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ABSTRACT

ATTENTION GUIDED DATA AUGMENTATION FOR IMPROVING THE CLASSIFICATION

PERFORMANCE OF VISION TRANSFORMERS

Nada Baili

April 23, 2024

For over a decade, Deep Neural Networks (DNNs) have been rapidly progressing and achiev-

ing great success, forming a robust foundation of state of the art machine learning algorithms that

impacted various domains. The advances in data acquisition and processing have undeniably played

a major role in these breakthroughs. Data is a crucial component in building successful DNNs, as

it enables machine learning models to optimize complex architectures, necessary to perform certain

difficult tasks. However, acquiring large-scale data sets is not enough to learn robust models with

generalizable features. Instead, an ideal training set should be diverse enough and contain enough

variations within each class for the model to learn the most optimal decision boundaries.

The poor performance of a machine learning model can often be traced back to the existence

of under-represented regions in the feature space of the training data. These sparse regions can

prevent the model from capturing the large intra-class variations. Data augmentation is a common

technique that has been used to inflate training datasets with new samples, as an attempt to improve

the model performance. However, these techniques usually focus on expanding the data in size and

do not necessarily aim to cover the under-represented regions of the feature space.

This dissertation presents a novel Attention-guided Data Augmentation technique for Vision

Transformers, called ADA-ViT. Our method is tailored to be specifically applied to Transformer-

based vision models. These models are considered the state of the art learning strategy in almost

all computer vision applications, and they have gained more interest in recent research than their

classic counterparts, e.g. convolution-based networks.

Our proposed data augmentation method aims to improve the diversity of the training

set by selecting informative samples with respect to their potential contributions of improving the
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model performance. We leverage the attention scores computed within the transformer model to

get an insight on the image regions that caused the misclassification. The identified image regions

form misclassification concepts that explain the model limitations in a given class. These learned

concepts indicate the presence of under-represented regions in the training dataset that contributed

to the misclassifications. We leverage this information to guide our data augmentation process by

identifying new samples and using them to augment the training data in an effort to improve the

coverage of the identified under-represented regions. We achieve this by designing a utility function

to rank and select new samples from secondary image repositories based on their similarity to the

extracted misclassification concepts.

ADA-ViT aims beyond increasing the data in size. It focuses on improving the diversity

of the training set by finding and covering under-represented regions in the feature space of the

training data. To the best of our knowledge, no prior work has considered this aspect for the case of

Vision Transformer models. The advantage of our approach is that it leverages available noisy web

data repositories for augmentation, thus alleviating the need for large labeled data. This is because

ADA-ViT uses a ranking system that can filter out noisy and irrelevant samples.

We evaluate our data augmentation technique on two computer vision applications, and using

multiple scenarios. We conduct extensive experiments and analysis to demonstrate the problem of

under-represented regions in the training feature space and show the effectiveness of our method in

addressing this issue. We also compare our method, using benchmark datasets, to baseline models

trained using the available labeled data only, and using the augmented labeled data and state-of-the-

art data augmentation methods. We show that our proposed augmentation consistently improves

the results. We also perform an in-depth analysis to justify the observed improvements.
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CHAPTER 1

INTRODUCTION

Deep Neural Networks (DNNs) have demonstrated outstanding performances in several com-

puter vision tasks, including object classification [3, 4], object detection [5, 6], etc. proving to be

essential in our modern world and impacting a wide range of domains from automated driving [7,8],

to medical devices [9,10], and even safety systems [11]. It is undeniable that a significant part of the

success of DNNs is owed to the tremendous efforts by the research community to build robust neural

network architectures [12, 13], and develop efficient training techniques. However, the increasing

complexity of DNN systems is directly correlated with the need for larger data sets to train these

machine learning models.

The need for huge amounts of data has been even more exacerbated with the recent emer-

gence of Transformer models. These networks revolutionized most machine learning fields, such as

natural language processing [14], and computer vision [1]. Because of their particular deep learning

structure that is distinct from the classic convolution-based computer vision models, Vision Trans-

formers (ViT) lack some of the inductive biases inherently found in Convolutional Neural Networks

(CNNs), such as translation equivariance and locality. Therefore, ViT models do not generalize well

when trained on insufficient amounts of data. The absence of inductive bias allowed Transformer

models to significantly exceed state of the art on several computer vision tasks [1,15–17], since they

are not bound by strict assumptions and are able to explore deeper patterns and more complex

features. However, this success comes at the expense of requiring larger data sets for training.

Acquiring large-scale labeled data sets is a tedious and expensive process. It may even be

infeasible in certain fields, such as healthcare [18]. Meanwhile, there is an abundance of data on the

web that can be easily retrieved through web scraping that uses bots to extract data online. However,

this type of data hasn’t gained much interest, despite its tremendous size and lower costs, because

of its weak and uncertain annotations and noise. Therefore, there is a high need for a mechanism

that enables automatic sample selection and filtering of these web data sets, since manually cleaning

them is costly and tedious, to unlock their high potential and solve the issue of data shortage.

Acquiring large-scale data sets is not necessarily sufficient to train successful DNNs. Beside

the size, an ideal training set should be diverse and contain enough variations to cover the different

patterns exhibited within each class. Failure to collect a representative training set results in the

presence of under-represented regions in the feature space of the training data. Therefore, a model
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trained on such incomplete training sets will not generalize well to unseen test data that fall in these

gaps of the feature space.

In this dissertation, we address the problem of improving the performance of vision trans-

former models when the available training data is either small in size or incomplete in representa-

tiveness. Based on the fact that the success of machine learning systems depends crucially on the

quality of the data, and not just their size, we focus on studying the shortcomings of the trained ViT

model by uncovering the presence of under-represented regions in the feature space of the training

data. We design a data augmentation algorithm that carefully selects candidate samples from sec-

ondary weakly-annotated image repositories to cover these under-represented regions and increase

the size of the training data with only relevant samples. Our goal is to bridge the gap in performance

of ViT models by improving the diversity and size of the training data while leveraging available

weakly-annotated data sets, without the need for meticulous labeling and data cleaning.

1.1 Problem Statement

The quality of the training dataset, measured in size and diversity, plays a major role in

determining the performance of a machine learning model. Ideally, a machine learning model should

be exposed to a diverse training set that covers the variance imposed by the task in hand, to

generalize well to unseen data during inference. However, this is not usually the case, as training

data may not be sufficiently comprehensive and informative to train robust models.

Data augmentation is an intuitive way to circumvent this limitation, by expanding the data

with new samples that can boost the diversity and coverage of each class in a classification scenario.

Several research efforts adopted the direction of synthetically creating new samples from the existing

training set by applying geometric transformations, color space augmentations, noise injection, ...etc.

These techniques constitute the foundation of data augmentation and have been widely used. They

have shown to significantly improve the performance of machine learning models, while being easy

to implement and apply without the need for the cost of manually acquiring more labeled data.

However, these methods are constrained to exploring local neighborhoods of the available data

samples and cannot target specific sparse regions of the feature space. Therefore, they are unable

to significantly expand the diversity and coverage of the training dataset.

Another way to augment data is to make use of external image repositories obtained from the

web. Although they are large in scale and relatively cheap to acquire, these web datasets are usually

weakly annotated and can contain out-of-distribution images. If used directly without filtering,

these datasets are more likely to have a negative impact on the model’s performance. There are

some research efforts [19, 20] that aimed to develop unsupervised preprocessing to filter these web

datasets prior to using them for augmentation. However, these methods focused more on expanding

the data in size regardless of its representativeness. Adding images with information already present
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in the current training dataset, can lead to model overfitting, or unnecessarily calls for more complex

architectures to process the large data load.

1.2 Overview of the Proposed Solution

Most existing data augmentation techniques are designed to increase the size of training sets

and do not consider its diversity and class coverage capacities. With the increasing demands for

more data and the difficulty to acquire high-quality labeled samples for training, it is important to

shift the attention from the size of training data to their representativeness quality and variance

coverage. This calls for efforts to dig deep in the learning of trained machine learning models to

identify under-represented regions in the training sets and reveal the missing data patterns from the

available training set that prevented the model from generalizing to unseen data and learning the

optimal decision boundary. Then, new samples that display features characteristic of the identified

under-represented regions can be selected from existing weakly labeled datasets for augmentation,

after applying unsupervised filtering methods. This new approach of selective diversity-aware data

augmentation alleviates the need for costly data labeling and opens up possibilities to use available

weakly-annotated data repositories.

In this work, we propose a comprehensive and fully attention-based data augmentation

framework to guide the process of sample selection from external image repositories. Our goal is to

select relevant samples for augmentation that aim to boost the diversity and class coverage of training

sets. Our proposed method is specifically tailored to be applied to ViT models. This is because

Transformers have been widely used recently, particularly for computer vision tasks, and they have

been the ultimate choice of deep neural network architectures for new research and experiments.

To improve the diversity of data sets, we investigate the shortcomings of ViT models trained

with limited data sets. This task is achieved using the built-in attention mechanism that makes ViT

models white boxes. We show that the attention scores, computed within ViT models, can provide

visual insights that can explain the confusion between certain classes. These visual explanations

consist of misclassification concepts that are caused by the existence of under-represented regions

in the feature space of the training data. We leverage these misclassification concepts to guide our

search for relevant samples from external image repositories, by computing the degree of match

between them and the retrieved concepts. We carefully design a utility function that assigns a

relevance score to each new sample in these image repositories. The computed utility score takes

into consideration two main factors:

• Whether the new sample falls in the under-represented regions of the training data.

• Whether the new sample displays the extracted concepts that contributed to the misclassifi-

cation.
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Our proposed solution addresses the current limitations of existing data augmentation tech-

niques, by considering the capacity of training sets to cover the variance of the task, instead of

simply expanding its size with almost duplicate information. Our data augmentation technique en-

ables the use of large noisy image repositories without the need for prior filtering or cleaning, which

alleviates the need for carefully annotated data sets for augmentation. Additionally, our proposed

method selects new samples that aim to cover the under-represented regions in the training dataset,

increase its representativeness, and correct the current model’s decision boundaries. We show that

our method can outperform existing data augmentation methods while adding the least number of

samples.

1.3 Thesis Contributions

This thesis makes the following contributions:

1. We propose a data augmentation technique that aims beyond expanding the data in size,

but instead focuses on improving their diversity by selecting informative samples with respect

to their potential contributions of improving the model performance. To the best of our

knowledge, no prior work has ever considered this aspect for the case of Vision Transformer

models.

2. We explore the explainability potential of vision transformers and propose a novel way to utilize

the attention scores for the purpose of revealing the existence of under-represented regions in

the feature space of the training data.

3. Our approach explores the computed attention scores within the transformer model to get an

insight on the image regions that contributed to the misclassification. These extracted image

regions form misclassification concepts that explain the model limitations in a given class. We

design a utility function to rank and select new samples from online image repositories based

on their similarity to the extracted concepts.

4. Our developed method leverages available noisy data repositories for augmentation, thus alle-

viating the need for accurate (and tedious) data labeling.

5. Our proposed framework is standalone and does not require any external machine learning

algorithms. It only relies on the built-in attention mechanism of the ViT model. This makes

our method intuitive, simple, easy to use, and applicable to any vision transformer-based

architecture that computes attention maps.

6. We conduct extensive experiments to demonstrate the problem of under-represented regions

and its impact on the model performance. We also justify the formulation of the proposed

utility function through ablation studies and cluster analysis.
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We evaluate our approach on two different applications. The first one involves object iden-

tification in standard RGB imagery. For this application, the available online image repositories

used for augmentation are noisy. The second application consists of Automatic Target Recognition

(ATR) using infrared (IR) imagery. The available IR data used for augmentation is unlabeled. For

this scenario, we leverage automatic detectors to generate weakly annotated datasets suitable for

augmentation. For both applications, we show that the proposed scheme improves the classification

performance in terms of both accuracy and robustness compared to the baseline model trained using

only the available data, without augmentation.

1.4 Document Organization

In the following chapters, we start by reviewing related work in the data augmentation

area and outline relevant specifics regarding vision transformers in Chapter 2. In Chapter 3, we

present our proposed data augmentation method. In Chapters 4 and 5, we report a comprehensive

experimental evaluation of our method designed to demonstrate its effectiveness for the RGB and

Infrared applications, respectively. Finally, in Chapter 6, we summarize our findings and discuss

potential future research directions.
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CHAPTER 2

BACKGROUND AND RELATED WORKS

In this chapter, we provide background material that is relevant to our research. We start

with a review of the commonly used data augmentation techniques. Next, we provide an overview

of the Vision Transformer architecture, where we particularly focus on the key components that will

be useful to build our method. Finally, we provide a brief overview of automatic target recognition,

which is one of the main applications that our research aims to solve.

2.1 Data Augmentation

As deep neural networks grew larger in the last decades, there often was not enough available

data to train them, especially considering that some part of the overall dataset should be spared

for validation. Data augmentation is a common technique used to improve the performance of

machine learning models, mainly in cases of overfitting where the training dataset is not sufficiently

representative to capture the variance of the problem. The idea consists of expanding the training

set in size by generating new samples.

Since their introduction, data augmentation techniques evolved and different methods have

been proposed. These methods vary from simply perturbing the existing data to create new samples,

synthetically generating data using generative models, or tapping into external data repositories to

expand the training set. Recently, few methods focused on the quality of the augmented data to

ensure its diversity.

2.1.1 Data Augmentation without External Data Repositories

Most common data augmentation techniques exploit the available dataset to create addi-

tional samples. This includes making minor perturbations to the dataset [21], such as random

geometric transformation (e.g. horizontal/vertical flip, rotation, and shear), random color space

transformation (e.g. brightness, contrast, saturation, and hue), or noise injection (e.g. gaussian

blur). Cutout [22] and Hide-And-Seek [23] randomly mask out square regions of input during train-

ing, while Cutmix [24] replaces the removed regions with a patch from another image. Mixup [25]

and Snapmix [26] generate a weighted combination of random image pairs from the training data.

These data augmentation techniques tend to apply transformations to random regions of

the image, which can introduce unwanted variance, such as background noises. The work in [27]
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investigates this problem and proposes an attention-based image cropping technique to crop and

resize only the relevant image parts. In the same context, AutoAugmentation [28] creates a search

space of data augmentation policies and automatically designs a specific policy so as to maximize

the model performance. Maxdrop [29] aims to remove the maximally activated features to encourage

the network to consider the less prominent features.

Despite their wide use and success in improving the model accuracy, these approaches do not

take into consideration what kind of features the model has already learnt in their data augmentation

scheme. Moreoever, they are limited in the way that they are constrained to the current samples’

neighborhood, and do not focus on specific regions of the feature space that require additional

samples. Therefore, they may not lead to a significant improvement in the diversity of the dataset.

Another way to augment the data is by generating synthetic samples using deep learning

algorithms, such as Generative Adversarial Networks [30] or Variational AutoEncoders [31]. Most

approaches [32–34] rely on generative models to augment datasets for image classification tasks.

These methods are similar in their goal to the methods mentioned earlier that generate synthetic

copies. Some methods attempt to create realistic replica of few random samples. Others focus on

replicating only the samples that were hard to classify by the model. Few other methods attempt to

generate new samples with specific features or properties that are lacking from the current training

set.

The biggest barrier for the data augmentation techniques that are based on generative models

is the requirement for large data and tedious parameter tuning to train these generative models and

create realistic, high-quality, and unfuzzy images for augmentation. Moreover, these methods are

also bound to investigate the immediate vicinity of the input data if they only attempt to replicate

their training samples.

2.1.2 Data Augmentation with External Data Repositories

Since acquiring large labeled data is difficult and costly, an interest has shifted towards online

image repositories. These web datasets offer inexpensive large-scale sources of images retrieved from

the internet. Despite their convenience in overcoming the shortage in data, these web datasets are

often weakly-annotated and can contain out-of-distribution images. This is because constructing

fine-grained image datasets typically requires domain-specific expert knowledge, which is not always

available for crowd-sourcing platform annotators. The noise in web training can severly degrade the

model performance. Therefore, it is prominent to establish a preprocessing or a selection system to

efficiently filter and use these web datasets for the training of machine learning models.

Some research works [19, 20] investigated this direction and proposed training frameworks

to learn directly from web images. For example, [19] proposed an approach focused on overcoming

label noise and data bias. To this end, the authors trained two models to identify and select in-
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distribution images and re-label samples with noisy labels. In the same context, [20] explored a

different approach to learn from web data by transferring knowledge from existing strongly supervised

datasets to weakly supervised web images. The authors took advantage of sophisticated object

recognition algorithms to select relevant samples using detailed annotations from object bounding

boxes and part landmarks.

These methods are able to expand the search for new samples beyond the local neighborhood

of the existing training set. However, they do not guarantee the selection of relevant samples that

will improve the data diversity and cover the under-represented regions.

2.1.3 Data Augmentation for the Under-Represented Regions

Few data augmentation methods [35,36], that explicitly aim to improve the diversity of data

sets, were developed to address the issue of under-represented regions. For example, [35] presents a

framework for augmenting the training set with only synthetically generated copies of new misclassi-

fied examples, rather than modified images coming from the original training set. These misclassified

examples represent counter examples that hold features the model hasn’t learnt yet. Information

about the identified counterexamples are collected in error tables, that can provide explanations

about the model’s vulnerabilities and find recurring patterns leading to misclassification. Therefore,

these error tables can be used to generate counter examples for augmentation.

The method in [35] has only been evaluated on CNN architectures on the case study of

object detection. Additionally, the technique calls for an image generator, which can burden the

overall algorithm complexity and requires tuning efforts to get realistic images.

Another work [36] proposes a data augmentation method, called BRACE, which uses concept-

based explanations for DNN decisions to guide the data augmentation process and add informative

samples based on their relevance and their capacity to cover the under-represented regions in the

training set. The authors extract model explanations, expressed in different forms, such as saliency

maps or linguistic explanations generated by post-hoc methods (e.g. GradCam [37]) or interpretable

models (e.g. Comprehensive CNN [38]). The main idea is to utilize the retrieved explanations to an-

alyze the model’s performance and reveal the causes leading to the misclassification. Then, BRACE

compares object parts of new samples, extracted from pretrained object detectors (e.g. RCNN [39]),

to the extracted misclassification concepts and selects the samples that have the highest match to

augment the training data.

Similar to the work in [35], BRACE has only been evaluated on CNN architectures. Addi-

tionally, the authors in [36] relied on post-hoc explanations methods, specifically GradCam [37], for

the purpose of generating fine-grained explanations to find visual cues justifying the misclassifica-

tions. Their methods also calls for pretrained object detectors. We argue that using external fixed

machine learning algorithms, that are agnostic to the task and data in hand, not only increases the
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method’s complexity, but can also introduce a significant margin of error.

In contrast to all approaches mentioned above, our work is self-contained and does not

require any additional explanation algorithms, as it relies entirely on the attention map computed

within the transformer model. Additionally, our work represents the pioneering effort in addressing

the matter of under-represented regions within vision transformers.

2.2 Vision Transformers

Up until recently, learning tasks involving textual data relied primarily on attention mech-

anisms integrated with Recurrent Neural Networks (RNN) [40] as the predominant architecture.

However, with the first emergence of Transformer models in [41], the attention of the scientific com-

munity shifted towards the widely adopted Transformer models that we see today, thus supplanting

RNN models like long short-term memory [42].

A Transformer is a deep learning model that utilizes the self-attention mechanism, assigning

varying importance to different segments of the input data. This model type is becoming increasingly

favored for addressing Natural Language Processing challenges [43–45], paving the way for more

crucial and interesting research, such as Large Language models (e.g. GPT by OpenAI [46] and

BERT by Google [47]). The success of transformers resides in their ability to encode long-range

dependencies between all tokens of the same input, making it possible to capture global and local

interactions leading to the formation of an input representation with contextual relevance.

Inspired by the work in [41] that first presented the transformer in the context of machine

translation, Dosovitskiy et al. proposed the Vision Transformer (ViT) [1], a concept that restructures

the conventional transformer to process visual data effectively. This adaptation can be fully justified

as upon closer examination, the fields of NLP and Computer Vision (CV) reveal several notable high-

level similarities. First, as sentences are sequential, an image can also be considered as a sequence

of smaller image patches. Additionally, as the meaning of a word can often be fully understood only

by relating it to the other words in the sentence, it may be argued that individual image parts need

to be contextualized with the broader image in order to be fully disambiguated. Consequently, it is

reasonable to anticipate that the long-range self-attention models used in NLP would prove highly

effective in modeling visual data.

Similar to Transformers outperforming classic sequential models for text data, ViT demon-

strated its effectiveness over Convolution Neural Networks (CNNs), for several visual tasks, such

as image classification [48], image captioning [49], image segmentation [50], object detection [51],

autonomous driving [52], ...etc. Moreover, ViTs have been applied to generative modeling and

multi-model tasks [53], including visual grounding [54], visual-question answering [55], and visual

reasoning [56]. The emergence of Vision Transformers has also provided an important foundation

for developing larger vision models [15–17,51] that made significant contributions to the state of the
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art.

2.2.1 Limitations of Convolution Neural Networks

Given the increasingly widespread use of transformer architecture, having a comprehensive

understanding of the fundamental disparities between ViTs and CNNs is crucial. The major differ-

ence is that CNNs rely mainly on their inherent inductive biases, which are local connectivity and

translation equivariance [57]. These knowledge priors help escalate the network learning on rela-

tively small datasets, but can quickly saturate the learning with larger amounts of data in CNNs.

ViTs lack the majority of the CNN’s inductive biases, and are, therefore, able to learn more rules

and better-quality intermediate representations with more data.

Additionally, ViTs are able to retain more spatial information than certain CNN architecture,

such as Residual Neural Networks [58]. Since the convolution operation uses receptive fields with a

fixed size, convolution kernels can only capture short-range spatial information that cannot model

dependencies beyond the initial receptive field. Transformers, on the other hand, are able to capture

long-range dependencies both locally and globally, by looking at all spatial locations and modeling

dependencies between all of them, much beyond the receptive field of convolution filters.

Finally, despite the significant advances in hardware and the common use of GPUs in training

neural networks, CNNs remain costly in terms of computation, especially when applied to high-

resolution images. A complexity analysis in [1] showed that transformers ensure faster training and

inference compared to CNNs.

2.2.2 Overview of the Vision Transformer Architecture

An overview of the ViT model is shown in Figure 2.1. ViTs represent images as sequences.

A sequence can be created from an image x ∈ RH×W×C , where (H,W ) is the spatial resolution of

the original image and C is the number of channels, by first splitting the image into smaller patches

of fixed size (P, P ). Then, every patch is flattened into a single vector by concatenating the channels

of all pixels in a patch. This results in a sequence of patches xp ∈ RN×(P 2.C), where N = HW/P 2

is the resulting number of patches, which also serves as the effective input sequence length for the

Transformer. The ViT uses a constant latent vector size D through all its layer. Therefore, flattened

image patches are linearly projected into D dimensions to form patch embeddings, using a learnable

embedding matrix E (Equation (2.1)).

As shown in Figure 2.1 and Equation (2.1), positional encodings are added to the patch

embeddings to retain positional information, by means of a learnable position embedding matrix

Epos. To help with the classification, the authors in [1], inspired by the original BERT paper [47],

prepended an extra learnable embedding, called classification token and denoted as [CLASS], to

the sequence of embedded patches. This added token serves as a representation of the global image.
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Figure 2.1: An overview of the ViT architecture [1].

The resulting sequence of (N + 1) embedding vectors is fed the transformer encoder.

The encoder block is identical to the original transformer proposed in [41]. It consists of

alternating layers of Layer Normalization (LN), Multi-head Self-Attention Network (MSA), and

Multi-Layer Perceptrons (MLP) blocks. The LN block keeps the training process stable and adjusts

the model’s weights to the variations among the training images. The MSA block is responsible for

generating attention maps from the given embedded visual tokens. These attention maps help the

network focus on the most critical regions in the image. MLP is a two-layer classification network

with GELU activation. The final MLP block appended on top of the model is the classification

head, which is attached to the [CLASS] token to predict the image class.

To summarize, let L be the number of layers in the transformer encoder, E a learnable

embedding matrix for the linear projection of patches, and Epos a learnable embedding matrix for

the positional encoding of patches. Given an input X split into N patches xp, the transformer

performs the following steps:

z0 = [xCLASS ;x1
pE;x2

pE; ...;xNp E] + Epos, E ∈ R(P 2.C)×D, Epos ∈ R(N+1)×D (2.1)

z′l = MSA(LN(zl−1)) + zl−1, l = 1...L (2.2)

zl = MLP (LN(z′l)) + z′l, l = 1...L (2.3)

y = MLP (z
[CLASS]
L ) (2.4)
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Figure 2.2: Representative examples of attention from the output token to the input space [1].

Finally, since ViTs lack some of the inductive biases of CNNs and can benefit more from

training on large amounts of data, a common practice has been to pretrain the ViT model on huge

datasets of images. Then, the pretrained models can be finetuned on downstream datasets for image

classification.

2.2.3 Self-Attention

Self-attention [41] is the most important building block of the transformer network. The

main goal of the self-attention module is to generate an input representation that captures global

and local dependencies between all tokens of the input. In practice, a self attention module takes

in N input tokens and returns N outputs, which represent new embeddings of the inputs. These

embeddings are the result of a self-attention mechanism that allowed the inputs to interact with each

other (”self”) and capture their inter-dependencies (”attention”) to generate an embedding for each

token that encodes its contextual relevance. For example, in Figure 2.2 we show how self-attention

enables the ViT model to attend to image regions that are semantically relevant to the classification

task.

Scaled Dot-Product Attention

The attention mechanism used in the Transformer uses three variables to represent each

input X: Query (Q), Key (K), and Value (V), computed as follows:

Q = XWQ;K = XWK ;V = XWV
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Figure 2.3: (a): Architecture of a transformer encoder. (b): Architecture of a multi-head self-
attention block. (c): Components of a single self-attention head featuring the scaled-dot product
attention.

Where the input is X ∈ RN×D, and the projections are learnable parameter matrices WQ ∈

RD×dq ,WK ∈ RD×dk ,WV ∈ RD×dv . N is the number of input tokens, D is the constant latent

vector size used by the model through all its layers, and dq, dk and dv are the sizes of WQ, WK ,

WV , respectively. Therefore, Q ∈ RN×dq , K ∈ RN×dk , and V ∈ RN×dv .

Formally, the attention function calculates the association (attention weight) between the

Query token and the Key token and multiplies the Value associated with each Key. This computation

is based on a Scaled-Dot Product [41] operation (Figure 2.3, (c)). The matrix of outputs is computed

as follows:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.5)

In Equation (2.5), softmax(QK
T

√
dk

) is an N×N matrix called Attention Map, and represents relevance

scores of each token with respect to all other tokens. The attention output is computed as a

weighted sum of the values, where the weight assigned to each value is taken from the attention

map. Therefore, the final attention output is a new embedding of the input that captures the

relevant interactions between tokens, necessary to learn a given task.

2.2.4 Multi-Head Attention

It has been shown [41] that, instead of performing one single attention, it was more beneficial

to have h scaled dot-product attention heads in order to capture different patterns in the dataset.

Defining the Q, K, and V calculation as a single head, the multi-head attention mechanism simply

uses different projection matrices WQ, WK , WV for each head. The attention function is performed
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in parallel for each of the h heads. Then, the resulting values are concatenated and once again

projected (Figure 2.3, (b)). The multi-head attention can be formulated as follows:

MultiHead(Q,K, V ) = Concat(head1, ..., headh)WO

where

headi = Attention(Qi,Ki, Vi),

and WO ∈ Rh.dv×D is a learnable parameter matrix.

The intuition behind multi-head self-attention is to allow the model to better capture po-

sitional information by having each head attend to different parts of the sequence each time. This

means that each head will also capture different contextual information by uniquely correlating to-

kens. Consequently, the combination of the heads can generate a more robust representation of the

input.

2.3 Automatic Target Recognition

Over the last few years, a strong interest has been raised around deep learning-based ap-

proaches to develop Automatic Target Recognition (ATR) systems using infrared images. Various

techniques have been proposed to address the challenges associated with this task, including feature

extraction, transfer learning, and data augmentation.

Most early work [59] adopted a model-based learning approach that relies on engineered

feature extraction followed by classification. For instance, the authors in [60] used Scale Invariant

Feature Transform (SIFT) [61] features, while [62] used Histogram of Oriented Gradients (HOG) [63]

features followed by a Support Vector Machine (SVM) [64] classifier. These methods often rely on

domain-specific knowledge and are not optimized for end-to-end training, limiting their performance

on complex ATR tasks. More recently, deep learning-based methods have shown promise for ATR

from infrared images. For instance, Nasrabadi et al. [65] proposed a framework with two deep Con-

volution Neural Networks (CNNs) to both localize the target and recognize its class while rejecting

false alarms. Another recent study [66] proposed a fully-connected CNN and was shown to outper-

form more complex state-of-the-art CNN architectures when trained on a synthetically generated

IR dataset. In another related approach [67], the authors proposed a multistage ATR system that

performs target detection by localizing the hot spots, and target identification using a CNN. In [68],

an ensemble method, which uses multiple classifiers in a tree-structured framework, was proposed.

To address the problem of infrared variation, an IR variation reduction block CNN (IVO-CNN) was

proposed in [69]. Transfer learning has also been explored as a means to address the lack of labeled

data for infrared ATR. For example, Hu et al. [70] used a pre-trained CNN on the ImageNet dataset

for feature extraction from infrared images. Wang et al. [71] proposed a transfer learning approach
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for ATR from IR images. They used a pre-trained CNN on a large-scale RGB image classification

dataset and fine-tuned it on the IR image dataset. They also used a novel region-based attention

mechanism to highlight discriminative regions in the IR images. Despite their promising potentials,

such approaches are limited by the availability of suitable pre-trained models and may not generalize

well to diverse ATR tasks.

Data augmentation is another popular technique for addressing the low-data regime problem

in ATR. For instance, Zhang et al. [72] proposed a method to generate synthetic infrared images by

applying geometric and photometric transformations to existing labeled data. Likewise, Zheng et

al. [73] proposed a data augmentation approach for ATR from IR images that generates synthetic

images by applying geometric transformations and adding noise. Similarly, Li et al. [74] proposed

an augmented training approach that generates synthetic IR images with random backgrounds,

thermal signatures, and orientations. However, such augmentation techniques are often limited by

the diversity of the original labeled dataset and may not capture the full range of variability in the

target objects.

Recently, few efforts explored transformer models for ATR systems with IR images. For

example, Zhao et al. [75] proposed a few-shot ATR system based on an instance-aware transformer

that exploits the power of all instances to build a more robust input representation. On the other

hand, Ethan et al. [76] focused on target detection and proposed an Edge IR Vision Transformer

(EIR-ViT) for automatic target detection utilizing infrared images, that is lightweight and operates

on the edge for easier deployability.

Despite these efforts, there remain significant challenges in developing effective ATR methods

for infrared images. These include the lack of color information, difficulty in acquiring high-resolution

labeled data, and sensitivity to environmental conditions. These factors contribute to the creation of

under-representative training sets with large gaps in their feature space that inhibit the development

of robust and generalizable ATR systems.

In this research, we build an ATR system based on a ViT model. We address the issue

of under-represented regions in the feature space of the IR training sets by applying our proposed

data augmentation method to add relevant samples that increase the class coverage in the available

training set. We show that the model trained on the augmented set yields better performance and

the obtained ATR system is more robust to the variance of the data.
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CHAPTER 3

ATTENTION-GUIDED DATA AUGMENTATION FOR IMPROVING THE

CLASSIFICATION PERFORMANCE OF VISION TRANSFORMERS

In this chapter, we present our Attention-Guided Data Augmentation (ADA-ViT) method,

designed and developed to improve the performance of Vision Transformer (ViT) models. Our work

addresses the particular problem of training with datasets that are not sufficiently representative

to cover the large intra-class variations, thus leading to under-represented regions in their feature

space. The presence of gaps in the training feature space leads the model to learn sub-optimal

decision boundaries and prevents it from generalizing well to unseen data.

The standard way of training machine learning models consists mainly of offline training and

online inference on unseen test data. As illustrated in Figure 3.1, we propose a different learning

pipeline that extends the standard approach, by adding an augmentation block within the offline

training loop. The added component is automatically integrated in the training process and does

not need manual setting.

Our augmentation framework leverages feedback from the model performance on a held-out

validation set to understand the current model vulnerabilities and reveal the presence of under-

represented regions in training feature space. Then, we use this information about the model limita-

tions to guide the search in external image repositories for new samples that can cover the identified

gaps in the training set, and potentially improve its performance. Finally, we finetune the trained

model, for few epochs, on the new training set, consisting of the initial dataset and the new selected

samples. We repeat these steps for a certain number of iterations, until no significant improvement

is observed.

Our work is based on two main assumptions. First, we assume that the model performance

on the validation set is an accurate estimation of the true performance on the unseen test set [77].

In other words, we assume that the validation and test sets have been extracted similarly and thus,

are drawn from the same distribution. Second, we assume that we have access to external image

repositories, that are large in scale and diverse. To guarantee these criteria, we typically utilize web

datasets obtained from scraping websites for data extraction. Although this method of obtaining

data for augmentation is cheap, fast, and guarantees diversity, these web datasets are poorly anno-

tated and contain noisy and out-of-distribution images. ADA-ViT is able to handle noisy datasets

since it selects new samples for augmentation based on a ranking system using a utility function

16



Figure 3.1: Proposed learning approach that integrates data augmentation in the learning process.

that quantifies the relevance of the new sample and its potential contribution to improving the data

diversity and model performance. More specifically, ADA-ViT ranks new samples by computing

and aggregating three major scores: a label regularization score α, an under-representation score

β, and a degree of match ∆. In the following sections, we describe in details these scores and their

importance on the overall utility score to select relevant candidate samples for augmentation.

3.1 Overview of ADA-ViT algorithm

Starting from an initially trained ViT model T , ADA-ViT adds new samples to a given class

c from the pool of online candidate images by considering two main factors:

• Whether the new sample x falls in the under-represented region of the feature space of class

c that caused the misclassification as class c̄ by T . This characteristic is described by the

under-representation score β(x, c, c̄) (Section3.4).

• Whether the new sample x displays similar visual features to Sc→c̄, which is the set of con-

cepts that led to the misclassification of class c as c̄, extracted from the validation set. This

characteristic is described by the degree of match ∆(Sc→c̄, x) (Section 3.5).

Both β(.) and ∆(.) scores are aggregated to form a utility function as follows:

utility(x) = α(x, c)×
∑
c̄∈C̄

[β(x, c, c̄)×∆(Sc→c̄, x)]. (3.1)

In Equation (3.1), α(.) is a label regularization score that intends to penalize new samples with noisy

labels in the external web repository (Section 3.3).

In each class c, the new samples are ranked based on the utility function defined in Equa-

tion (3.1), and the top N(c) samples are selected to augment that class. N(c) is computed using:

N(c) =

∑
x∈Dv

c
δ(T (x) 6= c)

|Dv
c |

× |Dt
c|, (3.2)
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Figure 3.2: Examples of selected samples by ADAViT for CUB dataset. In the third column, we
highlight the patches responsible for the misclassification of the validation image. In the fourth
column, we highlight the patches on the new image that increased its corresponding utility score the
most, leading to its selection for augmentation.

where Dv
c is the validation subset for class c, Dt

c is the training subset for class c, and δ is a function

that returns 1 if its argument is true, otherwise it returns 0. N(c) is computed to be proportional

to the ratio of misclassification in class c. Intuitively, we want the augmentation to be larger for the

classes with higher misclassification rates.

The proposed ADA-ViT approach is summarized in Algorithm 3.1. In Figure 3.2, we show

examples of selected web samples by ADAViT for augmentation. As designed, the selected samples

(those with top utility scores) are similar to the misclassified images from the validation set. This is

because ADA-ViT considers the validation set an indicator of the true performance of the model on

the unseen data. Therefore, it aims to augment the training data with new images that share common

features with the hard samples from the validation set that have been previously misclassified by

the model.
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Algorithm 3.1 Attention-Guided Data Augmentation for Vision Transformers

Input Trained ViT model T , Original training dataset Dt, Class labels C
Output Finetuned ViT model T ′

1: T ′ ← T . initialize the new weights
2: for iter ∈ [0,max iterations] do
3: D′ ← Dt . initialize the new training dataset
4: for c ∈ C do
5: N(c)← compute the number of images to add
6: Xnew

c ← Subset of new images from class c
7: for x ∈ Xnew

c do
8: Compute α(x, c)
9: for c̄ ∈ C̄ do

10: Compute β(x, c, c̄)
11: Compute Sc→c̄
12: Compute ∆(Sc→c̄, x)
13: end for
14: Compute utility(x)
15: end for
16: Dnew

aug ← N(c) samples with highest utility scores
17: D′ ← D′ ∪Dnew

aug

18: end for
19: T ′ ← finetune T’ on D’
20: end for

3.2 Similarity Function (ϕ(.))

In the computation of the under-representation score β (Section 3.4) and the label regu-

larization score α (Section 3.3), we need to quantify the degree to which a new sample displays

common features with the training data from a class. To do so, we design a similarity function that

can reliably quantify the shared features while taking into consideration the issue of high intra-class

variability that results in under-represented regions in the training feature space.

First, we use clustering to categorize the different training data points of a class c into

compact and homogenous groups. At this stage, any clustering algorithm can be used. Then, we

represent the class c with the medoids of its clusters. The medoid of a cluster is selected to represent

each cluster. It corresponds to a sample within the cluster that is considered the most representative

one. This ensures that a new sample will be compared to a realistic image.

Finally, we compute the cosine similarity between the feature of a new sample x and the

feature of each cluster medoid, and consider the maximum similarity. Formally, we compute the

similarity function, ϕ, between a new sample x and the training data of a given class c as follows:

ϕ(znewx , Ztc) = maxk∈KSimcos(z
new
x , ztmedoid,k). (3.3)

In Equation (3.3), K characterizes the obtained clusters from the training data, znewx is the feature

vector of the new sample x, and ztmedoid,k is the feature vector of the medoid of cluster k.
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3.3 Label Regularization Score (α(.))

In our work, we assume we have access to large external image repositories, on which we

perform sample selection for augmentation. Web datasets are relatively easy and cheap to acquire,

while being large and diverse. However, web data repositories are typically noisy and weakly-

annotated. Therefore, it is possible to have new samples that are incorrectly labeled. In the case

of datasets with fine-grained classes where the inter-class variation is low, samples with noisy labels

may be wrongfully selected to augment the incorrect class, which worsens the model confusion. We

address this issue of label noise in the external web datasets by introducing a penalty term, α(x, c),

defined for a new web sample x with web label c, using:

α(x, c) =
ϕ(znewx , Ztc)

maxci∈C{ϕ(znewx , Ztci)}
. (3.4)

In Equation (3.4), ϕ(.) is the similarity function defined in Section 3.2, znewx is the feature vector of

x, and Ztc is the set of feature vectors of all training examples from class c.

α(x, c) compares the similarity between x and the available training data of class c to its

similarity to all other classes. If x is more similar to the training data of a different class ci 6= c

than the training data of class c, then it is possible that x has been incorrectly labeled in the web

repository, and the image x will be penalized by 0 ≤ α � 1. In this case, the utility score of the

new sample is low, decreasing its chances of being selected for augmentation. On the other hand,

if x was correctly labeled as class c, then its similarity with the training data of class c should be

maximum (or close to the maximum), resulting into higher values of α (α ≈ 1), and thus little to no

penalty. In this case, the utility score will remain almost unaffected for this particular new sample.

Figure 3.3 displays the penalty term of few web images. As it can be seen, α is close to 1 when the

web label and the true label are the same.

3.4 Under-representation Score (β(.))

The first part of the sample selection process adopted by ADA-ViT consists in finding new

data points that fall in the under-represented regions of the feature space. We define an under-

represented region as a region in the training feature space occupied by some test samples that share

global visual similarities with the training data from the same class, and yet the model misclassifies

them with high confidence. Based on this definition, we formulate the under-representation score,

β, for a new sample x and for a given class c, as follows:

β(x, c, c̄) = ϕ(znewx , Ztc)× P (T (x) = c̄|x). (3.5)

In Equation (3.5), ϕ(.) designates the similarity function defined in Equation (3.3), znewx the feature

vector of x, and Ztc the set of feature vectors of all training samples from class c. ADA-ViT represents
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Figure 3.3: Examples of label regularization cases. The score α is highest when the web label is
correct (examples (1) and (2)), and is lowest when the web label is incorrect (examples (3) and (4)).

an input image by extracting the embedding of the corresponding classification ([CLS]) token from

the last self-attention layer (refer to Section 2.2.2, Equation (2.3), since this added token is intended

to learn a representation for the global input image. Finally, P (T (x) = c̄|x) is the prediction

probability of the model T in the wrong class c̄

The first component in Equation (3.5) has a penalty effect on out-of-distribution samples,

while the second component aims to assign lower scores to samples that have already been correctly

classified by the model, and thus will not add relevant information in the new augmented training

set. Therefore, a high β score means that the new sample x shares global common features with the

training data from a given class, and yet it was misclassified by the model T with a high confidence.

These samples fall in the under-represented regions of the training data, because they display a set

of rules that the current model T hasn’t been able to learn yet due to a shortage in such examples

in the current training set.

3.5 Degree of match (∆(.))

The second part of the sample selection process adopted by ADA-ViT consists of finding new

samples that display specific fine-grained visual features, similar to those found in samples from the

validation set that were misclassified by the current model T . At this stage, we dive deep into the
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model’s learning, thanks to the attention mechanism of vision transformers, and try to understand

its vulnerabilities by studying its performance on the validation set, assuming that this analysis

provides an accurate estimation of the model’s behaviour on the unseen test set.

First, we investigate the model limitations on the validation set by studying the misclassified

samples. We extract a set of concepts that justify the model confusion between classes (Section 3.5.1).

Then, we search in the external image repositories for new samples displaying features that match

the identified misclassification concepts. We compute the score ∆ to quantify the degree of match

between the new samples and the misclassification concepts (Section 3.5.2).

3.5.1 Identification of Misclassification Concepts

Let Sc→c̄ be the set of visual features extracted from the validation images of class c mis-

classified as class c̄. Sc→c̄ represents a set of concepts that justify the model confusion of class c as

c̄. To form Sc→c̄, we need to retrieve visual explanations of the model’s prediction decisions. To

do so, ADA-ViT relies only on the attention map, already computed within the transformer model,

by considering the attention weights computed at the self-attention layer as relevancy scores for the

individual image patches.

Figure 3.4 motivates our use for the attention weights to retrieve visual explanations of the

model decisions. In this figure, we display an example of a female Painted Bunting bird that has been

misclassified as an Orange Crowned Warbler bird. Female birds of the Painted Bunting specie are

characterized by their uniform green-yellow color [78], while the males are multicolored (blue head,

green back and red belly). Orange Crowned Warbler are typically green-yellow [78]. The image

regions with the highest attention scores are focused on the bird’s green-yellow body (Figure 3.4,

b). A scan of the training dataset shows that there is only one image of a female Painted Bunting,

while the majority of the training samples for that particular class were images of the male bird.

Therefore, the attention mechanism revealed that this image of a bird was misclassified because it

displayed atypical visual features, according to the available training data, for that particular class.

We can conclude that the self-attention component can provide concrete and direct visual insight

about the image patches that are crucial to the final model decision. Consequently, it is possible to

acquire visual explanations as to what might have caused misclassifications by simply looking at the

attention weights.

We form Sc→c̄ by proceeding as follows. Let Xv
c→c̄ be the set of validation images from

class c misclassified as c̄. For each image x ∈ Xv
c→c̄, we retrieve its corresponding attention maps

computed at all of the h attention heads and all of the L layers in the transformer model (refer

to Equation (2.5)). Then, we combine the multiple attention maps using Attention Rollout [79],

which is a technique that computes maps of the attention from the output token to the input space.

Briefly, Attention Rollout works by taking the maximum attention weights of the ViT across all heads
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Figure 3.4: (a): An image of a female Painted Bunting misclassified as an Orange Crowned Warbler.
(b): The heatmap of the attention map superimposed on the original image. (c): Typical images
of Painted Bunting in the training set (mostly images of the male bird). (d): Example images of
Orange Crowned Warbler in the training set.

and then recursively multiplying the weight matrices of all layers. This accounts for the mixing of

attention across tokens through all layers. Therefore, for each image x, we obtain a single attention

map, A = {ai,j}1≤i,j≤N , that captures the total attention flow between the N image patches across

the different transformer layers.

Next, we select the most important image patches, p, with attention scores ap > Qq, with

Qq corresponding to the qth quantile computed on the total attention scores in A. Finally, Sc→c̄ is

formed by retrieving the features zpx corresponding to the identified relevant patches p for image x.

Formally, Sc→c̄ is defined as follows:

Sc→c̄ = ∪x∈Xv
c→c̄
{zpx|ap > Qq} (3.6)

Among the advantages of using patch-level explanations to form Sc→c̄ is the possibility

to control the granularity of the extracted concepts. Depending on the patch size used in the

ViT model, it is possible to acquire fine-grained or coarse model explanations the justify the class

confusion. Moreover, by setting the quantile threshold Qq to higher values, the misclassification

concepts become more relevant and concise.

3.5.2 Computation of ∆

At this stage, we have defined Sc→c̄ for each class c and c̄ to encompass the set of semantic

concepts responsible for the misclassification of class c as c̄. Next, we select new images from external

image repositories, for each class c that have visual features similar to the concepts extracted in

Sc→c̄. That is, we augment the dataset with images that exhibit certain visual characteristics which

previously confused the model into learning the wrong rules.

We compute the degree of match between each concept s ∈ Sc→c̄ and each new image

x ∈ Xnew
c , where Xnew

c is the set of new images from class c. Since the concepts from Sc→c̄ describe

individual image patches with high importance, we adopt a similar approach on the new samples by

representing a new image with a set of patches that have the highest attention scores. We do this
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to facilitate the matching between the concepts in Sc→c̄ and the new images, by making it a patch-

to-patch comparison instead of patch-to-image. Additionally, by selecting only few image regions

for comparison, instead of using all the image patches, we significantly speed-up and simplify the

matching computation, by disregarding irrelevant image regions that the model has not considered

while making its decision.

Similar to what was described in Section 3.5.1, we retrieve the attention maps corresponding

to a given new image, and join them using Attention Rollout [79]. Then, we identify the most

important patches in the new image that have attention scores above a certain threshold. We note

that we relax the quantile threshold for new images compared to the one we used to form Sc→c̄. This

is because, unlike the misclassification concepts which should be as fine-grained as possible to locate

minor details causing the model confusion, we would like to select as many patches as possible for

new images, to compare with the misclassification concepts and have potentially higher matches.

For each new image x, we compute the degree of match as follows:

∆(Sc→c̄, x) =
1

|Sc→c̄|
∑

s∈Sc→c̄

ws (3.7)

where,

ws = max
zp∈Znew

x

(−log[1− simcos(s, zp) + ε]) (3.8)

In Equation (3.8), |.| denotes the cardinality function that returns the number of elements

in Sc→c̄, simcos is the cosine similarity function, Znewx ∈ RP×D is the set of feature vectors of the P

identified important image patches in the new image x, and ε is a constant parameter set to a low

value to avoid undefined values for the logarithm.

For each new image x ∈ Xnew
c , we compute ws to find the highest degree of match between

some region (image patch) in x and a concept s ∈ Sc→c̄. A large value of ws indicates the presence

of the concept s in x. Therefore, the new sample x is likely to be selected. As suggested in [36], we

also use a negative log-likelihood to favor samples that have few matching concepts with high ws

scores over samples that have several matching concepts with lower ws scores.

Figure 3.5 presents a comprehensive overview of the proposed ADA-ViT framework that

summarizes the different steps to compute a utility score for a new sample.

3.6 Vision Transformers with Adaptive Data Augmentation

In the final step of our proposed approach, we finetune the weights of the initially trained

ViT model on the new augmented training set. The new training set consists of the selected new

samples from the external image repositories, ranked based on their utility scores, as well as the

original training set used to train the initial model. We use the validation set for hyperparameter

tuning and model selection during the original training and the subsequent model finetuning. We
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Figure 3.5: Overview of the proposed ADA-ViT framework. For simplicity, we assume there is
only one validation image from ci misclassified as cj . N is the number of image patches, D is the
ViT’s embedding size, Zct is the set of training feature vectors representative of class c, and [CLS]
designates the classification token. Arrows in red describe the algorithm flow for the validation data,
while arrows in blue describe the algorithm flow for the new web sample.This figure is best viewed
in color.

iterate this process until we achieve the maximum number of iterations or when the model accuracy

plateaus, meaning that the model performance is not improving anymore.

It is necessary to include the original training data in the new augmented set for several

reasons. First, we only select a very small set of images that is not sufficient to train or even fine-

tune a model. Second, adjusting the weights of the trained model on the new selected samples only

can lead to overfitting, since we add only few samples from the external dataset in each iteration,

and these samples display specific features that were lacking from the original training set, which

is not enough to train a ViT model and can seriously degrade the original model learning. Finally,

excluding the original training set can lead the model to forget the already learnt features and

significantly change the decision boundary. Instead, the goal is to only adjust the weights to account

for certain features and data patterns that were previously absent in the training set.

There are certain training tricks that we used in our approach to control the model weight

adjustement during finetuning, as to prevent overfitting or severe decision boundary shifts. First, we

only finetuned the model for few epochs, since the original model has already converged. Second, we

used pretrained weight decay [80], which is a regularization technique proposed for BERT models

that penalizes strong changes of the finetuned weights from the original pretrained weights. This
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technique works better than conventional weight decay in the case of transformer models and helps

stabilize the finetuning. Finally, we applied attention dropout [81] which is a regularization technique

for transformer models, that works by randomly dropping out elements from the attention map. This

has the effect of excluding the corresponding features from the attention calculation, which can help

to regularize the attention mechanism and prevent overfitting.

3.6.1 On the Convergence of our Learning Framework

To ensure the convergence of our proposed approach, two conditions must be satisfied [1,82].

First, it is important to verify that there is no data distribution mismatch between the original

training set and the external data repository used for augmentation [82]. This means that the

proposed approach should not select noisy or out-of-distribution samples. Otherwise, the model’s

weights greatly shift during finetuning, and the initial convergence point is lost for a sub-optimal

decision boundary. To address this point, ADA-ViT employs a utility function that takes into

consideration the similarity of the new samples with the original training data. Additionally, we

assign penalty scores to noisy samples that push the utility score to decrease and reduce the likelihood

of selecting such samples.

The second condition assumes that the ViT model is capable of improving its performance

as we feed it more data [1]. Unlike Convolution Neural Networks, whose performance tends to

plateau at a certain point regardless of the amount of additional data they get, Transformer models,

in general, are able to learn more features with more data, thanks to their lack of some inductive

biases that constrain the learning of CNNs. Moreover, in the particular context of our work, we

select relevant and informative samples to augment the training data, compared to traditional data

augmentation techniques. Therefore, the ViT model is almost always guaranteed to be exposed to

new data patterns and information, which encourages more learning and makes the performance less

likely to quickly plateau.

To summarise, under the above-mentioned conditions, the iterative process of adding new

data from external image repositories and retraining the model is expected to improve the perfor-

mance, as the model is exposed to more examples and learns to generalize better. The convergence

of the approach is expected when we retrieve the majority of relevant samples from the external

data repositories. In this case, the performance improvement is no longer significant.

3.6.2 Justification of the choice of the Vision Transformer Model

Our work is specifically tailored to attention-based models. This is because ViTs have

gained significant interest and adoption in the field of computer vision. They have been successful

in competing with or even outperforming traditional convolutional neural networks (CNNs) in many

image-related tasks. They have also shown potential in handling various image resolutions, offering
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a more scalable approach compared to CNNs. Therefore, it is crucial to direct any current or future

research efforts towards futher improving the performance of ViTs.

With their ability to process images as sequences of patches, Vision Transformers have

enabled researchers to explore novel ways of understanding and interpreting visual data. Extracting

explanation-based concepts constitutes the core idea of the ADA-ViT algorithm. This is rendered

possible and relatively simple thanks to the attention-mechanism in ViTs. Unlike CNN models that

require post-hoc explanation methods, ViT models almost display a white-box behaviour, as simply

projecting the attention weights to the input space provides an insightful look on the important image

regions that led to the model decision. This explainability aspect of ViT models plays a major role

in making our approach self-sufficient and easy to apply and adapt to any attention-based model.
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CHAPTER 4

APPLICATION 1: OBJECT IDENTIFICATION IN RGB IMAGES

In this chapter, we present the experimental results of our proposed data augmentation

method, ADA-ViT, to solve the task of object classification in RGB images. This task has always

gained the majority of interest from the computer vision research community due to its significant

impact on various fields. The State-Of-The-Art (SOTA) in image classification has been rapidly

evolving and achieving more success everyday. With the recent emergence of attention-based models,

Vision Transformers (ViT) surpassed the SOTA in terms of both efficiency and accuracy. While data

augmentation techniques have undeniably contributed to these breakthroughs and proven to improve

the performance of machine learning models, no efforts, to date, have been specifically dedicated to

Transformer models. Additionally, the current data augmentation techniques focus on expanding

the data in size or proposing advanced techniques to clean noisy external image repositories for

augmentation purposes. However, very few works addressed the issue of the quality of training sets

and aimed to improve its diversity with selective data augmentation. Specifically, the problem of

identifying under-represented regions in the training feature space and solving it with guided data

augmentation has not gained much interest, despite its importance, especially not for ViT models.

Our work is relevant because it falls within the scope of addressing under-representative training

sets with data augmentation for the particular case of Vision Transformers.

We evaluate our approach on three RGB benchmark datasets: CUB [83], CUB-Families [84],

and Tiny-ImageNet [85]. We carefully select these datasets as they differ by size and class granularity.

Our goal is to show that our proposed method works well on both small and large-scale datasets,

with fine-grained classes where objects are hardly distinguished and the data is usually limited,

or coarser classes where the issue of under-representative training sets is more obvious and the

intra-class variance is high.

We conduct extensive analysis to demonstrate the effectiveness of our approach and its broad

applicability. We demonstrate the issue of under-represented regions and showcase how ADA-ViT

solves the problem by filling in the gaps in the feature space with the selected new samples. We

also perform an ablation study to highlight the impact of each component in our proposed utility

score function. Finally, we show that our method can significantly improve the performance of a

ViT model, compared to other data augmentation techniques, while adding the least number of

samples during the augmentation. Our primary objective is not to surpass the current state-of-the-
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art models on the studied datasets, but instead to showcase the potential of our proposed approach by

improving the performance over the baseline models trained without augmentation and the models

trained with other data augmentation techniques that do not consider the under-represented regions

of the training feature space.

We design our experiments to address the following research questions:

• RQ1: What is the impact of using ADA-ViT augmentation on the performance of a baseline

ViT model?

• RQ2: How can we demonstrate the problem of under-represented regions in the training

feature space and how can ADA-ViT address this issue?

• RQ3: What is the impact of using clustering for class representation?

• RQ4: How can we determine the optimal number of iterations for the ADA-ViT algorithm?

• RQ5: What is the impact of each component in the utility score function on the model

performance?

• RQ6: What is the impact of using ADA-ViT utility score function on guiding sample selection?

• RQ7: What is the impact of the number of selected samples for augmentation on the classifi-

cation performance?

• RQ8: How well does ADA-ViT perform compared to other state-of-the-art data augmentation

techniques?

In the following sections, we start by stating our experimental setting, namely the evaluation

datasets, the used baseline ViT , and training parameters. Finally, we present the results for the

aforementioned research questions.

4.1 Experimental Setup

4.1.1 Datasets

To evaluate our proposed approach, we carry out experiments on three benchmark datasets:

• Caltech-UCSD Birds-200-2011 (CUB) [83]. This dataset is the most widely-used benchmark

for fine-grained visual categorization tasks. It contains a total of 11,788 images of 200 sub-

categories of birds. The images are of high resolution, with an average size of approximately

480x640 pixels. The CUB dataset is particularly challenging because the classes differ by only

minor details, and the available data to learn from is limited. This is reflected in a low intra-

class variance, high inter-class similarity (Table 4.1), and a low number of training samples per
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class (Table 4.2). Therefore, we are expected to leverage the scarce training resources to, first,

identify fine differences to distinguish between classes, and then identify the features that are

absent from the training data and that are necessary for a better model generalization.

• CUB-Families [84]. This dataset groups the 200 species of birds in CUB into 37 families,

according to the ornithological systematics [86]. It contains the same number of 11,788 total

images as CUB. Although we are no longer dealing with fine-grained classes and the inter-class

similarity is lower (Table 4.2), this dataset presents a different set of challenges. As the classes

get coarser, the dataset becomes more imbalanced (Table 4.1) and the intra-class variance

increases (Table 4.2), which enhances the likelihood of having under-represented regions in

the training feature space. To motivate our approach and demonstrate its effectiveness, we

further highlight the issue of under-representative training sets for this particular dataset by

manually removing 47 bird species belonging to classes across 23 families from the training

set [87]. No species were removed from the validation or the test sets. This procedure aims

to intentionally create under-represented regions in the training feature space and serves to

showcase the gravity of this issue and how ADA-ViT is able to address it.

• TinyImageNet [85]. This dataset is a subset of the ImageNet dataset [88]. It contains 110,000

images of 200 classes downsized to 64× 64 images. Unlike the previous two datasets, TinyIm-

ageNet is relatively larger in scale and the classes cover a broader range of objects. Although,

in such cases, there is usually enough data to train robust models (Table 4.2), the problem of

under-represented regions is still present. This is because when datasets describe various inde-

pendent objects, there are usually numerous different scenarios describing the objects, which

can be difficult to capture them all in the initial training set, resulting in a high intra-class

variance (Table 4.2).

Table 4.1 presents the data partition we used for each of the three datasets. We also com-

pute the intra-class variance and inter-class similarity for the different datasets and show them in

Table 4.2. We obtain the intra-class variance by computing the covariance matrix of the features

extracted from a trained model and corresponding to each class of each dataset, summing the co-

variances over the first dimension, then averaging them over the second dimension, and, finally, we

report the mean over the different classes. We obtain the inter-class similarity by representing each

class with their cluster medoids, computing the cosine similarity between the medoids of different

classes and taking the maximum similarity, and, finally, averaging the obtained similarities over the

classes.

We build CUB-Families with under-represented classes using the following steps. The orig-

inal CUB Families dataset has 5,994 training images. From this set, we removed images belonging

to the bird species in [87], while excluding certain bird families (Pacific Loon and Waxing families)
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TABLE 4.1

Data partition for CUB, CUB-Families, and TinyImageNet

Dataset Classes Total Train Train Samples/Class Validation Test

CUB 200 11,788 3,994 10-20 2,000 5,794
CUB-Families 37 11,788 4,585 30-539 2,275 4,928
TinyImageNet 200 110,000 80,000 400 20,000 10,000

TABLE 4.2

Intra-class variance and inter-class similarity measures for CUB, CUB-Families, and TinyImageNet.

Dataset Intra-class variance Inter-class similarity

CUB 66.61 162.05
CUB-Families 405.89 29.01
TinyImageNet 1332.25 16.25

which have a smaller number of images compared to other classes. With this step, 1,409 images

were removed from the training set, resulting in 4,585 training images. We create the validation set

with the images removed from the training set in the previous step, and a set of randomly selected

test images. From each of the 37 classes in the test set, we randomly select 20% of the images and

add them to the validation set. In this step, we did not select images from the bird species that we

removed from the training set. This resulted in 2,275 validation images and 4,928 test images.

External Image Repositories

For both CUB and CUB-Families, we use the online image repository provided in [89],

to select new images for augmentation. This web data covers the same classes of CUB dataset,

and contains 18,388 total images. For TinyImageNet, we use the online image repository provided

in [36], which has 38,618 total images and covers 181 of the 200 classes of TinyImageNet. Both image

repositories are noisy and include out-of-distribution samples. We display sample images from both

datasets in Figure 4.1 and Figure 4.2. For example, the Black Footed Albatross class contains noisy

images of text documents about birds.

These collected web datasets sometimes include duplicates or samples that are very similar

to the ones in the original training dataset. Adding such examples does not contribute to improving

the classification accuracy. Hence, before selecting the new data for augmentation, we remove the

duplicates and the images that are similar to existing training data. We consider two images to be

similar if the cosine similarity between their feature vectors is higher than 0.99.
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Figure 4.1: Sample images from the web dataset used for CUB and CUB-Families.

Figure 4.2: Sample images from the web dataset used for TinyImageNet.

4.1.2 Baseline Model

We conduct our experiments on the basic Vision Transformer model that has been initially

introduced in [1]. This is the first ViT architecture that has been proposed as an adaptation of the

Transformer model to the computer vision field. Even though there are several efforts [15–17, 90]

that built on the original ViT and proposed improved versions of this model outperforming it,

we still chose to experiment with the vanilla ViT for several reasons. First, we would like to

faithfully evaluate the effectiveness of our data augmentation method, independently of any other

outside model improvements that were designed to boost the performance. Also, we believe that our
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proposed method is applicable to any attention-based transformer architecture, as long as the model

computes attention scores to divided image patches. Therefore, it is not necessary to experiment

with all ViT variants. Instead, it is sufficient to prove that the method works on the basic model

version.

4.1.3 Training Parameters

In our experiments, we utilize two variants of vision transformers that differ in their archi-

tectural complexity: base (ViT-B) and large (ViT-L), with embedding dimensions of 768 and 1024,

respectively. We set the image size to 224 × 224 for all datasets. We divide the input images into

overlapping patches with a patch size of 16 and a sliding window of 12, as proposed in [90]. We

noticed that increasing the number of input patches using a sliding window helps to improve the

performance of the baseline ViT. This is especially true for the case of fine-grained datasets, such

as CUB, where we found that the original split method, which cuts the images into non-overlapping

patches, harms the local neighboring structures especially when discriminative regions are split.

All models are initialized with pretrained weights from ImageNet21K [88]. We tune the

quantile Qp and set it to 0.98 for validation samples (refer to Equation (3.6)), while we relax it for

the new web samples (refer to Equation (3.8)) by setting it to 0.95. The baseline transformers, as well

as the models trained with other data augmentation techniques, are trained with SGD optimizer and

a cosine-annealing scheduler. We keep the same optimizer and scheduler to fine-tune the ViT model

on the augmented data. During finetuning, we employ training strategies to prevent overfitting, such

as applying attention dropout [81] and pretrained weight decay [80]. We replicate each experiment

5 times and report the mean and standard deviation of the accuracy.

Finally, our code is implemented using PyTorch, and all experiments are run on NVIDIA

Tesla V100 GPUs.

4.2 Performance Analysis

RQ1: What is the impact of using ADA-ViT augmentation on the performance

of a baseline ViT model?

In this experiment, We compare the performance of a baseline ViT (Section 4.2.1), trained

using the existing training data only, against the performance of our approach (Section 4.2.2), where

the model is trained with augmentations generated by ADA-ViT. We provide a detailed analysis

of the experimental results (Section 4.2.3), by analysing the misclassifications and highlighting the

performance gains achieved by our proposed data augmentation.
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4.2.1 Performance of a Baseline ViT without ADA-ViT Augmentation

First, we present the accuracy results of our baseline ViT model trained on the original

training set without augmentation. Then, we analyze the performance by investigating the correct

and incorrect classifications.

We train the baseline ViT using the available training sets of CUB, CUB-Families and

TinyImageNet. The model is validated using the respective validation sets of the studied datasets.

After obtaining the optimal performance on the validation set, we evaluate the model on the test

set of the considered datasets. The average testing accuracies across five runs for all datasets are

presented in Table 4.3.

TABLE 4.3

Accuracy performance of baseline models on the test set.

Dataset ViT-B ViT-L

CUB 89% 90.25%
CUB-Families 93.7% 95.2%
Tiny ImageNet 89.9% 93.5%

As aforementioned, beside selecting the best performing model checkpoint, our approach

uses a hold-out validation set to guide the data augmentation process. We leverage the validation

set to identify under-represented regions in the feature space and select new samples that can cover

these gaps. We assume that the validation set is drawn from the same distribution as the testing

set. Thus, by analyzing the model’s errors on the validation set and understanding their causes,

we can better design our data augmentation and training strategies to address these challenges and

improve the overall performance of our classifier.

For a more in-depth analysis, we focus on CUB dataset, but we note that similar trends

were observed for CUB-Families and TinyImageNet. In Figure 4.3, we display four sample images

that were correctly classified by the baseline. In Figure 4.4 we display four sample images, that were

misclassified by the baseline. We focus on four classes from the most confused ones. For each figure,

we show, in the first column, a sample image from the validation set that has been either correctly

classified (Figure 4.3) or misclassified (Figure 4.4). In the remaining 5 columns, we display the 5

Nearest Neighbors (NN) from the training set to the sample images of the first column, along with

their distances.

For the first example, the baseline model correctly classifies an image of the bird pictured

flying over the sea (Figure 4.3, first row), but it misclassifies the image of the same bird pictured

sitting on the ground (Figure 4.4, first row). It is also worth noting that the misclassified image

shows a partial view of the bird with a focus on its head. We inspect the training set and find that

this bird is usually presented flying or swimming in the sea with a complete view on its entire body.
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Figure 4.3: Samples of correctly classified validation images and their 5 NN images from the training
set using the baseline model for CUB. We indicate the true class label and the distance of the kNN
above each image.

Therefore, the baseline model was confused about this atypical image of a bird from Figure 4.4, since

it is different from the samples of the correct class and it is more similar to samples from the class

of the closest neighbor. In the second example, the baseline model succeeds to predict the correct

class of an image showing a close view of the bird and displaying clear features (Figure 4.3, second

row). However, the same bird is pictured in a different image (Figure 4.4, second row) from a more

distant angle and under darker lighting conditions that effaced the distinguishing features of this

bird, leading to misclassification. Similarly, the bird in the third row of Figure 4.4 was misclassified

because the corresponding image only shows the back of the bird, which prevents the appearance of

any distinguishing features on the face. The correctly classified sample in the third row of Figure 4.3

shows that this bird has distinctive facial features, without which it is difficult to identify its correct

specie. Finally, the last example (Figure 4.4, fourth row) was misclassified by the baseline mainly
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Figure 4.4: Samples of misclassified validation images and their 5 NN images from the training set
using the baseline model for CUB. We indicate the true class label and the distance of the kNN
above each image.

because of occlusion from the tree branches, and the particular pose of the bird that blocked the

view on important features, like the color of the belly and face.

Generally, we notice that the baseline model struggles with images containing significant

occlusion, atypical bird poses, different backgrounds, or when there are few similar images from

the training data. It tends to perform better with more typical representations of the bird classes.

Another interesting observation is that the 5 nearest neighbors of all the images that were classified

correctly have distances less than 0.3. On the other hand, even the closest images to the misclassified

samples have distances larger than 0.3. This may indicate that the main reason for misclassifying

these samples is because they are under-represented in the training set.
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4.2.2 Performance of a Baseline ViT with ADA-ViT Augmentation

In this section, we present the results of the previous baseline ViT model after finetuning

it using a combination of the new selected samples by ADA-ViT and the original training set.

ADA-ViT selects new samples from external web datasets that can enhance the under-represented

classes in the original training set and cover the sparse gaps in the training feature space. We run

ADA-ViT for three iterations and, each time, we finetune the model on the augmented set and the

original data. We present, in Table 4.4, the average testing accuracies across five runs for CUB,

CUB-Families and TinyImageNet. We also show the number of added samples by ADA-ViT for

each dataset, in Table 4.5

Dataset CUB CUB-Families TinyImageNet
Baseline model ViT-B ViT-L ViT-B ViT-L ViT-B ViT-L

Original dataset 89% 90.25% 93.7% 95.2% 89.9% 93.5%
ADA-ViT 91.05% 91.8% 97.45% 97.8% 91% 93.9%

TABLE 4.4

Accuracy performance of baseline models with and without ADA-ViT augmentation.

Dataset ViT-B ViT-L

CUB 2,293 494
CUB-Families 1,030 299
TinyImageNet 9,567 1920

TABLE 4.5

Number of images added by ADA-ViT for the different datasets.

We can clearly see that using ADA-ViT augmentation yields significant performance gains

over the baseline model trained without augmentation. We also note that the number of added

samples is correlated with the performance of the model on the original dataset. For example, ViT-

L usually requires less augmentation than ViT-B since the baseline ViT-L outperforms the baseline

ViT-B. That is, the lower the performance of the baseline model is on the original training set, the

more samples ADA-ViT selects for augmentation. This shows that ADA-ViT addresses the specific

limitations of the model and aims to correct its misclassifications with carefully selected samples

that can bridge the performance gap.

The results indicate that the generated augmentations improve the model’s ability to gener-

alize better to unseen data. ADA-ViT sample selection strategy proves to be advantageous because

it generates augmentations that enables the model to learn better representations of the data. By

enhancing the under-represented classes and including challenging samples, the model becomes more
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robust and improves its class representation and generalization capabilities to achieve better accu-

racy.

4.2.3 Analysis of Misclassified Samples

In this section, we analyze and compare the misclassified samples by the baseline model

trained without augmentation and/or the baseline model trained with ADA-ViT augmentation. We

focus our study on CUB dataset since it is a small dataset and the classes are fine-grained, which

allow for a more detailed analysis. We also focus on the first iteration of ADA-ViT since that is

where we see the most considerable improvement in the performance

We consider three categories of misclassifications:

• Category 1: samples misclassified by the baseline, and corrected after the first iteration of

ADA-ViT.

• Category 2: Newly introduced misclassified samples after the first iteration of ADA-ViT.

• Category 3: samples misclassified by the baseline, and remained misclassified after the first

iteration of ADA-ViT.

For each of the three aforementioned categories, we display test samples from five different

classes of CUB. For each test sample, we display the five nearest neighbors from the training set,

along with their respective distances, using embeddings generated by the baseline model trained

before and after ADA-ViT augmentation. By inspecting the neighborhood of each prediction, we

can deduce the impact of the generated augmentations on the classifier’s decisions. We note that the

training set for the baseline model initially includes the original training set only, while the finetuned

model uses both the augmented samples and the original data.

In each of the three figures (Figure 4.5, Figure 4.6 and Figure 4.7), we display the results

of the KNN analysis for samples from each of the three categories of misclassifications (Category

1, Category 2 and Category 3), respectively. In all figures, the first column shows test examples

from a given category, while the subsequent five columns show their 5 nearest neighbors from the

training set using the embeddings generated by (a) the baseline model, and (b) the first iteration of

ADA-ViT augmentation. We also display the classes and the distances of the 5 nearest neighbors

above each neighbor image.

Figure 4.5 shows examples of misclassified samples by the baseline model that were corrected

after one iteration of ADA-ViT (Category 1). In Figure 4.5a, we observe that the baseline model

matches the selected samples with relatively distanced images from the wrong classes. As shown

in Figure 4.5b, these five misclassified test samples are corrected after one iteration of ADA-ViT

and are mapped to training images from the same class with smaller distances. This indicates

that ADA-ViT has helped to learn a better model that provides more meaningful and informative
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(a) Baseline Embedding.

.

(b) ADA-ViT (iter. 1) Embedding.

Figure 4.5: Category 1 misclassifications and their 5 nearest neighbors from the training set. The
first column shows test examples from Category 1. The remaining five columns show the 5 NNs from
the training set using embeddings generated by (a) the baseline model, and (b) the first iteration of
ADA-ViT augmentation.
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(a) Baseline Embedding.

.

(b) ADA-ViT (iter. 1) Embedding.

Figure 4.6: Category 2 misclassifications and their 5 nearest neighbors from the training set. The
first column shows test examples from Category 2. The remaining five columns show the 5 NNs
from the training set using the embeddings generated by (a) the baseline model, and (b) the first
iteration of ADA-ViT augmentation.
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(a) Baseline Embedding.

.

(b) ADA-ViT (iter. 1) Embedding.

Figure 4.7: Category 3 misclassifications and their 5 nearest neighbors from the training set. The
first column shows test examples from Category 3. The remaining five columns show the 5 NNs
from the training set using the embeddings generated by (a) the baseline model, and (b) the first
iteration of ADA-ViT augmentation.
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representations of the samples. Figure 4.5b also reveals that several new images selected by ADA-

ViT for augmentation, marked using green boxes, are located in the direct neighborhood of the now

correctly classified samples. This indicates that ADA-ViT improved the model learning by adding

similar images to the hard samples that were previously misclassified. This allows the model to

better capture the underlying data distribution and refine the mapping of the classes by matching

them to images that display more similar features.

Figure 4.6 shows examples of correctly classified samples by the baseline that became mis-

classified after one iteration of ADA-ViT (Category 2). In Figure 4.6a, we notice that the first

nearest neighbor to the correctly classified samples is not always from the same class as the test

sample. Additionally, few nearest neighbors are actually from the correct class. This indicates that,

even though these test samples are correctly classified by the baseline model, the model is probably

not strongly confident about the prediction and its decision is susceptible to change. Figure 4.6b

shows that the new selected samples by ADA-ViT are usually located in the direct neighborhood

of the now mislassified samples. These new samples describe classes that are highly similar to the

class of the test sample, and they display images of birds in similar poses and backgrounds as the

test samples. This suggests that the augmentations may have introduced additional confusion to

the model that led to the misclassification.

Finally, Figure 4.7 shows examples of misclassified samples by the baseline that remained

misclassified after one iteration of ADA-ViT (Category 3). We notice that the test samples present

challenging features, such as uncommon or distant views of the birds, or severe occlusion that hide

distinctive features. In Figure 4.7b, we notice that fewer added samples by ADA-ViT are in the

direct vicinity of the test samples. Meanwhile, samples from the original dataset that caused the

baseline mistakes, appear more as nearest neighbors. Interestingly, we can see improvements in the

mapping of few classes. For instance, in the first test example (class 136), there is a new added

image from the correct class that appears among the nearest neighbors. In the second example

(class 81), the first four nearest neighbors are from the same correct class and the first three nearest

neighbors are new images. Similarly, in the fourth test sample (class 22), two neighbors are newly

added images from the correct class. We predict that the model will be able to improve its learning

of these test samples and it will correctly classify them in the next few iterations of ADA-ViT.

4.3 Illustration of ADA-ViT

RQ2: How can we demonstrate the problem of under-represented regions in the

training feature space and how can ADA-ViT address this issue?

In this experiment, our goal is to, first, demonstrate the problem of under-represented regions

in the feature space of the training data. Then, we show how ADA-ViT is able to address this issue
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by filling in these gaps with new samples. We focus our analysis on CUB-Families, since this dataset

has among the highest intra-class variances and a severely imbalanced training set, compared to

CUB and TinyImageNet. Therefore, it suffers the most from the under-represented regions in its

training feature space. Additionally, as explained in Section 4.1.1, we further aggravate the problem

of under-representative training data by manually removing some species from specific bird families.

This results in the creation of gaps in the feature space of the training data.

First, we train a baseline vision transformer on CUB-Families without any augmentation.

We select five bird family classes that were affected the most by the class removal and scored the

lowest accuracies to conduct our analysis on them. The selected classes are Cuculidae, Alcidae,

Mimidae, Fringilidae, and Podicipedidae. We use the trained model to extract the learnt features

corresponding to the images of the studied classes. Specifically, we extract features from the last

linear layer that precedes the classification layer. The retrieved features have a dimension of 768 using

the ViT Base model. We use TSNE [91] as a tool to reduce the high dimensionality of the obtained

features and be able to visualize them by mapping each image to a point on a two-dimensional space.

In Figure 5.5a, we display a region of the TSNE projection of the features corresponding to

the training and validation samples generated by the trained ViT for the studied bird families. Note

that most misclassifications are occuring in the regions of the feature space where there is little to

no training examples. This observation confirms that the model does not generalize well when there

are gaps in the feature space of the training data. Therefore, we hypothesize that if we target these

sparse regions and fill them with new training samples, the model’s performance improves due to

better class coverage.

Next, we run ADA-ViT for one iteration to select new images from the web data to augment

the studied classes. In Figure 5.5b, we add the TSNE projection of the new selected images to

the feature space of Figure 5.5a. As it can be seen, for each class, the added images overlap

with the misclassified validation samples, and occupy the regions where the previous model errors

occured. This demonstrates that ADA-ViT aims to fill in the gaps in the feature space and augments

the training data with new samples that can cover under-represented regions responsible for the

misclassifications.

To quantify the results, we scan the set of new added images after one iteration. ADA-ViT

selected a total of 362 new samples. 60% of the added samples come from the 47 species that were

initially removed from the training data (out of 200 original species). This means that an image of

class c ∈ C?, where C? is the set of classes describing the 47 removed species, is three times more

likely to be selected by ADA-ViT than any other sample from the remaining species (153 species).

Moreover, in only the first iteration, ADAViT added images that covered 64% of the removed species.

After running ADA-ViT for three iterations, we verify that 73% of the removed species have been

covered by new images. We check the remaining 27% and confirm that these classes were previously
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confused with other species that have either not been removed, or have been already covered by

new images. Therefore, the model was able to learn their corresponding bird families without seeing

actual images of these uncovered species.

4.4 Class Representation using Multiple Prototypes

RQ3: What is the impact of using clustering for class representation?

The mathematic formulation of the under-representation score β (Section 3.4) and the label

regularization score α (Section 3.3) calls for a method to quantify the degree to which a new sample

displays common features with the training data of a given class. To this end, we need to generate

prototypes to represent the training data of each class.

One way to go about this problem is to represent the data with a single prototype that

corresponds to the mean feature vector of all training images from the same class. However, we

argue that this method is not effective as it assumes that the training data is unimodal, and thus

can be represented by a single data point. There are several cases where this assumption does not

hold true. For example, when classes are not compact and there are gaps in the feature space of the

training data, the average of features may fall in the gap area and, consequently, would not reliably

represent the class. This is why we believe that using multiple prototypes should yield better and

more accurate class representation.

We proposed an alternative solution that represents classes using multiple prototypes cap-

tured by clustering the data. Each cluster is represented by its medoid. Then, we designed a

similarity function ϕ (Section 3.2) that computes the cosine similarity between the feature of a new

sample and the feature of each cluster medoid.

In this experiment, we highlight the advantage of using multiple prototypes to represent the

data of a class. We compare three different methods for class representation:

1. Compute the mean of the feature vectors of all training data of each class, as was adopted

by [36]. We refer to this approach as All-Mean.

2. Use K-medoids algorithm to group the training samples of each class into K clusters and

represent each class with its corresponding cluster medoid. We set K = 5 for CUB and

CUB-Families, and K = 10 for Tiny ImageNet. We refer to this approach as K-Med.

3. Use hierarchical agglomerative clustering with a minimum distance threshold, to favor more

compact clusters, and represent each class with its corresponding cluster medoid. We set the

minimum distance threshold to 0.25 for CUB and CUB-Families, and 0.55 for Tiny ImageNet.

We refer to this approach as AGG.
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(a) TSNE projection of the training and validation samples.

(b) TSNE projection of the training, validation, and new samples.

Figure 4.8: TSNE analysis of the four selected classes (C) from CUB-Families: Cuculidae (c1),
Alcidae (c2), Mimidae (c3), Fringilidae (c4), and Podicipedidae (c5). In the legend, T represents
the training data of C only, T̄ is the training data for all classes except C, V-correct is the correctly
classified validation data of C, V-incorrect is the incorrectly classified validation data of C, and New
indicates the added samples for C by ADA-ViT. This figure is best viewed in color.
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TABLE 4.6

Classification accuracy when different methods are used to represent the training data of each class.

Dataset Method All-Mean K-Med AGG

CUB
Original 89% 89% 89%

Iteration#3 90% 90.95% 91.05%

CUB-Families
Original 93.7% 93.7% 93.7%

Iteration#3 97% 97.3% 97.45%

Tiny ImageNet
Original 89.9% 89.9% 89.9%

Iteration#3 90.45% 90.6% 91%

We train a baseline ViT model. Then, we run the ADAViT algorithm for three iterations

using each of the three methods, and finetune the baseline model on the new augmented set. In

Table 4.6, we display the obtained accuracy results for the different trained models. We note

that, in all datasets, the clustering-based methods consistently reach higher accuracy than taking

the mean of all features. This gap in performance is even more obvious for CUB-Families, where

there are significant under-represented regions in the training feature space. This observation is

further supported in Figure 4.9a which shows the TSNE projection of the training data of the class

Tyrannidae from CUB-Families. As it can be seen, there are gaps in the training feature space due

to the high intra-class variance. The mean of the feature vectors of all training samples may not

represent all the variations of the target class reliably. Instead, it was biased toward the most dense

area of data points. Consequently, the new web sample, which was projected in the less dense region,

fell far away from the mean feature vector, resulting in a lower similarity, and thus a lower value

of the under-representation score β. Meanwhile, both K-medoids and the agglomerative clustering

succeeded to generate medoids that cover the majority of the space occupied by the training samples.

Therefore, there is a medoid close enough to the new sample to obtain a high β score.

Finally, we notice from Table 4.6 that the agglomerative clustering outperforms K-medoids.

This is because the agglomerative clustering is a bottom-up approach that starts with fine-grained

clusters and iteratively merges them based on similarity. By specifying a minimum cluster distance

threshold instead of fixing the number of clusters, we allow the formation of compact clusters with

more representative medoids. On the other hand, the K-medoids tends to create balanced groups

of samples. This means that the few distant samples that occupy the under-represented regions of

the feature space will not be able to have their independent clusters, and will be assigned to nearby

groups instead. This leads to the formation of sparse clusters with higher intra-cluster distance.

This observation can be confirmed in Figure 4.9b which displays the TSNE projection of the class

Wooden Spoon from Tiny ImageNet. The new samples are projected close to a single training data

point that indicates the presence of an under-represented region in the feature space. Unlike the

K-medoids, the agglomerative clustering assigned a cluster to this training data point which allowed
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the new samples to have a higher similarity with the corresponding cluster medoid.

(a) TSNE projection of the class Tyrannidae from CUB-Families.

(b) TSNE projection of the class Wooden Spoon from Tiny ImageNet.

Figure 4.9: Comparison of different methods to represent the class Tyrannidae from CUB-Families
and the class Wooden Spoon from TinyImageNet. This figure shows the TSNE projection of the
training samples of the studied classes, as well as the vector corresponding to the mean of feature
vectors of all training samples, the medoids of the clusters obtained by each clustering algorithm,
and a subset of the added new samples for these classes.

4.5 Stopping Criteria for ADA-ViT Iterations

RQ4: How can we determine the optimal number of iterations for the ADA-ViT

algorithm?

The previous experiments have shown that selecting new data for augmentation using ADA-

ViT approach can improve the results. Thus, in theory, this process can be repeated to boost the

performance even further. To this end, we proposed a learning pipeline where ADA-ViT can run
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iteratively. In each iteration, we obtain a new model as a result of finetuning the model from the

previous iteration on new selected samples that aim to fix the previous errors.

This iterative approach has several advantages. First, it enables the ViT model to utilize a

larger and more diverse augmented set, which can improve the model’s performance. This is because

we accumulate the augmented data throughout the iterations. Moreover, by inspecting the model

performance after each iteration, we can keep on identifying more under-represented regions, that

may have been missed in previous iterations or may have appeared in newer iterations.

In this experiment, our goal is to determine the optimal number of iterations of ADA-

ViT that allows us to obtain the best model performance while limiting the overall training time.

To do so, we need to analyze the model performance after each iteration, by keeping track of its

errors and observing the evolution of the model’s correct and incorrect classifications throughout

the different iterations. As a rule of thumb, it is best to end the iterations of ADA-ViT when we

start introducing more errors than we are correcting the previous ones. Alternatively, a stopping

criteria can be designed to accommodate specific requirements imposed by certain applications. For

instance, it may be optimal to stop the iterations when we reach a satisfactory performance on

certain predefined important targets, even if we confuse more the predefined less important targets.

Iteration CUB CUB-Families TinyImageNet

Iter. 1 550 394 3,087
Iter. 2 492 219 2,183
Iter. 3 435 158 1,694
Iter. 4 420 134 1,601
Iter. 5 418 125 1,002

TABLE 4.7

Size of selected samples by ADA-ViT for augmentation for each iteration. We report the results for
the ViT-B model.

Table 4.7 summarizes the size of the selected samples by ADA-ViT used to augment the

training data and finetune the ViT model in each iteration. We notice that the size of the selected

samples decreases as the number of ADA-ViT iterations increases. This is because ADA-ViT is de-

signed to gradually identify and cover the under-represented regions of the training feature space and,

thus, progressively improve the performance of the model. In the first iterations, under-represented

regions are more obvious and ADA-ViT is able to identify a relatively large set of errors that need

to be corrected in the next iterations. As the model is refined in the subsequent iterations, there

are less errors to investigate. Consequently, ADA-ViT selects fewer samples for augmentation, since

the model has already learnt most of the difficult patterns in the data.

Tables 4.8, 4.9, and 4.10 show the evolution of different categories of misclassifications for

CUB, CUB-Families and TinyImageNet across five iterations of the proposed ADA-ViT algorithm.
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Iteration Tmisc Tmisc→corr Tmisc→misc Tcorr→misc

Baseline 652 - - -
ADA-ViT (Iter. 1) 607 112 540 67
ADA-ViT (Iter. 2) 591 54 553 38
*ADA-ViT (Iter. 3) 583 21 570 13
ADA-ViT (Iter. 4) 585 3 580 5
ADA-ViT (Iter. 5) 584 4 581 3

TABLE 4.8

Evolution of the misclassified samples in the test set of CUB dataset across five iterations. We mark
by * the optimal number of iterations.

Iteration Tmisc Tmisc→corr Tmisc→misc Tcorr→misc

Baseline 4,598 - - -
ADA-ViT (Iter. 1) 169 4,434 164 5
ADA-ViT (Iter. 2) 148 30 139 9
ADA-ViT (Iter. 3) 136 22 126 10
*ADA-ViT (Iter. 4) 129 17 119 10
ADA-ViT (Iter. 5) 128 12 117 11

TABLE 4.9

Evolution of the misclassified samples in the test set of CUB-Families dataset across five iterations.
We mark by * the optimal number of iterations.

In these tables, we quantify the following categories of misclassifications:

• Tmisc: the total number of misclassifications in the test set.

• Tmisc→corr: The number of misclassified samples in the previous iteration that were corrected

in the current iteration.

• Tmisc→misc: the number of misclassified samples in the previous iteration that remained mis-

classified in the current iteration.

• Tcorr→misc: the number of correctly classified samples in the previous iteration that became

misclassified in the current iteration.

The first row of each table shows the total number of misclassifications using the baseline

model trained without augmentation. The subsequent rows show the number of misclassifications in

the different categories we previously defined, across five iterations of ADA-ViT, using the models

finetuned on the augmented data that we generate after each iteration.

We observe that the total number of misclassifications, Tmisc, of the baseline is higher for

CUB-Families, followed by TinyImageNet, and finally CUB dataset. This can be justified by the

fact that CUB-Families suffers the most from under-represented regions in its training feature space,

mainly because the intra-class variance is highest for this dataset, and we further highlighted the
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Iteration Tmisc Tmisc→corr Tmisc→misc Tcorr→misc

Baseline 1008 - - -
ADA-ViT (Iter. 1) 956 119 889 67
ADA-ViT (Iter. 2) 929 54 902 27
*ADA-ViT (Iter. 3) 914 34 895 19
ADA-ViT (Iter. 4) 915 19 895 20
ADA-ViT (Iter. 5) 915 35 880 35

TABLE 4.10

Evolution of the misclassified samples in the test set of TinyImageNet dataset across five iterations.
We mark by * the optimal number of iterations.

gaps in the feature space by manually removing some species from specific classes in the training

set. As for TinyImageNet, this dataset is challenging and it is larger in size than CUB and CUB-

Families. Nevertheless, ADA-ViT still managed to improve the performance of the model for the

three datasets, which demonstrates the advantage of the iterative process of ADA-ViT in refining

the model’s learning and improving its generalization capabilities.

Furthermore, we notice that the total number of misclassifications, Tmisc, decreases after

each ADA-ViT iteration. This suggests that ADA-ViT is effectively correcting previous errors and

improving the overall model’s performance. This observation can be further confirmed by looking at

the number of corrected misclassifications, Tmisc→corr. During the first three iterations, the model is

correcting way more errors than it is introducing, and the total number of corrected misclassifications

is consistently increasing across the different iterations. This further proves that the selected new

samples for augmentation by ADA-ViT is effectively addressing the model’s weaknesses. We also

note that Tmisc→corr is highest during the first few iterations, where there are more obvious errors

to correct. This is when ADA-ViT is able to best identify under-represented regions in the feature

space. This observation is consistent with the findings from Table 4.7, where we saw the size of the

selected samples decreasing as the iterations progress.

The size of the newly introduced misclassifications, quantified by Tcorr→misc, is significantly

smaller than the size of corrected samples, Tmisc→corr. We also observe that Tcorr→misc generally

decreases as the iterations progress, indicating that the new selected samples are relevant and do

not introduce signficant noise to the training set. The introduced misclassifications are likely due

to augmentations that may have introduced additional challenges to the model and increased its

confusion about specific classes.

We notice that the number of misclassified samples that have not been corrected in the next

iteration, quantified by Tmisc→misc, is almost consistent across different iterations for all datasets,

except for CUB-Families where we see Tmisc→misc decreasing especially during the first three it-

erations. For CUB and TinyImageNet, these uncorrected misclassifications probably characterize

challenging samples displaying atypical features that are not covered by the web datasets used for
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augmentation. Further boosting the diversity of the web datasets to include similar challenging

samples may help to correct this category of errors. As for CUB-Families, Tmisc→misc is seen to

decrease after each iteration, indicating that the model is progressively addressing errors of the pre-

vious iterations. Since the under-represented regions are more numerous in CUB-Families than the

other datasets, ADA-ViT required several iterations to fully address all the weaknesses of the model

and efficiently cover most gaps in the feature space.

Our findings from this experiment have revealed that the rate of improvement starts to

decrease after few iterations. The improvement rate can be characterized by two main factors. First,

we look at Tmisc and ensure that it is significantly decreasing from the previous iteration. Second,

we inspect Tmisc→corr and Tcorr→misc and verify that we are not introducing more errors than we

are correcting. Based, on these two criteria, we decide to stop the iterations of ADA-ViT. For CUB

and TinyImageNet, we find it is best to stop at the third iteration since Tmisc is not improving after

the third iteration and Tmisc→corr is almost equal to Tcorr→misc. As for CUB-Families, this dataset

requires more iterations. Therefore, it is best to stop at the fourth iteration.

4.6 Ablation study

4.6.1 Justification of the ADA-ViT Scoring Function Design

RQ5: What is the impact of each component in the utility score function on the

model performance?

In this experiment, we examine the effect of each component of the utility score function

(defined in Equation (3.1)) independently, by implementing three variants of ADAViT:

• ADAV iT−α: we remove the label regularization term α and keep the under-representation

score β and the degree of match ∆.

• ADAV iT−β : we remove the under-representation score β and keep the label regularization

term α and the degree of match ∆.

• ADAV iT−∆: we remove the degree of match ∆ and keep the label regularization term α and

the under-representation score β.

Table 4.11 shows the accuracy results of the models trained with the three implemented

ADA-ViT variants, in addition to the original ADA-ViT with all components. We observe that the

highest accuracy is achieved with α, β and ∆ all present in the utility function. In particular, using

both β and ∆ to compute the utility score proves to be most beneficial, compared to using one

without the other. Moreover, we observe that β has the highest impact on the utility score as its

absence degrades the performance of the model the most, followed by ∆, and finally α.
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We further confirm these findings by calculating the overlap between the images selected by

the four different ADAViT variants. We measure the overlap by computing the Intersection Over

Union (IOU) between the selected samples, and we display the results in Table 4.12. We notice that

removing β from the utility score decreases the overlap with the original algorithm the most with

IOU(ADAV iT,ADAV iT−β) = 19%, followed by ∆ with IOU(ADAV iT,ADAV iT−∆) = 73% and

α with IOU(ADAV iT,ADAV iT−α) = 87%. We also find that the overlap between ADAV iT−β

and ADAV iT−∆ is only 17%, which indicates that β and ∆ tend to select different samples.

We interpret these results as follows. The term β represents the under-representation score

that is responsible for selecting hard samples that are similar to what the model previously misclas-

sified. Therefore, samples with higher β scores hold information that the initial model hasn’t learned

yet due to the lack of such examples in the training set, which explains why β alone has the largest

impact on the utility score. On the other hand, ∆ serves to further finetune the samples selected

by β in order to favor misclassified examples with specific concepts that led to the misclassification.

However, if we use ∆ alone, these misclassification concepts can be identified in various samples,

that are not necessarily under-represented. For instance, Figure 4.10 shows examples of selected

samples by ADAV iT−β and ADAV iT−∆ for some classes of CUB dataset. In this figure, we see

that ADAV iT−∆ tends to select samples that are not necessarily under-represented (samples cor-

rectly classified by the initial model) simply because they displayed similar features to the identified

misclassification concepts. On the other hand, β selects under-represented samples that do not nec-

essarily resemble the misclassified validation samples (do not display the misclassification concepts).

Therefore, it is important to use both β and ∆ jointly to select both hard samples that display

specific features that led to model confusion in the previous iteration. These are the most relevant

samples capable of filling in the gaps in the initial training set. Finally, we see that removing α

impacts the model performance the least. This is mainly because α is used to address the occasional

issue of label noise in the secondary image dataset and does not intervene in the selection of relevant

samples that populate the under-represented regions of the feature space.

TABLE 4.11

Ablation study: Comparison of classification accuracies of different ADAViT variants on the three
selection datasets.

Dataset Method ADAViT ADAV iT−α ADAV iT−β ADAV iT−∆

CUB
Original 89% 89% 89% 89%

Iteration#3 91.05% 90.3% 90.05% 90.1%

CUB-Families
Original 93.7% 93.7% 93.7% 93.7%

Iteration#3 97.45% 97.05% 96.5% 96.7%

Tiny ImageNet
Original 89.9% 89.9% 89.9% 89.9%

Iteration#3 91% 90.5% 90% 90%
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TABLE 4.12

IOU between the selected images by the four different ADAViT variants for CUB dataset.

Method ADAV iT−α ADAV iT−β ADAV iT−∆

ADAViT 0.87 0.19 0.73
ADAV iT−α 1.0 0.18 0.69
ADAV iT−β 0.18 1.0 0.17

Figure 4.10: Examples of selected images for CUB dataset by ADAV iT , ADAV iT−β , and
ADAV iT−∆. We display the misclassification concepts on the misclassified validation sample, as
well as the patches on the new selected image that match these concepts, as identified by the ∆
term in ADAV iT and ADAV iT−β

4.6.2 Importance of Guiding Data Augmentation by ADA-ViT scoring

RQ6: What is the impact of using ADA-ViT utility score function on guiding

sample selection?

We investigate the importance of guiding the selected augmentations from the external web

datasets using ADA-ViT utility score function. We compare three scenarios of selecting samples

from web datasets to use as additional augmentation for the training data. In each scenario, we

augment the training set using the same number of samples. We only vary the selection criteria:
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Random sampling vs. Confidence-based sampling vs. ADA-ViT-guided sampling. We describe the

experiments as follows:

• Experiment 1: ViT baseline trained with the original training data without augmentation.

• Experiment 2: Trained ViT baseline finetuned on the original training data, in addition

to a subset from the web data of size N (Equation (3.2), Section 3.1) selected by applying

ADA-ViT scoring strategy.

• Experiment 3: Trained ViT baseline finetuned on the original training data, in addition to

a random subset from the web data with the same size N as in Experiment#2.

• Experiment 4: Trained ViT baseline finetuned on the original training data, in addition to

a subset from the web data corresponding to under-performing samples, with the same size N

as in Experiment#2. An under-performing sample can be either a misclassified sample or a

correctly classified sample with low confidence. For the latter case, we set a threshold on the

predicted confidences of correctly classified samples. This threshold correspond to the lower

outlier boundary, calculated using: Q1−1.5×IQR, with Q1 being the lower quartile and IQR

the interquartile range. The outlier boundary sets a statistical fence for a data distribution,

beyond which a data point is considered an outlier. In this context, an under-represented

sample can be viewed as an outlier, since there are not enough data points from the training

set that share similar features with it. In this experiment, we test all web samples using

the trained model from the previous iteration. Then, we randomly select N images from the

identified under-performing samples.

Table 4.13 shows the classification accuracies on CUB, CUB-Families and TinyImageNet for

the four different settings, described above. We see that all augmentations succeeded to improve the

classification accuracy. However, using the ADA-ViT scoring function to rank and select samples

gives the best improvement, followed by the random selection, and, finally, the confidence-based

selection.

We display in Figure 4.11 examples of the selected samples using random, confidence-based,

and ADA-ViT-guided augmentations. We notice that the images selected by the random strategy

do not necessarily relate to the misclassified validation samples. They can be easy to classify,

which will not introduce new and relevant information to the model. They can also be noisy

samples that may introduce further confusion to the model. The confidence-based strategy yields the

worst classification results for CUB and CUB-Families, as shown in Table 4.13. While this strategy

encourages the model to learn from challenging regions of the feature space by augmenting the data

with misclassified samples, this method fails when the external image repository is noisy. This is the

case for CUB and CUB-Families, where most of the added images are out-of-distribution samples,
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as shown in Figure 4.11. The external image repository used for Tiny ImageNet is less noisy, and

thus, the confidence-based strategy is seen to outperform random selection for this dataset. On the

other hand, we see that ADA-ViT selects relevant samples that resemble the misclassified validation

image and does not pick up any noise.

Dataset CUB CUB-Families Tiny ImageNet
Baseline model ViT-B ViT-L ViT-B ViT-L ViT-B ViT-L

Original dataset 89% 90.25% 93.7% 95.2% 89.9% 93.5%
Random 89.8% 90.55% 96.3% 96.1% 90.1% 93.6%
Confidence 89.2% % 90.5 % 95.3 % 96.6 % 90.35 % 93.85%
ADA-ViT 91.05% 91.8% 97.45% 97.8% 91% 93.9%

TABLE 4.13

Random vs. Confidence-based vs. ADA-ViT-guided Augmentation.

Figure 4.11: Examples of selected images by the Random Augmentation and Guided Augmentation
by ADA-ViT scoring.
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4.6.3 Impact of the Size of Selected New Samples

RQ7: What is the impact of the number of selected samples for augmentation

on the classification performance?

As explained in Section 3.1, we rank the new samples based on the computed utility scores

and select the top N(c) to augment each class c using Equation (3.2). This number is computed as

a proportional quantity to the ratio of misclassification in class c so that the augmentation is larger

for the classes with higher misclassification rates.

In this experiment, we study the impact of the size of the augmentation on the classification

performance. In other words, we vary the number of selected samples by taking fractions and

multiples of the number N , and we analyze the performance of the final model each time. In

Figure 4.12, we report the testing accuracies of the classifier when we add N/2, N, 2×N, 4×N, 8×

N, 16×N, or 32×N samples for augmentation. We report the results for the three datasets CUB,

CUB-Families and Tiny ImageNet.

We notice that, for all datasets, the optimal number of images to select for augmentation

is N , as this number yields the best performance while limiting the complexity of the training by

adding fewer training samples. As we add more images, we see that the classification performance

drops, mainly for CUB and CUB-Families whose external image repositories used for augmentation

are noisy. This is because we start adding out-of-distribution samples that have low rankings, which

can add further confusion and leads the model to learn sub-optimal decision boundaries. If we select

fewer samples (less than N), the under-represented regions of the feature space are not fully covered

by new samples, and, consequently, the model does not reach the maximum performance.

4.7 Comparison with other State-Of-The-Art Data Augmentation Techniques

RQ8: How well does ADA-ViT perform compared to a baseline ViT and other

state-of-the-art data augmentation techniques?

To illustrate the advantage of ADA-ViT, we evaluate its performance on CUB, CUB-Families

and TinyImageNet against three state-of-the-art data augmentation methods: a combination of

techniques that generate augmentations from the current training set [24, 25, 28], a Meta-Set based

method [19], and BRACE [36]. For this comparison, the four models are provided with the same

input data which is split into training, validation and test subsets. We also feed them the same web

datasets, in case the method performs augmentation from external image repositories.

• Local [24, 25, 28]: We use a combination of data augmentation techniques that generate new

samples by applying transformations to the original training set, thus the Local notation. These
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Figure 4.12: Evolution of the performance of the model trained on different sizes of ADA-ViT
augmentations on (a) CUB dataset, (b) CUB-Families and (c) Tiny ImageNet.
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augmentations are typically done in-place during each epoch or mini-batch of training. We use

CutMix [24], Mixup [25], and AutoAugment [28] augmentations. CutMix randomly removes

parts from an image and replaces them with patches from another image. Mixup creates new

samples by generating a weighted combination of random image pairs from the training data.

Finally, AutoAugment is an automated approach that searches for the best transformation

policy among several augmentation operations, such as translation, rotation, or shearing, and

the probabilities and magnitudes with which the functions are applied. These augmentation

methods achieved great success on several RGB benchmark datasets, such as CIFAR-100 [92],

SVHN [93], and ImageNet [88]. We use the validation set to tune the parameters of these

techniques on the studied datasets.

• Meta-Set [19]: This method requires the access to external image repositories for augmen-

tation. Specifically, this data augmentation technique proposes a framework that can learn

directly from web datasets. To address the noise in the web training sets, it learns two networks

to distinguish in- and out-of distribution samples, and to correct the labels of in-distribution

noisy data, guided by a small amount of clean meta-set. The goal is to alleviate the harmful

effects caused by out-of-distribution noise and properly exploit all of the in-distribution sam-

ples for training. This method is relevant in our comparison because it operates in an opposite

way as ADA-ViT. While our method aims to select only the relevant samples, the Meta-Set

approach focuses on filtering out noisy samples and adding all the in-distribution images to

the training set, without further selection.

• BRACE [36]: This method also uses external image repositories. It is the most relevant work

to ADA-ViT since it addresses the issue of under-represented regions in the training feature

space. Similar to our work, BRACE uses a utility function to rank the new samples based

on their relevance and their potential contribution to improving the model performance. This

method is only applicable to CNN-based models, because it leverages concept-based model

explanations extracted from post-hoc explanation methods, such as GradCam [37], or extracted

from special CNN architectures that are interpretable, such as Comprehensible CNNs [38]. In

our comparison, we implement BRACE with GradCam, as this option yielded the best results

according to the paper [36]. We use a CNN backbone of ResNet-200 [3] as baseline, which has

almost the same number of parameters as ViT-Base.

Table 4.14 shows the classification accuracies of the baseline models trained with ADA-ViT,

as well as the performance of the models trained with the other compared data augmentation tech-

niques. We report our results using a ViT base (ViT-B) and ViT large (ViT-L) transformer baselines,

on the three selected datasets. We observe that ADA-ViT augmentation consistenly outperforms

other methods for all datasets. In particular, ADAViT improves the baseline performance by approx-
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Dataset CUB CUB-Families Tiny ImageNet
Baseline model ViT-B ViT-L CNN ViT-B ViT-L CNN ViT-B ViT-L CNN

Original dataset 89% 90.25% 83.4% 93.7% 95.2% 88% 89.9% 93.5% 87.6%
Local [24,25,28] 88.75% 90.1% N/A 93.5% 95.9% N/A 90% 93.2% N/A
Meta-Set [19] 89.9% 90.8% N/A 97.3%* 97.6%* N/A 89.7% 93.2% N/A
BRACE [36] N/A N/A 84.75% N/A N/A 89.1% N/A N/A 87.9%
ADA-ViT 91.05% 91.8% N/A 97.45% 97.8% N/A 91% 93.9% N/A

* ADA-ViT is not significantly better than a given baseline method with 95% confidence.

TABLE 4.14

Comparison of the classification accuracies on the three selected datasets. We run ADAViT for 3
iterations. For the CNN baseline, we only report the accuracy of BRACE and we do not run other
augmentation methods with the CNN baseline as this is outside the scope of our research.

imately 2% on CUB dataset. Our method shows to be most advantageous on CUB-Families, where

the model performance improved, on average, by more than 3%. This is because CUB-Families

suffers from significant gaps in the feature space of its training data and ADAViT adds samples

that aim to cover these under-represented regions. However, for TinyImageNet, ADAViT improved

the performance by around 1%, on average. We interpret this result by considering the fact that

the performance on the original dataset is already high enough, and TinyImageNet is a large and

comprehensive data where the issue of class under-representation may not be as obvious as in the

other datasets. Finally, we note that ViT-B tends to achieve better performance improvement than

the larger model ViT-L, which is mainly due to differences in the initial model performance (before

augmentation). This finding is expected, since smaller models are less able to learn from the data

than their larger counterparts with their complex architectures. However, we want to highlight the

fact that, even though ViT-L is a complex model, it still benefited from our augmentation.

The Local augmentation failed to improve the performance of the baseline model, compared

to the other approaches, as this method is constrained to the local neighborhood of the existing

training set. Therefore, the created samples can not recover the missing features from the training

set and complete the under-represented regions in the training feature space. In particular, in the

CUB-Families dataset, where there are explicit gaps in the training set, the Local augmentation was

unable to recover the removed species, resulting in no significant improvement in the accuracy of

the model.

As shown in Table 4.15, the Meta-Set approach adds the highest number of images, compared

to the other methods. For CUB dataset, even though it adds 5 times more images than ADA-ViT, the

improvements of Meta-Set are still falling short. For CUB-Families, this method has a significantly

similar performance to ADA-ViT. However, it adds almost 10 times more images than our approach.

This indicates that selecting fewer samples that target under-represented regions only is sufficient

to improve the performance of the classifier, without unnecessarily increasing the task complexity.

Finally, Meta-Set displays scalability limitations as its performance decreased significantly when
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trained on Tiny ImageNet, which is a larger-scale data compared to the other datasets.

Dataset CUB CUB-Families Tiny ImageNet

Meta 11,492 11,492 24,136
BRACE 3,991 3,298 13,124
ADA-ViT 2,293 1,030 9,567

TABLE 4.15

Number of images added by each data augmentation method that requires external datasets for
augmentation.

The BRACE method, which is a CNN-based approach, is behind the other data augmenta-

tion techniques, mainly because the CNN baseline scored lower than the transformer baseline. This

observation serves to confirm the findings of recent studies [1,16,41,47] that highlighted the advanced

learning capabilities of attention-based models and showed that transformers are inherently more

robust than CNNs. Nevertheless, BRACE still managed to increase the accuracy of the baseline

CNN for all datasets, which highlights the importance of selective data augmentation. In particular,

it achieved 1.4% improvement for CUB dataset and 0.3% for Tiny ImageNet. For CUB-Families,

the dataset with the least representative training set, BRACE increased the accuracy by only 1.1%,

compared to 3.5% for ADAViT (ViT-B). This gap in performance can be explained by two main

factors. First, as discussed in Section 4.4, this can be an indicator of a flaw in the BRACE utility

score, which represents classes by a single data point that corresponds to the mean of features of all

training samples, as opposed to ADA-ViT which employs clustering to generate more robust class

representations. This issue becomes more highlighted for the case of datasets with high intra-class

variation, such as CUB-Families. Second, the under-performance of BRACE, compared to ADAViT,

can reflect the advantage of using the attention weights learnt inside the transformer itself to identify

concepts that led to the misclassification, over post-hoc explanation methods, such as GradCam, or

pretrained object detectors, such as RCNN, which are agnostic to the task and dataset in hand.

4.8 Chapter Summary

In this chapter, we discussed the experimental results of our proposed data augmentation

framework evaluated on three RGB benchmark datasets. These datasets vary in both size and class

granularity. First, we conducted an in-depth analysis of the issue of under-represented regions in

the training feature space and showcased its harmful impact on the model performance. Then, we

illustrated how ADA-ViT operates to address this issue by adding new samples that can cover these

sparse regions of the feature space. We carried out extensive experiments to justify the design of our

data augmentation framework. Our ablation study showed that the three scores alpha, beta and delta

contribute differently to the sample selection process and we concluded that it is best to include them
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all in the utility function to obtain the maximum model performance. The optimal number of ADA-

ViT iterations is found to be 3 for CUB and Tiny ImageNet, and 4 iterations for datasets with more

severe under-represented regions, like CUB-Families. We also varied the size of the selected samples

and found that the computed number N yields the highest performance while limiting the overall

training complexity. We conducted an experiment to highlight the benefits of using clustering to

represent the data of a class with multiple prototypes. Another experiment showed the advantage of

using ADA-ViT to guide the sample selection from secondary web datasets over other data selection

methods, such as random sampling or selecting under-performing samples based on the prediction

confidence. Finally, we compared the performance of our proposed approach with other state-of-the-

art data augmentation techniques. The purpose of this experiment is to highlight the importance

of considering under-represented regions in the training data when applying data augmentation.

Additionally, we showed that our method achieves the highest performance improvements while

adding the least number of samples. This proves that expanding training sets in size only, without

considering the diversity of samples, does not necessarily lead to more robust models that can

generalize better. This is why ADA-ViT is specifically designed to enhance the quality and the

representativeness of the training data.
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CHAPTER 5

APPLICATION 2: AUTOMATIC TARGET RECOGNITION FROM INFRARED

IMAGES

In this chapter, we propose a new strategy to improve Automatic Target Recognition (ATR)

from infrared (IR) images by leveraging our proposed data augmentation technique. We show that

ADA-ViT can be used to identify and incorporate few additional relevant samples that bridge the

performance gap and lead to a more accurate and robust ATR system.

Automatic Target Recognition (ATR) from infrared images is an important task in computer

vision with many practical applications in security, emergency services, automotive, environment,

and other fields [94]. Infrared images offer fundamental advantages over regular imaging solutions,

such as their ability to perform well in low-light and low-visibility situations. This is critical for

outdoor applications where light and visibility can vary significantly. However, infrared sensors can

be sensitive to meteorological conditions and sensor calibration. This results in having the same

target appearing differently in various instances, leading to high intra-class variability. Therefore, it

is important to collect large and diverse IR datasets that cover the broad variance of the underlying

data distribution to build robust and high performing ATR systems. This requirement usually limits

the accuracy of existing methods for ATR applications, since it is challenging to acquire large IR

datasets due to the high cost of collecting and labeling the data. Consequently, IR datasets used to

train ATR systems frequently suffer from severe under-represented regions in their feature spaces,

as a result from the inability to acquire sufficient diverse samples that can cover the class variance.

Data Augmentation has been used as a solution [21] to circumvent the issue of limited IR

data. Some proposed methods [95] create new samples from the existing training data by applying

different kinds of geometric and intensity transformations. Other generative methods [66] explored

the direction of expanding the data with synthetic samples using features from the existing training

set. While both approaches succeeded to increase the size of the IR training set, they are constrained

to exploring local neighborhoods of the current data samples and cannot significantly expand the

diversity and coverage of the training dataset.

In this chapter, we adapt our proposed data augmentation approach to overcome the issue of

limited IR datasets available for training and augmentation. We incorporate ADA-ViT along with

Vision Transformer models to improve the robustness of ATR models in challenging environments.

Our approach offers several advantages over existing methods. First, it can effectively leverage the
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limited IR labeled data available for augmentation by selecting only the relevant samples that can

improve the model performance, thus reducing the need for expensive and time-consuming data

collection and labeling. Second, it can improve the model’s robustness to different environmental

conditions, by pushing the model to learn from the most challenging regions of the feature space

and selecting samples that are capable of covering the under-represented regions.

We evaluate our approach on an annotated infrared benchmark dataset. We also leverage

non-annotated IR datasets for augmentation, and make use of automatic detectors to generate weak

annotations. We conduct extensive analysis to demonstrate the effectiveness of our approach and

its particular applicability for an infrared scenario. We demonstrate the issue of under-represented

regions in IR data and showcase how ADA-ViT solves the problem by filling in the gaps in the

feature space with the selected new samples. Finally, we show that our method can significantly

improve the performance of an ATR system, compared to other data augmentation techniques, as

well as other data selection strategies.

We design our experiments to investigate the following research questions:

• RQ1: What is the impact of using ADA-ViT augmentation on the performance of an ATR

system?

• RQ2: What is the impact of using ADA-ViT utility score function on guiding sample selection?

• RQ3: How well does ADA-ViT perform compared to state-of-the-art data augmentation tech-

niques?

5.1 Data Preparation

5.1.1 YOLO Algorithm Overview

The YOLO object detector is a popular deep learning-based approach for object detection

in images [5]. Unlike traditional object detection approaches that use region proposals and post-

processing steps, YOLO uses a single neural network to predict both the object locations and class

probabilities directly from the image pixels. YOLOv5x [96] is an improved version of the traditional

YOLO model with a simpler design but better performances.

The YOLO network divides the input image into a grid of cells and predicts the bounding

boxes for each object based on the cell locations [5]. Each cell predicts a fixed number of bounding

boxes, and each bounding box is defined by five values: the (x, y) coordinates of the box center,

the box width w, the box height h, and the confidence score for the box. The confidence score

measures how confident the network is that the bounding box contains an object. To predict the

class probabilities for each bounding box, the YOLO network uses a softmax activation function

applied to the output of a convolutional layer [5].
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The class probabilities are conditioned on the presence of an object in the bounding box

and the class label of the object. To assign confidences to the outputs, YOLO uses a combination

of the box confidence and the class probabilities [5]. The box confidence is defined as the product

of the objectness score and the Intersection over Union (IoU) between the predicted box and the

ground-truth box. The objectness score measures the likelihood that an object is present in the

bounding box, while the IoU measures the overlap between the predicted box and the ground-truth

box [5]. The class confidence is the product of the box confidence and the class probability for the

predicted class. In this research, we leverage the YOLO confidence score and the IoU threshold for

each detected bounding box in order to generate weakly-annotated augmentations.

5.1.2 Original Training Set

To evaluate our proposed approach, we carry out our experiments on an annotated infrared

benchmark dataset: FLIR ADAS v2 [2]. The dataset was acquired via a thermal and visible camera

pair mounted on a vehicle. It captures traffic footage from various locations in the world, mainly

England, France and the US. The dataset provides fully annotated thermal image frames, describing

different targets, captured at different times of the day and different weather conditions. The

annotations include the bounding box coordinates of the detected targets, the time of the day the

video was captured, and the degree of target occlusion.

There is a total of 15 different categories of objects included in this dataset. In our exper-

iments, we focus on 8 classes that have sufficient training data samples: person, bike, car, motor,

bus, truck, light, and sign. Figure 5.1 shows example images from each category. Certain targets

appear far away from the camera, and thus are only captured by few pixels, which is not sufficient

for robust training and reliable evaluation. Therefore, we filter the dataset to keep only targets with

a bounding box area larger than 500.

We use three data partitions to train and evaluate our models: a training set, a validation

set to select the best model checkpoint and perform the misclassification analysis for ADA-ViT, and

a held-out test set for final model evaluation. We summarize the number of samples in each class

and each data partition in Table 5.1. The FLIR ADAS dataset is highly imbalanced, with car and

person being the majority classes, and truck, light, and motor the minority classes. We address this

aspect of the dataset in our training settings by using a weighted cross-entropy loss. We also note

that the class bus is absent from the test set.

5.1.3 External Image Repository

We use an external IR dataset for augmentation, called Brno Urban dataset [97]. This dataset

also captures traffic footage from various road sceneries and under different weather conditions.

However, it is not annotated and the ground-truth bounding boxes are not provided for our targets
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Figure 5.1: Example images from the FLIR ADAS dataset [2].

Classes Training Validation Test

Total 52,930 4,927 11,647
car 31,513 3,254 7,535
person 12,432 1,059 1,684
bike 3,105 108 39
sign 2,021 248 252
bus 1,721 100 0
light 848 89 15
motor 730 42 1,425
truck 560 27 697

TABLE 5.1

Number of samples per class and per data partition in the FLIR ADAS dataset.

of interest. Since ADA-ViT requires the access to at least a weakly labeled image repository for

augmentation, we leverage pretrained multiclass automatic detectors to localize and extract targets

from the frames of this dataset. By doing so, we create an annotated external IR dataset that we

use for sample selection and augmentation.

We use a YOLOv5x [96] model with pretrained weights on the COCO dataset [98], which

is a RGB dataset that includes our targets of interest. We build an IR automatic detector by

finetuning YOLOv5x on the training data of FLIR ADAS, since we have access to the annotated

bounding boxes. We train the detector to localize and recognize the 8 targets from FLIR ADAS.

Then, we evaluate the finetuned detector on the test set. During inference, our goal is to maximize

the number of detections. Therefore, we set the confidence score threshold and the IoU threshold

to low values of 0.5 and 0.45, respectively. This ensures the creation of a large IR dataset suitable

for augmentation. However, setting low values to the confidence score and IoU can generate noisy

and imprecise detections, or detections with incorrect labels.
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The best checkpoint achieves a mean Average Precision (mAP) @ IoU=0.5 of 70%. We

note that the performance of the IR detector could be further improved with a larger training

set, meticulous hyperparameter tuning, or higher parameter thresholds during inference. However,

obtaining the optimal detector performance is not primordial in the scope of this work. Moreover, the

sub-optimal performance of the IR detector will be useful, in the context of this work, to demonstrate

the effectiveness of our method in dealing with noise in the external image repository, which alleviates

the need for perfectly labeled IR datasets used for augmentation. For example, Figure 5.2 shows

the output of the detector which can mostly localize true targets with great precision, but it can

occasionally generate false or imprecise detections, or detect true targets with the wrong labels.

Thanks to the utility score function that ranks new samples based on their relevance, ADA-ViT

should be able to filter out noisy detections by assigning low utility scores. Table 5.2 summarizes

the number of obtained detections in each class.

Figure 5.2: Generated detections by the finetuned YOLOv5x model from Brno dataset.

Classes Number of samples

Total 15,407
car 10,487
person 2,531
bike 38
sign 52
bus 286
light 701
motor 24
truck 1288

TABLE 5.2

Number of generated detections per class by YOLO for the Brno dataset.

5.2 Experimental Analysis

RQ1: What is the impact of using ADA-ViT augmentation on the performance

of an ATR system?
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In this experiment, We compare the performance of a baseline ATR system (Section 5.2.1),

trained using the existing training data only, against the performance of our approach (Section 5.2.2),

where the ATR model is finetuned on the augmentations generated by ADA-ViT. We provide an

in-depth analysis on the current model’s limitations and the performance gains achieved by our

method.

5.2.1 Performance of a Baseline ViT without ADA-ViT Augmentation

We train our baseline ViT using the available training set of FLIR ADAS and evaluate it on

the validation set at each epoch. After obtaining the optimal performance on the validation set, we

evaluate the model on the held-out test set. In Table 5.3, we report the average testing accuracies

across five runs.

Dataset ViT-B ViT-L

FLIR ADAS 94.2% 95.9%

TABLE 5.3

Accuracy results of baseline ATR systems trained on the original dataset only.

Figure 5.3 shows the confusion matrix of the baseline ATR model trained with the original

data of FLIR ADAS only using ViT-B. We observe that some classes have higher misclassification

rates, indicating that these classes might be more challenging to recognize. For instance, the classes

motor, truck and bike have the highest misclassification rates. They are mostly confused with other

classes that may be visually similar or share some common features.

In Figure 5.4 we display three sample images that were misclassified by the baseline, corre-

sponding to the three classes with the highest misclassification rates: motor, truck and bike. Each

row corresponds to a specific class. The first column displays test images that have been misclassified

by the baseline. The remaining 5 columns show the 5 nearest neighbors to the misclassified test

samples, taken from the training set. We also display the true label and the distance above each

nearest neighbor.

We notice that all distances of the nearest neighbors are relatively large. This indicates

that the test samples are located in sparse regions of the feature space. The first example shows

an image of a truck partly occluded by a car, which led the model to confuse the truck with a car.

The misclassification is further supported by the nearest neighbors of this test sample, which are

all images of large cars that resemble trucks, such as vans and pickups. The second example is an

image of a bike that has been misclassified as a motor. Due to the intrinsic properties of IR sensors,

the bike appears dark and blends in with the background of the image, leaving the person riding
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Figure 5.3: Confusion matrix of the baseline ViT-B model trained on FLIR ADAS before augmen-
tation and evaluated on the test set. Note that the class bus is absent from the test set.

the bike to be more distinguished. Therefore, all the nearest neighbor images featured people riding

motors. Finally, the last example displays an image of a motor along with parts of a vehicle. The

nearest neighbors consistenly show cropped images of cars, which led the model to confuse the motor

as a car. All these misclassified test samples commonly display atypical features that are under-

represented in the training set, thus preventing the model from predicting their correct classes. Our

approach aims to guide the data augmentation process to feed images that contain similar features

to these misclassified test samples, the model can eventually generalize better.

In Figure 5.5a, we display the 2D TSNE projection of the features corresponding to the

training samples generated by the trained baseline model without augmentation. Overall, the classes

appear to be separable. However, we notice the presence of gaps in the feature space that indicate

under-represented regions responsible for misclassifications. In Figure 5.5b, we display the 2D TSNE

projection of the features corresponding to the misclassified validation samples in the same feature

space as Figure 5.5a. We see that most misclassifications are occuring in the regions of the feature

space where there is little to no training examples. This observation confirms that the model does

not generalize well when there are gaps in the feature space of the training data. Therefore, if we

target these sparse regions and fill them with new training samples, the model would eventually be
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Figure 5.4: Examples of misclassified test images and their nearest neighbors using the baseline
model for FLIR ADAS. The first column displays test images misclassified by the baseline. The
remaining columns show the 5 nearest neighbors from the training set. We display the true label
and the distance above each nearest neighbor.

able to perform better due to better class coverage.

5.2.2 Performance of a Baseline ViT with ADA-ViT Augmentation

In this section, we present the results of the previous baseline ATR systems finetuned on

the new selected samples by ADA-ViT, on top of the original training set. ADA-ViT selects new

samples from the external IR image repository that can enhance the under-represented classes in the

original training set and cover the sparse gaps in the training feature space. We run ADA-ViT for

three iterations and, each time, we finetune the model on the augmented set and the original data.

We present, in Table 5.4, the average testing accuracies across five runs for the FLIR ADAS dataset.

We show the number of added samples by ADA-ViT in Table 5.5 for both ViT-B and ViT-L model

architectures. We also show the new confusion matrix obtained from the finetuned ATR system on

the ADA-ViT augmentation, in Figure 5.6.

Dataset ViT-B ViT-L

Original Dataset 94.2% 95.9%
ADA-ViT 96.4% 97.2%

TABLE 5.4

Accuracy results of the ATR system finetuned on the original dataset and the ADA-ViT augmenta-
tions.

ADA-ViT augmentation yields significant performance gains over the baseline model trained
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(a) TSNE projection of the training samples colorcoded by class.

(b) TSNE projection of the training and misclassified validation samples.

(c) TSNE projection of the training, misclassified validation and new samples.

Figure 5.5: 2-D TSNE analysis of the training, misclassified validation, and new samples.
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Model Number of Added Samples

ViT-B 3,470
ViT-L 2,866

TABLE 5.5

Number of added samples by ADA-ViT after three iterations.

Figure 5.6: Confusion matrix of the ATR system finetuned on the original dataset and the ADA-ViT
augmentations, and evaluated on the test set. Note that the class bus is absent from the test set.

without augmentation. Particularly, the ATR system is improved by more than 2% using ViT-B,

and more than 1% using the larger model ViT-L. Moreover, we notice improvements in the accuracy

of the classes that used to have high misclassification rates by the baseline model. This shows that

ADA-ViT addresses the specific limitations of the model and aims to correct its misclassifications

with carefully selected samples that can bridge the performance gap.

In Figure 5.7, we display the three test images from Figure 5.4 that were misclassified by the

baseline. These images are now correctly classified by the finetuned model. Each row in Figure 5.7

corresponds to a class. The first column displays the test image, while the remaining columns show

the 5 nearest neighbors to the test sample, taken from the training set. We notice that most of the

nearest neighbors, marked by green boxes, are new images selected by ADA-ViT from the external
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image repository. This indicates that the generated augmentations improved the model’s ability to

generalize better to challenging data. The test samples are mapped to training images that display

similar visual features. For example, in the first row, ADA-ViT adds a new sample that displays

an occluded truck, similar to the test sample. We also notice an improvement in the data mapping

shown by the smaller distances of the nearest neighbors, which proves that ADA-ViT is generating

augmentations that enable the model to learn better representations of the data. By enhancing the

under-represented classes and including challenging samples in the feature space, the model becomes

more robust and improves its class representation and generalization capabilities to achieve a better

accuracy.

Figure 5.7: Corrected test samples by ADA-ViT from Figure 5.4, and their nearest neighbors from
the training set using the model finetuned on ADA-ViT augmentations. The first column displays
test images correctly classified by the finetuned model. The remaining columns show the 5 nearest
neighbors from the training set. We display the true label and the distance above each nearest
neighbor. The added images by ADA-ViT are marked by green boxes.

In Figure 5.5c, we add the TSNE projection of the new selected images by ADA-ViT for

augmentation in the same feature space as Figure 5.5b. The added images are seen to overlap

with the misclassified validation samples, and occupy the regions where the previous model errors

occured. This demonstrates that ADA-ViT aims to fill in the gaps in the feature space and augments

the training data with new samples that can cover under represented regions responsible for the

misclassifications.

5.3 Importance of Guiding Data Augmentation by ADA-ViT scoring

RQ2: What is the impact of using ADA-ViT utility score function on guiding

sample selection?
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Under this task, we investigate the importance of guiding the selected IR augmentations

from the external image datasets using ADA-ViT utility score function. We compare three scenarios

of selecting samples to use as additional augmentation for the training data. In each scenario, we

augment the training set using the same number of samples. We only vary the selection criteria:

Random sampling vs. Confidence-based sampling vs. ADA-ViT-guided sampling. We describe the

experiments as follows:

• Experiment 1: ViT baseline trained with the original training data without augmentation.

• Experiment 2: Trained ViT baseline finetuned on the original training data, in addition

to a subset from the external data of size N (Equation 3.2, Section 3.1) selected by applying

ADA-ViT scoring strategy.

• Experiment 3: Trained ViT baseline finetuned on the original training data, in addition to

a random subset from the external data with the same size N as Experiment#2.

• Experiment 4: Trained ViT baseline finetuned on the original training data, in addition to a

subset from the external data corresponding to under-performing samples, with the same size

N as Experiment#2. An under-performing sample can be either a misclassified sample or a

correctly classified sample with low confidence. For the latter case, we set a threshold on the

predicted confidences of correctly classified samples. This threshold corresponds to the lower

outlier boundary, calculated using: Q1−1.5×IQR, with Q1 being the lower quartile and IQR

the interquartile range. The outlier boundary sets a statistical fence for a data distribution,

beyond which a data point is considered an outlier. In this context, an under-represented

sample can be viewed as an outlier, since there are not enough data points from the training

set that share similar features with it.

Table 5.6 shows the classification accuracies on FLIR ADAS dataset for the four different

settings, described above. We see that all augmentations succeeded to improve the classification

accuracy. However, using the ADA-ViT scoring function to rank and select samples gives the best

improvement, followed by the confidence-based selection, and, finally, the random selection. The

random sampling tends to select either easy samples that are already correctly classified and will

not add any relevant information to the model, or it may select noisy samples with incorrect labels,

leading to further confusion to the model. The confidence-based sampling succeeds to lead the model

to learn from the challenging regions of the feature space by adding hard samples. However, the

selected images do not necessarily come from the under-represented regions, as they may be outliers

describing noisy samples. The ADA-ViT scoring and sample selection strategy enables the model

to learn from challenging samples that can cover the under-represented regions of the feature space,

while ensuring that noisy samples are not being selected.
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Dataset FLIR ADAS
Baseline model ViT-B ViT-L

Original dataset 94.2% 95.9%
Random 94.7% 96.3%
Confidence 95.3 % 96.4 %
ADA-ViT 96.4% 97.2%

TABLE 5.6

Comparison of the accuracy of the ViT with different data selection methods.

5.4 Comparison with state-of-the-art Data Augmentation Techniques

RQ3: How well does ADA-ViT perform compared to state-of-the-art data aug-

mentation techniques?

To illustrate the advantage of ADA-ViT, we evaluate its performance on the FLIR ADAS

dataset against three state-of-the-art data augmentation methods: a combination of techniques that

generate augmentations from the current training set [24,25,28], a Meta-Set based method [19], and

BRACE [36]. For this comparison, the four models are provided with the same input data which is

split into training, validation and test subsets. We also feed them the same external IR datasets,

in case the method performs augmentation from external image repositories. All of the considered

data augmentation techniques reported great success on several RGB benchmark datasets. However,

their effectiveness on an infrared application has not been previously explored and requires further

investigation. In this experiment, we study and analyze their performance for an infrared scenario,

and compare them to our proposed data augmentation technique. We use the validation set to tune

the parameters of these techniques on the studied dataset.

• Local [24, 25, 28]: We use a combination of data augmentation techniques that generate new

samples by applying transformations to the original training set, thus the Local notation.

These augmentations are typically done in-place during each epoch or mini-batch of training.

We use CutMix [24], Mixup [25], and AutoAugment [28] augmentations. CutMix randomly

removes parts from an image and replaces them with patches from another image. Mixup

creates new samples by generating a weighted combination of random image pairs from the

training data. Finally, AutoAugment is an automated approach that searches for the best

transformation policy among several augmentation operations, such as translation, rotation,

or shearing, and the probabilities and magnitudes with which the functions are applied.

• Meta-Set [19]: This method requires the access to external image repositories for augmen-

tation. Specifically, this data augmentation technique proposes a framework that can learn

directly from web datasets. To address the noise in the web training sets, it learns two networks
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to distinguish in- and out-of distribution samples, and to correct the labels of in-distribution

noisy data, guided by a small amount of clean meta-set. The goal is to alleviate the harmful

effects caused by out-of-distribution noise and properly exploit all of the in-distribution sam-

ples for training. This method is relevant in our comparison because it operates in an opposite

way as ADA-ViT. While our method aims to select only the relevant samples, the Meta-Set

approach focuses on filtering out noisy samples and adding all the in-distribution images to

the training set, without further selection.

• BRACE [36]: This method also uses external image repositories. It is the most relevant work

to ADA-ViT since it addresses the issue of under-represented regions in the training feature

space. Similar to our work, BRACE uses a utility function to rank the new samples based

on their relevance and their potential contribution to improving the model performance. This

method is only applicable to CNN-based models, because it leverages concept-based model

explanations extracted from post-hoc explanation methods, such as GradCam [37], or extracted

from special CNN architectures that are interpretable, such as Comprehensible CNNs [38]. In

our comparison, we implement BRACE with GradCam, as this option yielded the best results

according to the paper [36]. We use a CNN backbone of ResNet-200 [3] as baseline, which has

almost the same number of parameters as ViT-Base.

Dataset FLIR ADAS
Baseline model ViT-B ViT-L CNN

Original dataset 94.2% 95.9% 91.5%
Local [24,25,28] 94.8% 96.2% N/A
Meta-Set [19] 95.3% 96.25% N/A
BRACE [36] N/A N/A 93.1%
ADA-ViT 96.4% 97.2% N/A

TABLE 5.7

Comparison of classification accuracies of different data augmentation techniques on FLIR ADAS
dataset. We run ADAViT for 3 iterations. For the CNN baseline, we only report the accuracy of
BRACE and we do not run other augmentation methods with the CNN baseline as this is outside
the scope of our research.

Table 5.7 shows the classification accuracies of the ATR system trained with ADA-ViT

augmentation, as well as its performance when trained with other data augmentation techniques.

We report our results using a ViT base (ViT-B) and ViT large (ViT-L) transformer baselines, on

FLIR ADAS.

We observe that ADA-ViT augmentation consistenly outperforms other methods. In par-

ticular, our method improves the baseline performance by more than 2% using the smaller model

ViT-B, and more than 1% using the larger model ViT-L. We note that ViT-B tends to achieve
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better performance improvement than the larger model ViT-L, which is mainly due to differences in

the initial model performance (before augmentation). This finding is expected, since smaller models

are less able to learn from the data than their larger counterparts with their complex architectures.

However, we want to highlight the fact that, even though ViT-L is a large model with a high initial

performance, it still benefited from our augmentation.

The Local augmentation failed to improve the performance of the baseline model, compared

to the other approaches, as this method is constrained to the local neighborhood of the existing

training set. Therefore, the created samples cannot recover the missing features from the training

set and complete the under-represented regions in the training feature space.

As shown in Table 5.8, the Meta-Set approach adds the highest number of images, compared

to the other methods. Even though it adds 5 times more images than ADA-ViT, the improve-

ments of Meta-Set are still falling short. This indicates that selecting fewer samples that target

under-represented regions only is sufficient to improve the performance of the classifier, without

unnecessarily increasing the task complexity.

Augmentation Method Number of added images

Local 9,324
Meta 15,407
Brace 6,119
ADA-ViT 3,470

TABLE 5.8

Number of images added by each data augmentation method for FLIR ADAS.

The BRACE method, which is a CNN-based approach, is behind the other data augmenta-

tion techniques, mainly because the CNN baseline scored lower than the transformer baseline. This

observation serves to confirm the findings of recent studies [1,16,41,47] that highlighted the advanced

learning capabilities of attention-based models and showed that transformers are inherently more

robust than CNNs. Nevertheless, BRACE still managed to increase the accuracy of the baseline

CNN by around 2%, which highlights the importance of selective data augmentation. This gap in

performance can be explained by two main factors. First, as discussed in Section 4.4, this can be an

indicator of a flaw in the BRACE utility score, which represents classes by a single data point that

corresponds to the mean of features of all training samples, as opposed to ADA-ViT which employs

clustering to generate more robust class representations. This issue becomes more highlighted for

the case of datasets with high intra-class variation, such as IR data. Second, the under-performance

of BRACE, compared to ADAViT, can reflect the advantage of using the attention weights learnt

inside the transformer itself to identify concepts that led to the misclassification, over post-hoc ex-

planation methods, such as GradCam, or pretrained object detectors, such as RCNN, which are

agnostic to the task and dataset in hand.
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5.5 Chapter Summary

In this chapter, we discussed the experimental results of our proposed data augmentation

framework evaluated on an infrared application. We conducted our experiments on an infrared

benchmark dataset that describes various targets captured at different times of the day and different

weather conditions. This led to the creation of an under-representative training set that suffers from

sparse gaps in the feature space. First, we conducted an in-depth analysis of the issue of under-

represented regions in the training feature space of an infrared dataset, and showcased its harmful

impact on the model performance. Then, we illustrated how ADA-ViT operates to address this

issue in an IR scenario, by adding new samples that can cover these sparse regions of the feature

space. We also carried out an experiment to demonstrate the advantage of using ADA-ViT to

guide the sample selection from external IR datasets over random data sampling or confidence-

based augmentations. Finally, we compared the performance of our proposed approach with other

carefully selected state-of-the-art data augmentation techniques. The purpose of this experiment is to

highlight the importance of considering under-represented regions in the training data of IR datasets

when applying data augmentation. We showed that our method achieves the highest performance

improvements while adding the least number of samples, compared to other techniques that have

been evaluated on RGB datasets only. This proves that ADA-ViT is able to train robust ATR

systems that can generalize well to the challenging IR test data, while requiring fewer samples for

training.
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CHAPTER 6

CONCLUSIONS AND POTENTIAL FUTURE WORKS

6.1 Conclusions

In this thesis, we addressed the challenge of improving the performance of Vision Trans-

former models trained with under-representative training sets by proposing a data augmentation

technique, called ADA-ViT, that aims to expand the data with relevant samples, capable of improv-

ing the diversity and class coverage of training sets. Our method leverages the attention mechanism

of transformer models to understand the model vulnerabilities and learning limitations. We also

make novel use of the validation set to analyze the model performance and extract visual model

explanations that justify the misclassifications. This is because, assuming that the validation and

test sets are drawn from the same distribution, the model performance on the validation set can be

a good indicator for the performance on the unseen test set.

We call for external image repositories to search for new samples that display similar visual

features to the extracted misclassification concepts. These external repositories can be noisy and

weakly labeled. In other words, they can be labeled automatically with several incorrect labels.

Our search for candidate samples is guided by a utility score function that we carefully designed

to rank the new samples based on their relevance and their potential contribution to improving

the data diversity, and eventually the model performance. Our proposed utility function takes

into consideration the degree to which a new sample falls in the under-represented regions of the

feature space of the training data, as well as the degree to which it matches the features of the hard

samples extracted from the validation set. The utility score function also considers the cases where

the external data repository is noisy, and applies a penalty score to out-of-distribution samples or

in-distribution samples with noisy labels.

One of the key contributions of this work is the investigation of the problem of under-

represented regions in the training feature space for the case of Vision Transformers. While the

research on data augmentation techniques has been ongoing for a long time, few works prioritized

the aspect of data diversity over data size expansion. In particular, Vision Transformers have been

excluded from this research, even though they have achieved significant success and are increasingly

being adopted in various contexts. Our work aims to bridge this gap and include Vision Transformers

in the currently active research areas.

Moreover, the potential of the attention mechanism has not been fully exploited yet for the
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purpose of model interpretability. Our method proposes a novel way of utilizing attention weights to

explain the model decision and reveal potential learning limitations. Finally, our data augmentation

framework circumvents the issue of acquiring large-scale labeled data for augmentation. Instead,

it learns directly from large web datasets that are easier and cheaper to acquire. Regarding the

sample and label noise that characterize web datasets, we do not employ complicated mechanisms

to clean these data repositories. Instead, we adopt a different approach based on sample selection to

only retrieve the relevant images that can remediate the model vulnerabilities and cover the under-

represented regions in the training feature space, without the hassle of anomaly detection or label

noise correction.

We applied our proposed strategy to an application involving RGB benchmark datasets,

that varied in size and class granularity. We showed that our method is able to improve the data

diversity and cover the gaps in the training feature space with new samples, in the case of small

and larger datasets, with fine-grained or coarser classes. We conducted experiments to demonstrate

and visualize the issue of under-representative training sets and showcased how our proposed data

augmentation technique is able to add samples that occupy the sparse empty regions of the feature

space. We also presented an in-depth analysis of the proposed utility score function to justify its

design and show its importance to guide the sample selection process.

We evaluated our method on three RGB datasets: CUB, CUB-Families and TinyImageNet.

Our results show that ADA-ViT is able to significantly improve the accuracy of a baseline model

trained without augmentation by more than 3% on CUB-Families, around 2% on CUB, and 1%

on TinyImageNet. We also compared our method with various state-of-the-art data augmentation

techniques that do not consider the issue of under-represented regions of the feature space in their

augmentation process. Our results reveal that ADA-ViT signficantly outperforms these compared

methods while being the least complex and adding fewer images for augmentation.

In addition to object recognition in standard RGB images, we applied the proposed strategy

to Automatic Target Recognition (ATR) using infrared imagery. Our method alleviates the need for

large labeled secondary IR datasets for augmentation. Instead, we leverage automatic detectors to

generate weakly annotated datasets that are diverse enough to include samples capable of covering

the under-represented regions of the training set. While maximizing the number of detections to

ensure the diversity of the secondary image repository, the automatic detector may generate false

detections or true targets with noisy labels in the process. Our method is able to handle the noise

in the secondary datasets using the utility score function that we designed to assign lower ranking

to out-of-distribution samples and penalize misdetections. By selecting only the relevant samples

that are capable of enhancing the class diversity and covering the sparse gaps in the training set,

the model is guided to learn from the challenging regions of the feature space, thus demonstrating

enhanced robustness and accuracy of ATR models in challenging environments compared to existing
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methods. We evaluated our method on the FLIR ADAS dataset, which contains targets captured

at different environmental conditions. Our data augmentation technique is seen to improve the

performance of a baseline model by over 2% while requiring the least number of added samples.

This proves that the research in data augmentation should focus more on data quality and class

representativeness over size expansion.

6.2 Potential Future Work

Our proposed data augmentation technique constitutes an effort, among many, to develop

more robust and accurate machine learning systems in the face of limited data and an increasing

demand for high-performance models in various applications. The promising results obtained in this

dissertation open several avenues for future research. Potential directions for extending this work

include:

• Extending the use of ADA-ViT to semi-supervised models, where we can leverage large unla-

beled datasets for augmentation.

• Experimenting with more sophisticated Vision Transformer models that utilize more advanced

self attention-based architectures, such as TransFG [90].

• Extending ADA-ViT to a RGB-Infrared fusion algorithm by learning and adding samples from

both data types.

• Applying the proposed data augmentation strategy to other domains and tasks, such as natural

language processing, medical imaging, or audio signal processing, to assess their effectiveness

and adaptability in different contexts

80



REFERENCES

[1] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby, “An image is worth 16x16 words: Transformers for image
recognition at scale,” 10 2020.

[2] “Flir. free flir thermal dataset for algorithm training.,” .

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016, pp. 770–778.

[4] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger, “Densely
connected convolutional networks,” in 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017, pp. 2261–2269.

[5] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi, “You only look once: Uni-
fied, real-time object detection,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 779–788.

[6] Mingxing Tan, Ruoming Pang, and Quoc V. Le, “Efficientdet: Scalable and efficient ob-
ject detection,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2020, pp. 10778–10787.

[7] Hao Shao, Letian Wang, Ruobing Chen, Steven L. Waslander, Hongsheng Li, and Yu Liu,
“Reasonnet: End-to-end driving with temporal and global reasoning,” in 2023 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 13723–13733.

[8] Lei Ke, Shichao Li, Yanan Sun, Yu-Wing Tai, and Chi-Keung Tang, GSNet: Joint Vehicle
Pose and Shape Reconstruction with Geometrical and Scene-Aware Supervision, pp. 515–532,
11 2020.

[9] Yiqiang Chen, Wang Lu, Xin Qin, Jindong Wang, and Xing Xie, “Metafed: Federated learn-
ing among federations with cyclic knowledge distillation for personalized healthcare,” IEEE
Transactions on Neural Networks and Learning Systems, pp. 1–12, 2023.

[10] Chaoyi Wu, Xiaoman Zhang, Ya Zhang, Yanfeng Wang, and Weidi Xie, “Pmc-llama: Further
finetuning llama on medical papers,” 04 2023.

[11] Nada Baili, Mahdi Moalla, Hichem Frigui, and Andrew Karem, “Multistage approach for
automatic target detection and recognition in infrared imagery using deep learning,” Journal
of Applied Remote Sensing, vol. 16, 11 2022.

[12] Zewen Li, Fan Liu, Wenjie Yang, Shouheng Peng, and Jun Zhou, “A survey of convolutional
neural networks: Analysis, applications, and prospects,” IEEE Transactions on Neural Net-
works and Learning Systems, vol. 33, no. 12, pp. 6999–7019, 2022.

[13] Wim De Mulder, Steven Bethard, and Marie-Francine Moens, “A survey on the application of
recurrent neural networks to statistical language modeling,” Computer Speech Language, vol.
30, 01 2014.

[14] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
ukasz Kaiser, and Illia Polosukhin, “Attention is all you need,” in Proceedings of the 31st
International Conference on Neural Information Processing Systems, Red Hook, NY, USA,
2017, NIPS’17, p. 6000–6010, Curran Associates Inc.

81



[15] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo, “Swin transformer: Hierarchical vision transformer using shifted windows,” in 2021
IEEE/CVF International Conference on Computer Vision (ICCV), 2021, pp. 9992–10002.

[16] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jegou, Julien Mairal, Piotr Bojanowski,
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