the lag CAV’s speed. When the CAV reaches to the longitudinal 

position of its assigned gap, the CAV changes lanes. If the assigned gap is in the shoulder 

lane, the CAV is ordered to reduce its speed to observe the shoulder’s speed limit. When 

the EV passes the CAV, non-cooperative lane changes become allowed. The developed 

cooperative algorithm is applicable to freeway segments with more than 3 road segments. 

5.2.3 Non-cooperative and base control algorithms 

To evaluate the extent of improvement achieved by the cooperative control algorithm, a 

non-cooperative control algorithm was implemented. In the non-cooperative algorithm, 

CAVs act individually without optimization to clear the EV’s lane. As optimization is not 

used, the positions of eligible gaps are unknown. Hence, all the CAVs which are in the 

EV’s lane and inside the buffer zone are ordered to move to their right. If a CAV is ordered 

to move to shoulder, it should observe the shoulder’s speed limit. The non-cooperative 

algorithm is provided in Figure 32 and performed for every CAV in every simulation step. 
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Figure 32. Non-cooperative control algorithm 

Additionally, a base algorithm was used in which the EV utilizes the shoulder under the 

shoulder’s speed limit, and CAVs are not disturbed or ordered to perform any lane change 

or speed change. 

5.2.4 Design of experiments 

EV travel time reliability was investigated to evaluate algorithms performances (Z. Zhang 

et al., 2016). As the buffer zone length is an important parameter in the cooperative 

behavior framework, the sensitivity of EV travel time to buffer length was investigated in 

different traffic densities and EV entrance lanes. To illustrate the extent of shoulder use in 

the cooperative framework, shoulder use percentage was calculated by dividing shoulder 

use duration by EV travel time. Shoulder use duration values were normalized by EV travel 

time to better compare simulation runs with different EV travel times. The results are 

provided in Figure 33. 



Figure 33. Sensitivity of EV travel time to buffer length. 
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Figure 33 (a), (b), and (c) illustrates as buffer length increases, the EV’s travel time reduces 

toward a minimum travel time which is the free flow travel time at the EV’s speed limit. 

Comparing Figure 33 (a), (b), and (c), it is observed that as density increases, EV’s travel 

time increases, and higher buffer lengths are required to reduce the travel time to its 

minimum. Figure 33 (a), (b) show the EV’s lane does not considerably influence the 

cooperative algorithm’s performance in low and medium densities. However, Figure 33 (c) 

illustrates the lane the EV uses impacts the algorithm’s performance in high density. As 

the optimization without shoulder use becomes infeasible in congested traffic, the 

cooperative algorithm starts using shoulder to clear the EV’s lane. Figure 33 (d), (e), and 

(f) suggests that as traffic becomes more congested, shoulder use percentage increases. In

Figure 33 (f), the buffer lengths of higher than 100 meters resulted in the cooperative 

algorithm using shoulder over more than half of EV’s travel time. Thus, the cooperative 

algorithm is very dependent on using shoulder to clear EV’s lane in high density. 

Additionally, if the EV’s lane is not adjacent to the shoulder’s lane, it takes more time clear 

the EV’s lane. 

Based on Figure 33, EV’s travel time reaches its minimum at the buffer length of around 

300 meters in all scenarios expect when EV moves on the lanes not adjacent to shoulder in 

high traffic density. Hence, 300 meters was chosen to evaluate the EV’s travel time 

reliability of developed algorithms. Also, several simulation runs were performed using 

different minimum gap lengths in the cooperative algorithm, and the gap length of 10 

meters reached in lowest EV travel time in our simulation settings. 18 simulation scenarios 
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were chosen based on control algorithm, traffic density and EV’s lane index. Defined 

simulation scenarios are provided in Table 5.5. 

Table 5.5. Simulation scenarios 

Scenario Algorithm Density 
(veh/mi/ln) 

EV’s lane 
index 

Buffer length 
(meters) 

Minimum 
gap (meters) 

BL0 Base 70 (Low) 0 - - 
NL1 Non-cooperative 70 (Low) 1 300 - 
CL1 Cooperative 70 (Low) 1 300 10 
NL2 Non-cooperative 70 (Low) 2 300 - 
CL2 Cooperative 70 (Low) 2 300 10 
NL3 Non-cooperative 70 (Low) 3 300 - 
CL3 Cooperative 70 (Low) 3 300 10 
BM0 Base 100 (Medium) 0 - - 
NM1 Non-cooperative 100 (Medium) 1 300 - 
CM1 Cooperative 100 (Medium) 1 300 10 
NM2 Non-cooperative 100 (Medium) 2 300 - 
CM2 Cooperative 100 (Medium) 2 300 10 
NM3 Non-cooperative 100 (Medium) 3 300 - 
CM3 Cooperative 100 (Medium) 3 300 10 
BH0 Base 130 (High) 0 - - 
NH1 Non-cooperative 130 (High) 1 300 - 
CH1 Cooperative 130 (High) 1 300 10 
NH2 Non-cooperative 130 (High) 2 300 - 
CH2 Cooperative 130 (High) 2 300 10 
NH3 Non-cooperative 130 (High) 3 300 - 
CH3 Cooperative 130 (High) 3 300 10 

5.3 Results and discussion 

50 simulation runs with different random seeds were performed for each scenario provided 

in Table 5.5. Figure 34 shows the variability of EV travel time and CAV delay in different 

scenarios provided in Table 5. Shoulder use percentage was averaged for the scenarios with 

the cooperative algorithm and provided in Table 5.6. Also, ANOVA tests were performed 

for EV travel time and CAV delay considering three factors including traffic density, EV 
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lane index and control algorithm. The results of ANOVA tests are provided in Table 5.7, 

Table 5.8 and Table 5.9. 

 
 

 
Figure 34. EV travel time and CV delay in different scenarios. 
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Table 5.6. Mean shoulder use percentage in the scenarios with the cooperative algorithm. 

Algorithm Density (veh/mi/ln) EV’s lane index Mean shoulder use 
percentage 

Cooperative 70 (Low) 1 0 
Cooperative 70 (Low) 2 0 
Cooperative 70 (Low) 3 0 
Cooperative 100 (Medium) 1 37 
Cooperative 100 (Medium) 2 32 
Cooperative 100 (Medium) 3 36 
Cooperative 130 (High) 1 84 
Cooperative 130 (High) 2 84 
Cooperative 130 (High) 3 83 

Table 5.7. ANOVA results for EV travel time 

Factor F value P value 
Density (Low, medium & high) 442.1 <0.01 
Lane index (1, 2 & 3) 156.0 <0.01 
Algorithm (Cooperative & non-cooperative) 139.3 <0.01 

Table 5.8. ANOVA results for CAV delay 

Factor F value P value 
Density (Low, medium & high) 1361.51 <0.01 
Lane index (1, 2 & 3) 105.25 <0.01 
Algorithm (Cooperative & non-cooperative) 19.41 <0.01 

Table 5.9. ANOVA results for EV travel time with EV lane index as factor 

Density Algorithm Factor F value P value 
Low Cooperative Lane index (1, 2 & 3) 1.83 0.16 
Medium Cooperative Lane index (1, 2 & 3) 0.67 0.52 
High Cooperative Lane index (1, 2 & 3) 344.8 <0.01 
Low Non-cooperative Lane index (1, 2 & 3) 57.09 <0.01 
Medium Non-cooperative Lane index (1, 2 & 3) 138.1 <0.01 
High Non-cooperative Lane index (1, 2 & 3) 1131 <0.01 
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Table 5.7 and Table 5.8 verifies that, in general, averages of EV travel time and CAV delay 

are statistically not equal in scenarios with different traffic densities and EV lane indices. 

It is also verified that using cooperative algorithm reached in statistically different average 

EV travel time and CAV delay compared to the non-cooperative algorithm. According to 

Figure 34 (a), (b) and (c), the cooperative algorithm is successful in significantly reducing 

EV travel time in the scenarios with EV on the lanes not adjacent to shoulder. Also, the 

size of boxplots and the difference between 95th and 5th percentiles illustrates using the 

cooperative algorithm results in lower EV travel time variance in these scenarios. This 

indicates that, in the mentioned scenarios, the cooperative algorithm is successful in 

reducing EV travel time and improving the travel time reliability of EV compared to other 

algorithms. In the scenarios with EV on the lane adjacent to shoulder, EV travel time of 

cooperative algorithm is slightly higher than travel time of non-cooperative algorithm. This 

is a trade-off for intelligent use of shoulder in cooperative algorithm which will be 

discussed in detail in the following. 

Comparing the scenarios with cooperative and non-cooperative algorithms in Figure 34 

(a), (b) and (c), the cooperative algorithm results in lower EV travel time in all lanes except 

lane 1. Non-cooperative algorithm has slightly lower EV travel time in lane 1 since this 

algorithm blindly uses shoulder when the EV is in lane 1 in all traffic densities. However, 

the cooperative algorithm uses shoulder only when required in congested traffic. Using 

shoulder enable CAVs to clear EV’s lane as fast as possible. On the other hand, using 

shoulder reduces safety due to lower width, potential blockage by obstacles, and reentry to 

the travel lane being a challenge. Shoulder lanes are not designed to be used by a CAV 
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platoon and should be considered as a last resort when there is no other available solution. 

Hence, an intelligent algorithm like our developed cooperative algorithm should be 

implemented to identify the necessity of shoulder use. 

The same trend observed for the difference between EV travel time of cooperative 

algorithm in different lanes in Figure 33 is also observed in Figure 34 (a), (b) and (c). Table 

5.9 also verifies this trend as it shows, among all scenarios, mean EV travel time is not 

dependent on EV lane index in the cooperative scenarios with low and medium densities. 

Comparing scenarios CL1, CL2 and CL3 in Figure 34 (a), the EV lane index does not 

considerably impact EV travel time when the cooperative algorithm is used in low traffic 

densities. The results of scenarios CM1, CM2 and CM3 in Figure 34 (b) also illustrate the 

independence of EV travel time to EV lane index in medium density. However, the 

increasing trend of EV travel time from scenario CH1 to CH3 in Figure 34 (c) shows a 

direct relationship between EV travel time and lane index in high densities with the 

cooperative algorithm. According to Table 5.6, the cooperative algorithm uses the shoulder 

in more than 80 percent of EV travel time in high density. Therefore, as the EV’s lane 

become farther from the shoulder’s lane, CAVs need more time to clear the EV’s lane. 

Comparing the scenarios with the non-cooperative algorithm in Figure 34 (a), (b) and (c) 

shows that lowest EV travel times are observed in lane 1 (scenarios NL1, NM1 and NH1). 

This is due to the advantage of using the shoulder when the EV is in lane 1 for non- 

cooperative scenarios. When the EV is in lane 1, the CAVs in lane 1 are directed to move 

to the shoulder which has enough eligible gaps. In Figure 34 (a), no considerable difference 

is observed between scenarios NL2 and NL3. However, comparing scenarios NM2 and 
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NH2 with scenarios NM3 and NH3, respectively, in Figure 34 (b) and (c), it is observed 

that higher EV travel times are observed in lane 2 compared to lane 3. The reason for this 

is that when the EV is in lane 3, the CAVs in lane 2 can move to lane 1 and help the lane- 

changing of the CAVs in lane 3. Hence, the eligible gaps in both lanes 1 and 2 can be used 

to clear lane 3 for the EV. Figure 34 (a), (b) and (c) also shows increasing density leads in 

an increase in EV travel time as it was expected for lanes 2 and 3 with the non-cooperative 

algorithm. 

According to Figure 34 (a), (b) and (c), the same travel time is observed in the base 

algorithm in all scenarios and all simulation runs with similar 95th and 5th percentiles 

(scenarios BL0, BM0 and BH0). This is to be expected as the EV moves on the shoulder, 

observing the shoulder speed limit and has no conflict with CAV traffic in the base 

algorithm. Figure 34 (a), (b) and (c) illustrates that EV travel times in all scenarios with 

cooperative algorithm are lower than the travel time in the scenarios with the base 

algorithm. Only the 95th percentile travel time of scenario CH3 is higher than EV travel 

time of scenario BH0 in Figure 34 (c). However, even in scenario CH3, the box plot’s 

upper quartile, is lower than the base algorithm travel time. 

According to Figure 34 (d), CAV delay is lower for scenario CL2 compared to scenarios 

CL1 and CL3. Based on Figure 31, in the cooperative algorithm, when the EV is in lane 2, 

the CAVs in this lane have access to all eligible gaps in lanes 1 and 3. However, when the 

EV is in lane 1, CAVs in lane 1 only have access to the eligible gaps in lane 2, and the 

cooperative algorithm can order the CAVs in lane 2 to move to lane 3 to aid the lane- 

changing of the CAVs in lane 1. The same situation happens when the EV is in lane 3. 
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Therefore, when the EV is in lane 2, less CAVs are engaged in the lane-changing process. 

This results in reducing the lane-changing cost and as the CAVs in lane 2 have access to 

all eligible gaps, they can clear EV’s lane sooner with lower average delay. The same trend 

is observed for lanes 2 and 3 in Figure 34 € and (f), and CAV delays in scenarios CM2, 

CH2 are lower compared to scenarios CM3 and CH3, respectively. It is shown as density 

increases, from Figure 34 (d) to (f), the difference between the CAV delays of lanes 1 and 

2 becomes smaller for the cooperative algorithm. In Figure 34 (f), there is no considerable 

difference between the CAV delays of scenarios CH1 and CH2. This is the result of 

shoulder use percentage rise as traffic density increases according to Table 5.6. When the 

cooperative algorithm uses shoulder to clear lane 1 for EV, the CAVs in lane 1 have access 

to the eligible gaps in shoulder and have less conflict with the CAVs in lanes 2 and 3. This 

reduces CAV average delay until CAV delays of scenarios CH1 and CH2 become similar. 

According to Figure 34 (d), (e), and (f), lower CAV delays are observed in lane 1 compared 

to lanes 2 and 3 in the scenarios with the non-cooperative algorithm. This is because using 

the shoulder, which has enough eligible gaps for CAVs in lane 1, eliminates the conflict 

with CAVs in lanes 2 and 3. Comparing scenarios NL2 and NL3 in Figure 34 (d), the CAV 

delay in lane 2 is higher than the CAV delay in lane 3. Unlike the cooperative algorithm, 

the positions of eligible gaps are unknown in the non-cooperative algorithm. Hence, the 

lane-changing of a CAV in the EV’s lane depends on the presence of an eligible gap in the 

vicinity of CAV or on the CAVs in other lanes to create a new gap when there is not an 

available gap. When the EV is in lane 2, the CAVs in lane 2 only have access to the gaps 

in lane 1. However, when the EV is in lane 3, the CAVs in lane 3 have access to the gaps 
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in lane 2, and the potential lane changing of CAVs from lane 2 to lane 1 can help creating 

new gaps in lane 2. The faster lane changing of CAVs results in faster clearance of EV‘s 

lane and reducing the average delay of CAVs. Moving from Figure 34 (d) to (f), the 

difference between CAV delay of lanes 2 and 3 becomes smaller for the non-cooperative 

algorithm. In Figure 34 (f), similar CAV delay is observed for scenarios NH2 and NH3. 

The reason is that as density increases, the number of eligible gaps reduces. Hence, in high 

traffic density of Figure 34 (f), when EV is in lane 3, higher number of CAVs in lanes 2 

and 1 should engage in speed adjustment to make new gaps for CAVs in lane 3. As a result, 

higher CAV average delay is observed in scenario NH3. 

Delays of scenarios BL0, BM0 and BH0 shows a baseline for the delay of CAVs which 

are not disturbed by EV. As observed in Figure 34 (d), (e) and (f), the base algorithm has 

lowest CAV delay compared to the non-cooperative and cooperative algorithms. 

Comparing scenarios NL1 and CL1 in Figure 34 (d), it is illustrated that, when EV is on 

lane 1 with low traffic density, the non-cooperative algorithm reached a lower CAV delay 

compared to the cooperative algorithm. The reason is that the non-cooperative algorithm 

always uses shoulder in lane 1. However, the cooperative algorithm only results in shoulder 

use when it is required. According to Table 5.6, the cooperative algorithm does not use 

shoulder in low density as there are enough eligible gaps in lanes 2 and 3 in scenario CL1. 

In this situation, the CAVs in lanes 2 and 3 are also integrated in the lane changing process 

which increases average CAV delay. Based on Figure 34 (a) and (d), while there is a small 

difference in CAV delay, there is not a considerable difference in EV travel time of scenario 

CL1 compared to scenario NL1. It is worth mentioning that scenario CL1 reached the same 
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EV travel time without using shoulder. As density increases, from Figure 34 (d) to (f), 

CAV delay of cooperative algorithm decreases in lane 1. It can be observed in Figure 34 

(f) that there is no considerable difference between the CAV delays of scenarios NH1 and

CH1. This is likely because of high shoulder use percentage in scenario CH1 based on 

Table 5.6. Hence, the cooperative and non-cooperative algorithms perform similarly 

regarding CAV delay in high densities when EV is on lane 1. 

Comparing scenarios NL2, NM2, and NH2 with scenarios CL2, CM2 and CH2, 

respectively, in Figure 34 (d), (c), and (f), it is shown that the non-cooperative algorithm 

results in higher CAV delay compared to the cooperative algorithm when the EV is in lane 

2. This is expected as the positions of eligible gaps are known and the CAVs in lane 2 have

access to the eligible gaps in both lanes 1 and 3 in the cooperative algorithm compared to 

the non-cooperative algorithm in which gaps are unknown and the CAVs in lane 2 only 

have access to the gaps in lane 1. As density increases, from Figure 34 (d) to (f), it is 

observed that CAV delay of the non-cooperative algorithm in lane 3 increases until, in 

scenario NH3, it becomes higher than the CAV delay of the cooperative algorithm, scenario 

CH3. This is likely because of the increasing percentage of shoulder use in the cooperative 

algorithm in higher densities based on Table 5.6. Based on Figure 34 (b), (c), (e) and (f), 

the cooperative algorithm reached in lower EV travel time and CAV delay in all scenarios 

with EV on lanes 2 or 3, except scenario CL3, compared to the non-cooperative algorithm. 

5.4 Conclusions 

The goal of this research was to create a cooperative framework for CAVs to minimize the 

lane-changing disruption while clearing EV’s way on multi-lane freeways which was a gap 
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in the literature. Binary linear programming, an optimization approach was used to 

optimize the trajectory of CAVs in the buffer zone of EV. The objective function aims to 

minimize lane-changing conflict. To prevent creation of infeasible lane-changes, gap 

assignments were limited to requiring only one lane-change. Also, to prevent CAV 

maneuvers causing EV speed reduction, CAVs were only assigned to the gaps in front of 

them. A cooperative control algorithm was developed to control CAV gap assignments and 

lane-changing directives based on optimized trajectories to clear EV’s lane. In the 

cooperative algorithm, the shoulder could be used by CAVs if optimization becomes 

infeasible using freeway road lanes. A non-cooperative algorithm in which CAVs act 

independently, and a base algorithm in which the EV moved on the shoulder were both 

defined to evaluate the performance of the cooperative algorithm. The developed 

algorithms were implemented in traffic simulation on a three-lane freeway with a right 

shoulder. 

The results showed using the cooperative algorithm reduced EV travel time and improved 

travel time reliability compared to other tested algorithms in the scenarios in which EV 

was on the lanes not adjacent to shoulder. The cooperative algorithm was successful in 

reducing CAV delay compared to the non-cooperative algorithm in most of scenarios with 

EV on the lane not adjacent to shoulder. It was illustrated that the cooperative algorithm 

resulted in slightly higher EV travel time and CAV delay when EV moved on the lane 

adjacent to shoulder. Small increases in travel time and delay were a trade-off for the 

intelligent use of shoulder in the cooperative algorithm intending to minimize shoulder use. 

The average shoulder uses of cooperative algorithm were 0, 35 and 84 percent of EV travel 
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time in low, medium, and high densities, respectively, while this measure was 100 percent 

for the non-cooperative algorithm in all densities. Hence, with lower shoulder use 

percentage, the cooperative algorithm reached in approximately the same EV travel time 

compared to non-cooperative algorithm. The results indicate that if EVs move on the 

rightmost road lane, adjacent to shoulder, the cooperative algorithm can clear EV’s lane 

and have minimal adverse impact on CAV delay as it can wisely open shoulder to CAVs 

when required which addresses the goal of this research. The developed cooperative 

framework is not limited to freeway segments with 3 road lanes and could be applied to 

freeways segments with different number of lanes. 

The developed framework could be implemented to enhance EV movement in traffic 

networks and reduce the negative impact of EV prioritization on traffic. Intelligent use of 

shoulder enables the cooperative algorithm to avoid using shoulder when there are 

obstacles in shoulder which was not considered in the scenarios of this research. The 

developed cooperative framework could be adopted in future research to identify shoulder 

use feasibility through obstacle detection to improve the safety and performance. This 

study focused on prioritizing EV on freeway segments. Future studies could consider 

extending this framework to optimize the behavior of CAVs in emergencies in arterial road 

segments with various geometries. Our cooperative approach was developed and tested in 

fully connected and autonomous traffic. This approach could be adopted to consider human 

driving behavior in mixed traffic with different market penetration rates. Some of the 

implemented optimization constraints including “one lane-change limitation,” “only 

forward movements” and “no relative forward movements in the same lane” were 
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limitations of this research. These constraints were used to prevent the generation of 

infeasible trajectories in optimization. Future studies can focus on improving infeasible 

trajectory identification methods to include a larger set of feasible trajectories to enhance 

the algorithm’s performance. As EV was assumed moving on the same lane in our 

methodology, future research can adopt the cooperative framework considering EV lane- 

changing to increase degree of freedom in optimization and improve its performance. 
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CHAPTER 6 

SUMMARY, CONTRIBUTIONS, AND FUTURE DIRECTION 
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In this thesis, EV prioritization was investigated in CAV traffic to develop frameworks 

able to reduce EV response time while minimizing negative influence on general traffic. 

To this end, three main research objectives were followed. Firstly, creation and dissipation 

of the disruption included by EV in a corridor was studied to recommend solutions to 

eliminate this disruption. Secondly, lane-changing and stopping behavior of CAVs were 

studied when clearing a lane for EV in a corridor to identify the best lane-changing 

behavior to minimize the delay of EV and traffic. Thirdly, a cooperative behavior 

framework was developed for CAVs to optimize their trajectories when preclearing EV’s 

lane to minimize lane-changing disruption. 

In chapter 1, the importance of EV response time was provided, and it was illustrated why 

it was important to reduce EV response time and the disruption created by EV on general 

traffic. In chapter 2, the related literature review was provided, and the research gaps were 

identified. In chapter 3, the disruption created by EVP in arterial cross streets at signalized 

intersections was investigated to facilitate discharging the disruption. A queue estimation 

model was developed based on shockwave theory and was validated though simulating 

EVP at an isolated signalized intersection in SUMO. Simulation results showed by 

increasing the traffic flow of cross street in uncongested traffic, maximum and minimum 

queue lengths of the preemption cycle increased with a constant slope. It was also observed 

that increasing preemption time reached in increased maximum and minimum queue 

lengths of preemption cycle. The results verified the model was able to quantify how the 

disruption created by EVP should be counteracted by adjusting signal timing in transition 

cycles. This research shows that shockwave theory can quantify the disruption created by 
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EVP and investigate solutions to counteract the disruption. The influence of different 

parameters including preemption, transition, signal timing, and traffic can be investigated 

on the disruption. Using the developed model, the strategies to prevent the disruption can 

be designed, and if the disruption is not preventable, the solutions to aid the approaches 

recover quickly after EVP can be investigated. 

In chapter 4, the lane-changing and stopping behaviors of CAVs were explored on an 

arterial corridor to investigate how behavior of CAVs influenced the delays of EV and 

surrounding traffic. To this end, a driving behavior algorithm was developed to define 

desired behavior of CAVs when an EV approaches, and a preemption method was 

developed to prioritize the EV’s approach at signalized intersections. Two parameters 

including stopping and lane-changing thresholds were introduced. It was concluded using 

both lane-changing and stopping behaviors was more favorable as it resulted in lower 

CAVs delay. An optimum lane-changing threshold was recognized which was 

accompanied by minimum EV delay. At the end, the proposed behavior algorithm was 

compared to an existing algorithm to evaluate its performance. The proposed algorithm 

proved its ability to induce more reduction in EV delay compared to the existing algorithm. 

The results of this research will serve as a benchmark for future research into more complex 

or cooperative behavior algorithms. One ability of CAVs is that their trajectories could be 

controlled by a processing center. Therefore, their trajectories could be optimized by a 

model to minimize the response time of EV. 

In Chapter 5, a cooperative behavior framework was developed for CAVs to minimize the 

lane-changing disruption while clearing EV’s way on multi-lane freeways. Binary linear 
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programming was used to optimize the trajectory of CAVs in the buffer zone of EV through 

minimizing lane-changing conflict. A cooperative control algorithm was developed to 

control CAV gap assignments and lane-changing directives based on optimized trajectories 

to clear EV’s lane. The cooperative algorithm can direct CAVs to use shoulder when 

required. The cooperative algorithm was evaluated in comparison to a non-cooperative 

algorithm in which CAVs acted independently, and a base algorithm in which the EV 

moved on the shoulder in microsimulation. The results showed using the cooperative 

algorithm reduced EV travel time and improved EV travel time reliability compared to 

other tested algorithms in the scenarios in which EV was on the lanes not adjacent to 

shoulder. The cooperative algorithm was successful in reducing CAV delay compared to 

the non-cooperative algorithm in most of scenarios with EV on the lane not adjacent to 

shoulder. Small increases in EV travel time and CAV delay when EV moved on the lane 

adjacent to shoulder was a trade-off for the intelligent use of shoulder in the cooperative 

algorithm intending to minimize shoulder use. The results indicate that if EVs move on the 

rightmost road lane, adjacent to shoulder, the cooperative algorithm can clear EV’s lane 

and have minimal adverse impact on CAV delay as it can wisely open shoulder to CAVs 

when required. The developed framework could be implemented to enhance EV 

movements in traffic networks and reduce the negative impact of EV prioritization on 

traffic. Intelligent use of shoulder enables the cooperative algorithm to avoid using 

shoulder when there are obstacles in shoulder which can be studied in future research. As 

very little is known about human behaviors during EV encounters, in future research, the 

human aspect of behaviors could be studied to enable the simulation of human drivers in 

emergencies so that the improvement of CAVs can be measured compared to human 
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drivers. Our cooperative approach was developed and tested in fully connected and 

autonomous traffic. This approach could be adopted to consider human driving behavior 

in mixed traffic with different market penetration rates. 

In summary, using the cooperative framework developed in chapter 5, EVs can be 

prioritized on freeway segments by providing optimized trajectories for CAV traffic with 

the aim of minimizing lane-changing conflict to ensure non-stop movements for EV and 

CAVs. On the other hand, on urban arterials, vehicles may be required to stop along their 

way. Hence, stopping behavior should be considered in CAV control algorithm. The 

developed lane-changing and preemption algorithms, provided in chapter 4, can be used to 

prioritize EV movement on urban arterials. As a result of using EVP on signalized 

corridors, cross streets may face huge disruptions which require several cycles to be 

discharged. The queue estimation model developed in chapter 3 could be implemented to 

evaluate preemption and transition strategies in aiding cross streets recover sooner from 

EVP disruption. Hence, this dissertation provides a comprehensive framework able to 

prioritize EV in CAV traffic on different road types and reduce the disruption induced on 

traffic. 

The developed framework could be implemented in transportation management systems to 

ensure transportation systems can provide prioritization for EVs while minimizing the 

created disruption. In future research, the developed EV prioritization framework could be 

extended to become adoptable for more complex scenarios including different road types 

and geometries along a corridor. The developed framework could be implemented in EV 

routing algorithms to evaluate different routing options and choose the best one which 
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ensure unimpeded EV movement, minimize the induced disruption on general traffic and 

eliminate the residual disruption as fast as possible. Future studies can extend the 

developed cooperative behavior framework to provide instructions for human driven 

vehicles with the aim of harmonizing autonomous and non-autonomous vehicles in 

clearing EV’s way. 
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 𝑇𝑇 −𝑇𝑇 

− 

𝑚𝑚𝑚𝑚𝑛𝑛 

− − 

APPENDIX A 

The process of driving Equations 3.5, 3.6, 3.7 and 3.8 to calculate 𝑄𝑄𝑛𝑛 , 𝑇𝑇𝑛𝑛 , 𝑄𝑄𝑛𝑛 and 
𝑚𝑚𝑎𝑎𝑚𝑚 𝑚𝑚𝑎𝑎𝑚𝑚 𝑚𝑚𝑚𝑚𝑛𝑛 

𝑇𝑇𝑛𝑛 are provided in details in this appendix. Based on the right triangles created by 𝑣𝑣1 and 

𝑣𝑣2, the vertical line at 𝑇𝑇𝑛𝑛 and the horizontal axis in Figure 1 (b), the following equation 

can be derived. 

𝑄𝑄𝑛𝑛 𝑄𝑄𝑛𝑛 
𝑇𝑇𝑛𝑛 =  𝑚𝑚𝑎𝑎𝑚𝑚 + 𝑇𝑇𝑛𝑛 =  𝑚𝑚𝑎𝑎𝑚𝑚 + 𝑇𝑇𝑛𝑛 A.1𝑚𝑚𝑎𝑎𝑚𝑚 𝑣𝑣1 𝑎𝑎 𝑣𝑣2 

𝑔𝑔 

Then, 𝑄𝑄𝑛𝑛 can be written in the following form. 

𝑛𝑛 𝑛𝑛 

𝑄𝑄𝑛𝑛 = 𝑔𝑔 𝑎𝑎 A.2 
𝑚𝑚𝑎𝑎𝑚𝑚 ( 1   1 ) 

𝑣𝑣1 𝑣𝑣2 

Based on the right triangles created by 𝑣𝑣1 and 𝑣𝑣4, the vertical line at 𝑇𝑇𝑛𝑛−1 and the horizontal 

axis in Figure 1 (b), the following equation is derived. 

𝑄𝑄𝑛𝑛−1 𝑄𝑄𝑛𝑛−1 
𝑇𝑇𝑛𝑛−1 =  𝑚𝑚𝑚𝑚𝑛𝑛_𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑇𝑇𝑛𝑛 =  𝑚𝑚𝑚𝑚𝑛𝑛_𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑇𝑇𝑛𝑛 A.3𝑚𝑚𝑚𝑚𝑛𝑛 𝑣𝑣1 𝑎𝑎 𝑣𝑣4 

𝑟𝑟 

The following equation is derived from Equation A.3 by substituting 𝑣𝑣4 with 𝑣𝑣2 since they 

have the same magnitude. 

𝑇𝑇𝑛𝑛 − 𝑇𝑇𝑛𝑛 = 𝑄𝑄𝑛𝑛−1 1 1 
A.4 

𝑟𝑟 𝑎𝑎 𝑚𝑚𝑚𝑚𝑛𝑛_𝑜𝑜𝑜𝑜𝑜𝑜 (𝑣𝑣 
− ) 

𝑣𝑣2 

Using the term obtained in Equation A.4, Equation A.2 can be rewritten in the following 

form. 

𝑛𝑛 𝑛𝑛  𝑛𝑛 𝑛𝑛 (𝑇𝑇𝑛𝑛−𝑇𝑇𝑛𝑛)+𝑄𝑄𝑛𝑛−1 ( 1   1 ) 

𝑄𝑄𝑛𝑛 = (𝑇𝑇𝑔𝑔 −𝑇𝑇𝑟𝑟 )+(𝑇𝑇𝑟𝑟 −𝑇𝑇𝑎𝑎 ) 
= 

𝑔𝑔 𝑟𝑟 𝑚𝑚𝑚𝑚𝑛𝑛_𝑜𝑜𝑜𝑜𝑜𝑜 𝑣𝑣1 𝑣𝑣2 A.5 
𝑚𝑚𝑎𝑎𝑚𝑚 ( 1   1 ) 

 

( 1   1 ) 𝑣𝑣1 𝑣𝑣2 𝑣𝑣1 𝑣𝑣2 

1 

− 
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− 
𝑄𝑄
 − 

𝑚𝑚𝑎𝑎𝑚𝑚 

( 𝑄𝑄 −𝑄𝑄 ) 

𝑚𝑚𝑚𝑚𝑛𝑛 

𝑚𝑚𝑚𝑚𝑛𝑛 

𝑣𝑣 

𝑚𝑚𝑚𝑚𝑛𝑛 

𝑇𝑇 −𝑇𝑇 

+ 

𝑚𝑚𝑎𝑎𝑚𝑚 

𝑜𝑜 

 
 

By substituting the term (𝑇𝑇𝑛𝑛 − 𝑇𝑇𝑛𝑛) with the red time, 𝑅𝑅, in Equation A.5, 𝑄𝑄𝑛𝑛 can be 
𝑔𝑔 𝑟𝑟 𝑚𝑚𝑎𝑎𝑚𝑚 

calculated with the following equation. 

𝑅𝑅+𝑄𝑄𝑛𝑛−1 ( 1   1 ) 
𝑛𝑛 
𝑚𝑚𝑎𝑎𝑚𝑚 

𝑚𝑚𝑚𝑚𝑛𝑛_𝑜𝑜𝑜𝑜𝑜𝑜 𝑣𝑣1 
( 1   1 ) 

𝑣𝑣2 A.6 
𝑣𝑣1 𝑣𝑣2 

Based on the right triangle created by 𝑣𝑣1, the vertical line at 𝑇𝑇𝑛𝑛 and the horizontal line 

at 𝑄𝑄𝑛𝑛−1 in Figure 1 (b), the following equation can be derived to calculate 𝑇𝑇𝑛𝑛 . 
𝑚𝑚𝑚𝑚𝑛𝑛_𝑜𝑜𝑜𝑜𝑜𝑜 𝑚𝑚𝑎𝑎𝑚𝑚 

𝑛𝑛 𝑛𝑛−1 

𝑇𝑇𝑛𝑛 = 𝑇𝑇𝑛𝑛−1 +  𝑚𝑚𝑎𝑎𝑚𝑚  𝑚𝑚𝑚𝑚𝑛𝑛_𝑜𝑜𝑜𝑜𝑜𝑜  A.7 
𝑚𝑚𝑎𝑎𝑚𝑚 𝑚𝑚𝑚𝑚𝑛𝑛 𝑣𝑣1 

With substituting 𝑇𝑇𝑛𝑛−1 with its equivalent from Equation A.3 and substituting 𝑣𝑣4 with 𝑣𝑣2, 

𝑇𝑇𝑛𝑛 can be written based on the cycle start time, 𝑇𝑇𝑛𝑛. 
𝑚𝑚𝑎𝑎𝑚𝑚 𝑟𝑟 

𝑄𝑄𝑛𝑛−1 (𝑄𝑄𝑛𝑛  −𝑄𝑄𝑛𝑛−1 ) 
𝑇𝑇𝑛𝑛 = 𝑇𝑇𝑛𝑛 +  𝑚𝑚𝑚𝑚𝑛𝑛_𝑜𝑜𝑜𝑜𝑜𝑜 +   𝑚𝑚𝑎𝑎𝑚𝑚 𝑚𝑚𝑚𝑚𝑛𝑛_𝑜𝑜𝑜𝑜𝑜𝑜 A.8 
𝑚𝑚𝑎𝑎𝑚𝑚 𝑟𝑟 𝑣𝑣2 𝑣𝑣1 

Based on the right triangles created by 𝑣𝑣3 and 𝑣𝑣4, the vertical line at 𝑇𝑇𝑛𝑛 and the horizontal 

axis in Figure 1 (b), the following equation can be derived. 

𝑛𝑛 𝑛𝑛 𝑄𝑄𝑛𝑛 𝑛𝑛+1 𝑄𝑄𝑛𝑛 

𝑇𝑇𝑚𝑚𝑚𝑚𝑛𝑛 = 𝑇𝑇𝑜𝑜 −  𝑚𝑚𝑚𝑚𝑛𝑛 = 𝑇𝑇𝑟𝑟 
3 

+ 
𝑚𝑚𝑚𝑚𝑛𝑛 

𝑣𝑣4 

A.9 

Then, 𝑄𝑄𝑛𝑛 can be written in the following form. 

𝑛𝑛  𝑛𝑛+1 
𝑄𝑄𝑛𝑛 =  𝑜𝑜 𝑟𝑟 A.10 
𝑚𝑚𝑚𝑚𝑛𝑛 ( 1   1 ) 𝑣𝑣3 𝑣𝑣4 

Based on the right triangle created by 𝑣𝑣3, the vertical line at 𝑇𝑇𝑛𝑛 and the horizontal axis 

in Figure 1 (b), 𝑇𝑇𝑛𝑛 can be derived in the following equation. 

𝑛𝑛 
𝑇𝑇𝑛𝑛 = 𝑇𝑇𝑛𝑛 + 𝑚𝑚𝑎𝑎𝑚𝑚 A.11 
𝑜𝑜 𝑚𝑚𝑎𝑎𝑚𝑚 𝑣𝑣3 
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𝑚𝑚𝑎𝑎𝑚𝑚 

𝑛𝑛 𝑛𝑛−1 𝑛𝑛+1 𝑛𝑛 

𝑄𝑄
 

 
+ 

𝑚𝑚𝑚𝑚𝑛𝑛 

+ −𝑄𝑄 − − 
 𝑄𝑄

 
 

+ 

𝑚𝑚𝑎𝑎𝑚𝑚 

( 𝑄𝑄 −𝑄𝑄 ) 

By substituting 𝑇𝑇𝑛𝑛 with its equivalent from Equation A.8, Equation A.11 can be 

rewritten in the following form. 

 
𝑇𝑇𝑛𝑛 = 𝑇𝑇𝑛𝑛 + 𝑄𝑄𝑛𝑛 1 1 

𝑛𝑛−1 1 1 

𝑜𝑜 𝑟𝑟 𝑚𝑚𝑎𝑎𝑚𝑚 (𝑣𝑣 + 
𝑣𝑣 

) − 𝑄𝑄𝑚𝑚𝑚𝑚𝑛𝑛_𝑜𝑜𝑜𝑜𝑜𝑜 (𝑣𝑣 − ) A.12 𝑣𝑣 
1 3 1 2 

By substituting 𝑇𝑇𝑛𝑛 from Equation A.12 in Equation A.10 and substituting 𝑣𝑣4 with 𝑣𝑣2, 𝑄𝑄𝑛𝑛 
𝑜𝑜 

 
can be rewritten as. 

𝑚𝑚𝑚𝑚𝑛𝑛 

 
 

 
 1   1   1   1  𝑄𝑄 (  +  )−𝑄𝑄 (  −  )−(𝑇𝑇 −𝑇𝑇 ) 

𝑛𝑛 
𝑚𝑚𝑚𝑚𝑛𝑛 

𝑚𝑚𝑎𝑎𝑚𝑚 𝑣𝑣1 𝑣𝑣3 𝑚𝑚𝑚𝑚𝑛𝑛_𝑜𝑜𝑜𝑜𝑜𝑜 𝑣𝑣1 
( 1   1 ) 

𝑣𝑣2 𝑟𝑟 𝑟𝑟 
A.13 

𝑣𝑣2 𝑣𝑣3 

By substituting the term (𝑇𝑇𝑛𝑛+1 − 𝑇𝑇𝑛𝑛) with the cycle length, (𝑅𝑅 + 𝐺𝐺), in Equation A.13, 
𝑟𝑟 𝑟𝑟 

the following equation is resulted to calculate 𝑄𝑄𝑛𝑛 . 
 
 

 

𝑄𝑄𝑛𝑛  ( 1   1 ) 𝑛𝑛−1 ( 1   1 ) ( ) 𝑛𝑛 
𝑚𝑚𝑚𝑚𝑛𝑛 

𝑚𝑚𝑎𝑎𝑚𝑚 𝑣𝑣1 𝑣𝑣3 𝑚𝑚𝑚𝑚𝑛𝑛_𝑜𝑜𝑜𝑜𝑜𝑜 𝑣𝑣1 
( 1   1 ) 

𝑣𝑣2 A.14 
𝑣𝑣2 𝑣𝑣3 

Based on the right triangle created by 𝑣𝑣3, the vertical line at 𝑇𝑇𝑛𝑛 and the horizontal line 
 

at 𝑄𝑄𝑛𝑛 in Figure 1 (b), the following equation can be derived to calculate 𝑇𝑇𝑛𝑛  . 
𝑚𝑚𝑚𝑚𝑛𝑛 𝑚𝑚𝑚𝑚𝑛𝑛 

 
𝑛𝑛 𝑛𝑛 

𝑇𝑇𝑛𝑛 = 𝑇𝑇𝑛𝑛 +  𝑚𝑚𝑎𝑎𝑚𝑚  𝑚𝑚𝑚𝑚𝑛𝑛  A.15 
𝑚𝑚𝑚𝑚𝑛𝑛 𝑚𝑚𝑎𝑎𝑚𝑚 𝑣𝑣3 
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APPENDIX B 



Figure B.1. The delay of EV versus lane-changing threshold in simulation scenarios with preemption 

12
6 



 

 
 

 
Figure B.2. The average delay of influenced CAVs versus lane-changing threshold in simulation scenarios with preemption 

12
7 
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APPENDIX C 

Table C.1. Summary statistics for CAV delay for proposed and Weinert and Düring’s algorithms in 
different traffic volumes 

Traffic volume (veh/h) 
600 1000 1400 

Algorithm Proposed Mean: 29.97 
SD: 5.22 

Mean: 37.64 
SD: 5.88 

Mean: 46.75 
SD: 9.01 

Weinert 
and 

Düring’s 

Mean: 20.42 
SD: 3.76 

Mean: 27.65 
SD: 4.02 

Mean: 30.77 
SD: 4.11 

Table C.2. Summary statistics for EV delay for proposed and Weinert and Düring’s algorithms in different 
traffic volumes 

Traffic volume (veh/h) 
600 1000 1400 

Algorithm Proposed Mean: 2.14 
SD: 2.38 

Mean: 2.43 
SD: 2.78 

Mean: 3.14 
SD: 3.84 

Weinert 
and 

Düring’s 

Mean: 6.77 
SD: 7.12 

Mean: 8.30 
SD: 6.49 

Mean: 9.87 
SD: 6.9 
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