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ABSTRACT 

PRE-COLUMBIAN SOIL MANAGEMENT, SETTLEMENT, AND LAND USE IN 

AMAZONIA: 

INSIGHTS USING MICRO-REGIONAL PREDICTIVE MODELLING IN GURUPÁ, 

BRAZIL 

Lauren Zacks 

April 20, 2024 

 

The results of a micro-regional predictive model of terra preta sites in the municipality 

of Gurupá are presented here. A Maximum Entropy approach was selected and modified 

to fit a presence-background model, rather than a presence-absence model typical of binary 

classifications. 13 known terra preta sites were used as input samples for the relative 

suitability model, with explanatory variables in the respective categories of topography, 

hydrology, soil type and vegetation index. A 30m spatial resolution DEM served as the 

basis for the former two categories, while additional TauDEM analysis was performed for 

the hydrology category. A Sentinel-2A mosaicked quarterly composite image of January 

2021 served as the basis for derived data in the vegetation index category, NDVI and 

NDWI. Results of the model show the single most important predictor is the Gleysol soil 

type variable, with downslope at rivers being moderately contributive when riverine sites 

are used as test samples by the model. Notably, in addition to indicating presences in 

riverine fluvial contexts, this model displays strong presence signals at interfluves. When 

2 out of 3 test samples used are interfluvial sites, slope, rather than downslope at rivers, is
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a major predictor of terra preta presence. In contrast to a basin-wide predictive model of 

terra preta sites (McMichael et al. 2014), elevation is a consistently absent variable when 

it comes to predictive power for this model. This is unsurprising, as Gurupá is generally 

low-lying with negligible increases in elevation towards its southeastern borders. This 

paper suggests that a basin-wide predictive model is unable to capture fine-scale 

environmental correlations with terra preta sites at the micro-regional scale. This research 

is a contribution to the growing body of work that includes the analysis of remote sensing 

data in the identification of terra preta sites in this region of Amazonia (Choi, Wright, and 

Lima 2020). 
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CHAPTER 1 

INTRODUCTION 

This thesis investigates the distribution patterns of terra preta within the Eastern 

Amazon, focusing specifically on the municipality of Gurupá, which lies along the lower 

course of the Amazon River. The primary objective is to establish which environmental 

predictors can effectively indicate the presence of these pre-Columbian anthropogenic 

soils, renowned for their rich nutrient content and historical significance. To address this 

research problem, the study employs Geographic Information Systems (GIS) and 

maximum entropy predictive modeling to analyze and predict terra preta site locations 

across this broader municipal area, enhancing future sampling efforts and understanding 

of the variables that signal high probabilities of site presence. 

There are debates within Amazonian archaeological research about the 

topographical predictors of terra preta amongst the Amazonian Dark Earths (Glaser and 

Birk 2012; McMichael et al. 2014; Glaser 2006; Edelstein and Tonjes 2012; Rhodes 

2012). Terra Preta, a subset of the category "Amazonian Dark Earth," is a type of fertile 

soil found in the Amazon rainforest region. It is characterized by its dark color and high 

nutrient content, which makes it exceptionally fertile for agriculture. First, most terra 

preta sites have been sampled in floodplain-upland environments (Petersen, Neves, and 

Heckenberger 2001). “Floodplain” and “upland” have been adopted as translations for 

várzea and terra firme in Amazonian archaeology. The former specifically refer to  



2 

seasonally inundated forested areas, whereas the latter refers to valleys 

surrounded by non-flooded forests (Pupim, and Sawakuchi et al. 2019). The várzea, or 

floodplain areas, exhibit dynamic hydrological changes: during the wet or monsoon 

seasons, these areas are transformed into expansive waterlogged landscapes, akin to 

temporary wetlands, which recede in the dry season to expose rich, fertile mudflats 

frequently cultivated. In stark contrast, the igapó—the permanently flooded forest areas 

found further upstream—maintain a consistent aquatic environment year-round, 

characterized by darker, acidic waters that inundate the forest floor. This consistent 

flooding supports a distinct type of vegetation less variable than the seasonally changing 

várzea. These terms describe terrain types, rather than soil types. Terra firme soils can 

therefore not be accurately translated as meaning “upland soils”, but rather acidic, sand, 

and clay-rich soils which formed on ancient river terraces (Meggers 1971).  

The vast majority of Eastern Amazonian soils are formed on terra firme and are 

distinct from lower Montaña soils present in the Upper Amazon, the former being most 

often found in association with riverine terraces (Salomon and Schwartz 1999). Terra 

firme make up 98% of the Amazon basin, while the adjacent várzea are rare by 

comparison (Meggers 1971).  

Establishing whether this coupled topography is actually the best environmental predictor 

for the presence of terra preta sites is the aim of this study.  

Terra preta soils are unique with respect to their provenience in the Amazon more 

generally (Lehmann et al. 2009), and more specifically their prevalence along tributaries 

of the Amazon River. Confoundingly, terra preta sites are known be formed of the 

dominant soil types of the Amazonas (e.g. Oxisols, Latosols). These latter soil types are 
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typically barren, whereas terra preta are exceedingly fertile in comparison. Additionally, 

terra preta do not seem to exhibit a direct association with either terra firme or varzeá.  

In the early 2000’s, this understanding has shifted toward a coupled topography; 

only in immediate association with the seasonally inundated várzea could terra firme 

yield soils fertile enough to support human habitation and land use. Scholars in favor of 

this argument have suggested that maize and beans cultivated in association with 

habitation sites could have acted as nitrogen fixers (Petersen, Neves, and Heckenberger 

2001). 

The goal of my study is to include a more diverse set of samples, rather than 

formulating a judgment on the theoretical considerations of these debates. In addition to 

the fact that terra firme would only be able to support soils fertile enough to for human 

habitation and land use in combination with the presence of várzea, a predictive model 

consisting of variables including, but not limited to, elevation, slope, aspect, and relief 

extracted from a DEM would indicate whether these are also statistically significant in 

identifying where terra preta sites might be found. In order to achieve this, I here conduct 

a micro-regional analysis with GIS and maximum entropy predictive modelling. First, I 

create a predictive model of terra preta sites in Gurupá to assist future sampling efforts in 

the region. Secondly, I specifically identify and describe the relationships between 

environmental variables as they signal a high probability of site presence. Lastly, I 

identify high probability presence locations away from floodplains and in interfluvial 

areas. This work poses several critical questions that guide the investigation:  

How can we accurately locate terra preta sites in Gurupá using environmental 

variables? 
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Which of these variables are most relevant in predicting the presence of terra 

preta?  

Can the findings from Gurupá be extrapolated to predict terra preta sites in other 

regions of the Amazon with a high degree of accuracy?  

 

These questions aim to move beyond the confines of regional studies, contributing 

to a more generalizable understanding of terra preta distribution across the Amazon. 

Specifically, they aim to expand the scope of research on terra preta beyond just local or 

regional considerations, implying that by addressing these specific questions about 

predicting terra preta sites in Gurupá, the findings could contribute to broader, more 

generalized knowledge about terra preta distribution across the Amazon. This broader 

understanding could enhance future predictive modeling efforts and offer insights that 

apply beyond the immediate study area, potentially guiding archaeological exploration 

and conservation strategies across diverse Amazonian landscapes. 

Indeed, the primary goal is to use a spatially explicit predictive model, 

specifically Maximum Entropy (MaxEnt), to identify potential locations of terra preta 

sites within the specified study area. By applying this model and incorporating a range of 

environmental variables, the research aims to predict where terra preta sites are most 

likely to be found, enhancing the efficiency of archaeological explorations, and 

potentially uncovering new sites across varied landscapes within the Amazon Basin. 

At the same time, addressing these questions is crucial for refining future 

predictive models in Amazonia, cautioning against overgeneralizations at the basin-wide 
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or regional levels, which could misinterpret the nuanced dynamics of terra preta site 

distributions.  

The Maxent approach used here is a relative suitability model. This means that it 

should not be interpreted as a presence-absence model (Guillera-Arroita, Gurutzeta et al. 

2014). Rather, it is a presence-background model which relies on the scaling of 

probability from 0-1. 

This work adopts a landscape ethnoarchaeological perspective, investigating 

whether terra preta sites cluster around floodplains and, if not, identifying which 

environmental variables indicate their presence near interfluves. It consists of two parts: 

A ‘‘desk’’ ethnoarchaeology (Carrer 2013), which is focused on a remote sensing 

analysis of current landscape change in the sample area of Gurupá. Additionally, a 

‘‘field’’ ethnoarchaeology which places the observed human activity in context of its 

underlying cultural reasons and subsequently identifying a link to human settlement 

strategies (Carrer 2013). The successful incorporation of these considerations will then 

yield an ethnoarchaeological predictive model.  

In this work, the region of interest is the Amazon basin in a broad sense, and more 

locally, the Lower Xingu River Basin. Using known terra preta sites in the Lower Xingu 

region collected by the Origins, Culture and Environment (OCA) Project, co-directed by 

Dr. Anna Browne Ribeiro with Dr. Helena Pinto Lima between 2014-2015 (sole director 

since 2015), I will build a model to predict hitherto unknown areas where terra preta sites 

might be found. The results of this study will inform future archaeological fieldwork and 

aid the financial aspect of the decision-making process. Predictive models, more 

generally, show great promise in terms of their potential to resolve global- and 
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disciplinary problems. This predictive model of terra preta sites aims to further our 

understanding of the complex relationships between people, soils, and forests. What 

follows is a description of terra preta as a unique soil type, as well as its characteristics in 

context of most commonly found soil types throughout Amazonia. 
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CHAPTER 2 

BACKGROUND 

2.1 Prevalent Amazonian soil types 

Amazonia is generally characterized by a variety of soil types associated with its 

rainforest ecosystem. Common soil types include Spodosols, Inceptisols, Histosols, 

Ultisols, and Oxisols.  

Spodosols are found in areas with sandy parent material and high rainfall. They are 

characterized by a distinctive leaching and accumulation pattern, with a bleached or 

grayish upper layer and an underlying layer enriched with organic matter and iron and 

aluminum compounds. 

Inceptisols are relatively young and moderately developed soils. They have a wide 

range of textures, from sandy to clayey. Inceptisols are characterized by limited soil 

profile development and often have a mix of mineral and organic materials. 

Histosols, also known as peat or organic soils, occur in waterlogged areas where the 

accumulation of organic matter is greater than decomposition. These soils are typically 

found in wetlands, swamps, and floodplain areas and are characterized by high organic 

content. 

Ultisols are moderately weathered soils with a clayey texture. They are commonly 

found in areas with older landscapes and moderate to high rainfall. Ultisols are typically 

acidic, have a reddish or yellowish color, and can be nutrient-deficient.
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Oxisols, also known as lateritic soils or Latosols, are common in the Amazonian 

rainforest. These soils are typically reddish in color, highly weathered, and low in 

fertility. Oxisols have a clay-rich composition and are well-drained due to their sandy or 

gravelly textures. Oxisols are dominant soil types in the Amazonian lowlands, are highly 

acidic, nutrient poor, and are only suitable for long-term agriculture by adding natural 

fertilizers (Soentgen, Hilbert et al. 2017).  

2.2 Defining terra preta as a unique soil type 

Terra Preta, a subset of "Amazonian Dark Earths," is a type of fertile soil found in 

the Amazon rainforest region. It is characterized by its dark color and high nutrient 

content, which makes it exceptionally fertile for agriculture. Terra preta soils were 

created by indigenous cultures in the Amazon up to thousands of years ago. These 

cultures developed a sophisticated system of organic waste management and soil 

enhancement techniques. They would mix charcoal, bone fragments, pottery shards, 

kitchen waste, and other organic materials into the soil, creating a unique and highly 

productive agricultural substrate. 

The precise composition of terra preta varies, but it typically consists of a mixture 

of charcoal, plant residues, remnants of animal bones, and other organic matter. The high 

charcoal content in terra preta helps to retain moisture and improves soil structure 

(Novotny et al. 2006). The fertility of terra preta soils is due to several factors. The 

charcoal acts as a sponge, holding onto nutrients and preventing leaching. The porous 

structure also enhances water retention and drainage, reducing erosion and improving soil 

fertility. Additionally, the organic matter in terra preta provides a steady supply of 

nutrients (Chia, Munroe, Joseph et al. 2010). 
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Terra preta have been found to be extremely productive, supporting a wide range 

of crops and plant species. They can sustain agricultural activities for extended periods 

without the need for synthetic fertilizers (Costa, Kern, et al. 2004). The discovery of terra 

preta has sparked interest in sustainable soil management practices and carbon 

sequestration techniques, as they have the potential to mitigate climate change and 

improve agricultural productivity (Lepodise, Lewis, Constable et al. 2022). Scientists and 

researchers continue to study terra preta soils to understand their composition, formation 

processes, and the potential for replicating their beneficial properties in other regions 

(Lepodise, Lewis, Constable et al. 2022). 

Terra preta has been formed in the humid tropical environment of the Amazon 

rainforest since before the arrival of European colonists in the 16th century (Soentgen et 

al. 2017). The specific conditions that contribute to the formation of terra preta include a 

combination of natural processes and human activities. The process begins with the 

natural weathering of parent materials, such as clay-rich sediments and volcanic ash, over 

long periods. These weathered materials, along with organic matter derived from the 

abundant vegetation in the rainforest, may have provided the initial ingredients for terra 

preta formation. 

Human activities play a crucial role in enhancing and intensifying the 

development of terra preta. Indigenous cultures in the Amazon practiced a form of 

agriculture known as slash-and-char or slash-and-burn farming. Glaser (2006) considers 

the possibility that pre-Columbian peoples may have created terra preta soils by chance, 

or intentionally, and introduces the concept of “Terra Preta nova” (ibid.) to explain this 

phenomenon. In the case of accidental terra preta formation, clearing forested areas may 
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have resulted in charred biomass, primarily charcoal, which would then be mixed into the 

soil along with other organic waste materials such as food scraps, animal bones, and 

pottery sherds. The charcoal would then have served as a stable carbon sink, retaining 

nutrients, and enhancing the soil's fertility. The organic waste materials contribute 

organic matter, nutrients, and beneficial microorganisms to the soil, further enriching it.  

While black earths have been proposed to exist in other areas such as Africa 

(Fairhead and Leach, 2009), it is unknown how indigenous peoples were able to cultivate 

these soils in the Amazon - an environment in which highly acidic soils such as Oxisols - 

are a type of predominant soil. The knowledge of how to create terra preta “de novo” in 

other geographic contexts is lacking since this knowledge has only been transmitted in 

the form of oral traditions in the Amazon. While it has been revealed that black earth 

soils contain high amounts of pyrolized carbon, the modern replication of ADE in other 

contexts has failed (Kamman 2013). ADEs are a unique soil by virtue of them containing 

phosphate and other human-indicator compounds (Balée et al. 2023). While biochar can 

contribute to soil fertility, the formation of terra preta involves a more complex process 

that includes the intentional addition of organic matter, such as charcoal, along with other 

cultural practices (Balée et al. 2023). This is to say that the archaeological record for de 

novo terra preta formation is incomplete.  

2.3 Indicators of human intervention 

Terra preta soils are unique by virtue of their inclusion of pottery sherds 

(McMichael et al. 2017). These “ceramics” refer to pottery artifacts associated with the 

soil deposit. These ceramics are significant because they provide evidence of ancient 

human activity and settlement in the Amazon. The pottery sherds found within the terra 
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preta soils offer insights into the technological and cultural practices of past societies. 

The ceramics associated with terra preta display various characteristics that reflect the 

knowledge and skills of the ancient inhabitants. These ceramics often exhibit well-

developed craftsmanship, such as intricate designs, incisions, and decorative elements. 

They also show evidence of specific manufacturing techniques, including clay tempering, 

burnishing, and firing methods. The presence of ceramics in terra preta soils suggests that 

pottery-making was an important aspect of the cultural and economic activities of ancient 

Amazonian societies. The pottery vessels would have been used for cooking, food 

storage, and other domestic and ritual purposes. 

Browne Ribeiro and colleagues (2016), for instance, discuss the spatial 

organization of precolonial settlements in the Gurupá region of the Amazon. The research 

findings indicate that precolonial settlements had a different spatial distribution compared 

to later periods. One terra preta site I discuss in this paper, Carrazedo, lies within the 

Lower Xingu region, Amazonia. This site has been the subject of extensive fieldwork and 

research. Browne Ribeiro and colleagues (2016), discuss results from pilot archaeological 

fieldwork at Carrazedo. The Carrazedo site, in particular, shows a higher frequency of 

precolonial terra preta sites compared to colonial-historical settlements. The size and 

density of anthropogenic features suggest a densely occupied settlement (2016). The 

distribution of precolonial settlements overlaps with colonial-historical and contemporary 

settlements, but the former occurred at a higher frequency and covered a wider range of 

ecological zones (2016). The habitation area associated with the Historical Village in 

Carrazedo measures approximately 6 hectares, while the terra preta site measures 

approximately 30 hectares. Pre-colonial ceramics were found almost exclusively at the 
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excavation of a mound and were subdivided into two distinct technological styles (2016). 

The first being white slip and cut lobed rims, with occasional red paint (IN: Figure 7a–f; 

Browne Ribeiro et al. 2016). The second type consists of plastic decorative techniques 

which depict anthropomorphic or zoomorphic figures on wall and rim sherds of restricted 

vessels (2016). Both types have correlates with regions elsewhere, (e.g. Almeirim, 

Altamira, Guianas). Their (2016) findings position precolonial Gurupá as a true 

crossroads along riverine and overland trade routes. 

Thusly, terra preta ceramics helps archaeologists understand the social, economic, 

and technological aspects of ancient Amazonian cultures. It provides valuable 

information about the daily lives, cultural practices, trade networks, and technological 

advancements of these societies. 

In addition to ceramics, other archaeological artifacts, such as stone tools, shell 

ornaments, and animal bone fragments, are often found in association with terra preta 

sites. These diverse material remains contribute to our knowledge of the past human-

environment interactions and the long history of human settlement in the Amazon 

rainforest. 

2.4 Description of uniquely Amazonian landscape types 

Amazonian várzeas, also known as Amazonian floodplains, refer to the specific 

floodplain areas found in the Amazon region, particularly in the Amazon Basin (Assis et 

al. 2014). These floodplains are influenced by the Amazon River and its numerous 

tributaries, which overflow during the wet season, resulting in extensive inundation of the 

surrounding land. Amazonian várzeas are characterized by their vast size, dynamic 

hydrological patterns, and rich biodiversity (ibid.). Key features of Amazonian várzeas 



13 

include their size and extent, hydrological dynamics, ecological significance, flora, and 

fauna, as well as indigenous communities and livelihoods.  

Amazonian várzeas are among the largest and most extensive floodplain systems 

in the world. They encompass millions of hectares of land and stretch across multiple 

countries, including Brazil, Peru, Colombia, Ecuador, and Bolivia. The hydrology of 

Amazonian várzeas is driven by the annual rainfall and the vast network of rivers and 

streams in the region. During the wet season, the rivers rise and spill over onto the 

floodplain, leading to extensive flooding. This flooding is crucial for nutrient 

replenishment and the maintenance of the floodplain ecosystem. 

Indigenous communities have long inhabited the Amazonian várzeas and have 

developed unique cultural practices and adaptations to the floodplain environment (Peña-

Venegas et al. 2015). They rely on fishing, agriculture, gathering, and hunting as essential 

components of their subsistence strategies. Traditional knowledge and sustainable 

resource management practices play a crucial role in their way of life. Amazonian 

várzeas are ecologically significant areas within the Amazon Basin, contributing to the 

overall biodiversity and functioning of the Amazon rainforest. They provide critical 

habitats, resources, and livelihoods for indigenous communities while playing a vital role 

in regional hydrology and nutrient cycling. Bush and colleagues (2007) problematize the 

fact that pre-Columbian occupation is known to occur frequently in várzeas, but less so in 

terra firme environments. 

Amazonian terra firme are the upland or non-flooded areas of the Amazon 

rainforest. It is characterized by relatively higher elevation, well-drained soils, and a lack 

of regular flooding (Bobrowiec et al. 2014; Lieshout, Kirkby and Siepel 2016). Terra 
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firme areas are not subject to prolonged inundation, unlike the várzea (seasonally 

flooded) and igapó (permanently flooded) regions of the Amazon. Due to their relatively 

stable and less inundated nature, terra firme forests have been more accessible to 

contemporary human settlement and agricultural activities compared to floodplain 

regions.  

While floodplain environments have historically been more commonly associated 

with past human settlement due to sampling bias, it is thought that communities and 

traditional populations in the Amazon have historically inhabited terra firme areas, 

practicing subsistence agriculture, hunting, and gathering. Palaeoecological analyses in 

the central and western Amazon revealed that human impacts on terra firme settings were 

not confined to waterways, but that proximity to permanent open-water bodies might be 

an indicator of continuous habitation (Bush et al. 2007).  

Terra firme forests are also vulnerable to deforestation and other human activities, 

including commercial logging, agriculture, and infrastructure development. The 

conversion of terra firme forests for agriculture, particularly for soybean cultivation and 

cattle ranching, has been a major driver of deforestation in the Amazon region.  

It is, however, becoming more apparent that the Amazonian rainforest may not 

have been untouched and free from human land use in the past (Piperno, McMichael, and 

Bush 2017). In fact, it has been argued that indigenous communities have radically 

altered and transformed the Amazon, and that terra firme forests are particularly resilient 

(Piperno, McMichael, and Bush 2017). The conversion of terra firme forests for modern 

agriculture has revealed the pre-existence of relationships between climate change and 

cultural resilience in late pre-Columbian Amazonia (Souza, Robinson, et al. 2019). 
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Carson and colleagues (2014) have proposed that pre-Columbian land use did not require 

extensive rainforest clearance to support dense zones of habitation. 

The Amazon region encompasses a vast area with various várzeas, or floodplain areas, 

each with its own distinct characteristics: 

Várzea de Solimões: The Solimões River, the upper stretch of the Amazon River, 

creates extensive várzea areas. These floodplains are subject to annual flooding and play 

a vital role in the region's hydrology (Pöhlker et al. 2019). The várzea de Solimões 

supports diverse ecosystems and is characterized by rich biodiversity and abundant 

aquatic resources. 

Várzea de Purus (Théry and Maurence 1997): The Purus River, a major tributary 

of the Amazon River, forms extensive várzeas within the Brazilian state of Amazonas. 

The várzea de Purus is known for its flooded forests and is home to various plant and 

animal species. Indigenous communities in this area rely on fishing, hunting, and 

subsistence agriculture for their livelihoods. 

Várzea de Juruá (Théry and Maurence 1997): The Juruá River, another major 

tributary of the Amazon River, creates várzeas that are renowned for their biological 

diversity. This region features flooded forests, lakes, and channels, providing habitats for 

numerous species of fish, birds, and mammals. Indigenous communities in the várzea de 

Juruá engage in fishing, agriculture, and gathering activities. 

Várzea de Marajó (Daly and Mitchell 2000): Marajó Island, located at the mouth 

of the Amazon River, is known for its extensive várzeas. The várzea de Marajó is 

characterized by a mosaic of flooded forests, savannahs, and wetlands. It supports unique 

ecosystems and is home to wildlife such as capybaras, marsh deer, and various bird 
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species. Indigenous communities in this region practice traditional agriculture, including 

the cultivation of manioc. 

Várzea de Mamirauá: The Mamirauá Sustainable Development Reserve, located 

in the Brazilian state of Amazonas, encompasses a large várzea area. This flooded forest 

region is recognized for its exceptional biodiversity and is home to various endangered 

species such as the Amazon River dolphin and the black caiman (Koziell and Inoue 

2002). Indigenous communities living in the várzea de Mamirauá engage in fishing, 

agriculture, and sustainable resource management. 

These are just a few examples of the diverse várzea areas in the Amazon region. 

Each várzea has its own ecological characteristics, cultural practices, and significance for 

local communities. In várzeas, indigenous communities historically and currently 

cultivate a variety of crops suited to the seasonal flooding and nutrient-rich characteristics 

of the floodplain soils. The specific crops grown can vary depending on local cultural 

practices and preferences, but some common crops cultivated in várzeas include Manioc, 

also known as cassava, a staple crop in many várzea regions. It is well-suited to the 

floodplain conditions as it can tolerate temporary flooding. Manioc roots are processed 

into flour, used to make various traditional dishes and bread, and can be stored for 

extended periods. 

Maize is another important crop grown in várzeas (Müller et al. 2022; Gasché 

2008). It is a versatile grain that provides food for humans as well as feed for livestock. 

Indigenous communities often cultivate different varieties of maize adapted to local 

conditions. Beans are commonly cultivated alongside maize in várzeas. They provide an 
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additional source of protein and nutrients in the diet. Indigenous communities grow 

various types of beans, including black beans, red beans, and others. 

In some várzea regions, particularly those with extended periods of flooding, rice 

cultivation is practiced. Rice is adapted to wet conditions and thrives in the flooded areas 

during the wet season. Indigenous communities in várzeas also cultivate fruit trees such 

as mango, papaya, banana, and citrus fruits. These trees provide a source of fresh fruit, as 

well as potential income through trade or sale. 

Additionally, in várzeas, communities often engage in fishing and gathering of 

wild edible plants as important components of their food systems (Knoop et al. 2020). 

The seasonal flooding in várzeas not only supports crop cultivation but also contributes 

to the natural biodiversity and availability of aquatic resources that are utilized for 

sustenance. 

It is important to note that the specific crops cultivated in várzeas can vary 

depending on the cultural practices, preferences, and adaptations of indigenous 

communities in different regions. Local knowledge and traditional practices play a 

significant role in determining the crops grown in várzea environments. 

Várzea and terra firme differ in terms of their topography, hydrology, soil 

characteristics, and vegetation composition (Haugaasen, and Peres 2005). Várzea refers 

to the seasonally flooded areas found along rivers and their floodplains. These areas 

experience regular inundation during the rainy season when rivers overflow their banks. 

In contrast, terra firme refers to upland areas that are not subject to regular flooding. 

Terra firme areas remain above water level throughout the year. 
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Várzea areas are characterized by nutrient-rich alluvial soils. The annual flooding 

deposits sediment and organic matter, resulting in fertile soils that support lush 

vegetation. Terra firme, on the other hand, has well-drained soils that are often less fertile 

compared to várzea. The soils in terra firme areas are typically weathered and can vary in 

composition. 

Várzea areas support distinctive vegetation adapted to the seasonal flooding. 

During the dry season, várzea forests may appear as relatively open grasslands or 

savannas. However, during the wet season, these areas become inundated, and the 

vegetation consists of various types of aquatic plants and trees that can tolerate flooding. 

Terra firme, being non-flooded, hosts the dense and diverse canopy of the Amazon 

rainforest, with tall trees, understory vegetation, and a wide range of plant species. 

Due to the seasonal flooding and fertile soils, várzea areas have historically 

attracted human settlement and agricultural activities. Indigenous communities and 

traditional populations have practiced agriculture, fishing, and hunting in várzea 

environments. Terra firme, with its higher and more stable ground, has also supported 

human settlements, but it is less prone to flooding and is more suitable for long-term 

agriculture and infrastructure development. It is important to note that várzea and terra 

firme are not mutually exclusive but rather exist as part of a continuum of ecosystems 

within the Amazon rainforest. The transition between these zones can be gradual, with 

areas that experience both seasonal flooding and non-flooded conditions. 

2.5 On Interfluves 

Interfluvial zones in the Amazon are areas located between two or more rivers or their 

tributaries. These zones have distinct characteristics that set them apart from other parts 
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of the Amazon rainforest. Interfluvial zones have specific ecological conditions that 

differ from both várzea (seasonally flooded) and igapó (permanently flooded) areas 

(Haugaasen and Peres 2006). They are typically characterized by well-drained soils and 

are not subject to regular inundation. The interfluvial areas receive less water compared 

to várzea and igapó, leading to different vegetation composition and ecological 

dynamics. Interfluvial zones in the Amazon rainforest are recognized as hotspots of 

biodiversity. They support a wide range of plant and animal species, many of which are 

adapted to the drier and more stable conditions found in these areas. The interfluvial 

forests often have a diverse canopy with tall trees and a rich understory vegetation. 

Interfluvial zones are known to harbor species that are endemic to these specific 

habitats. The isolation provided by the river systems and the unique ecological conditions 

contribute to the evolution of distinct plant and animal species found only in interfluvial 

areas. These endemic species have specialized adaptations that allow them to thrive in the 

specific interfluvial environment. Interfluves have been home to indigenous communities 

and traditional populations for centuries. The interfluvial forests have provided these 

communities with resources for sustenance, including food, medicine, and construction 

materials. Indigenous cultures have developed a deep knowledge of the interfluvial 

ecosystems and have implemented sustainable practices to manage these environments. 

2.6 Study area 

The study area we are working with is small compared to the vastness of the 

Amazon basin. Gurupá is a small municipality located just southwest of the mouth of the 

Amazon River. It is important that I define whether this study area is a region or a 

locality. In the present, one might refer to it as a locality since there are different drivers 
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of landscape change here than, say, in Belém (e.g., forest conservation versus forest 

clearing). However, one might also consider it a region because of its regional climate 

(e.g., precipitation patterns). It has been shown previously that there are a multitude of 

ways to conceive of a landscape (Zunega-Lawrence and Low 2003). In this case, it is 

prudent to consider the study area as a transition zone; its unique ecological 

characteristics make it a difficult landscape to pin down and classify.  

To specify what kinds of data to feed to this predictive model, it must be 

presumed that some kinds of variables affect the decision-making process as to where 

human agents might settle; these variables are things we likely take for granted in 

everyday life. For example, distance to water, distance to the nearest school or even the 

grocery store are all spatially contextualized phenomena that we consider when deciding 

to relocate. Similarly, distance to forest, soil drainability, or soil fertility might be 

analogous with respect to an archaeological context. Colleagues have also debated the 

influence of highly complex socio-cultural phenomena during the decision-making 

process (for the topic of encroachment and its role in place-making see Harvey 1996; 

Basso 1988).   

Harvey calls into question whether place-making as it is described by Basso, 

occurs independently from encroaching outside economic structures (1988). It is thus 

important to acknowledge the pressures that exist around regions and localities, as 

opposed to analyzing them separately. Harvey, for instance, argues that there exists a 

dialectic between space and place, and that places depend on space to get made (ibid.). 

Outside pressures like environmental constraints, which are of relevance to our analysis, 

would thus be coming from ‘space’ and affecting ‘place’. In a similar vein, Eckstein 
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(2019) considers the case-study of toxic environments as a form of maintenance of social 

stratification. Specifically, marginalized communities are deliberately placed in harm’s 

way due to their being seen as “disposable” by local (or regional) governments (ibid.). 

One might go even further to say that, in this case, marginalized communities are 

discouraged from using their agency in the process of place-making. The following is a 

more in-depth explanation on my predictive model in conjunction with defining human 

agency and settlement patterns.  

Situated in the Amazon region, Gurupá is a municipality located in the state of 

Pará, Brazil. The archaeological record of the municipality of Gurupá, which straddles 

the Xingu-Amazon confluence, presents substantial evidence for landscape modification 

and intensive habitation from c.a. A.D. 500 to A.D. 1550. The region was also the first 

inland site of European colonization in the Amazon Basin. Settled c.a. A.D. 1600, 

Gurupá is particularly well situated to highlight transitions or distinctions between 

indigenous and European forms of habitation and land use, as well as technological, 

environmental, demographic, and sociopolitical change (Browne Ribeiro, Lima, et al. 

2016). Carrazedo, Jocojó, and Gurupá-Miri are sites located at three traditional 

communities that occupy prehistoric terra preta sites, practice similar agro-extractive 

resource management and govern traditionally defined territories. 

In addition to the rivers and floodplains, Gurupá is also home to various wetlands and 

lakes. These water bodies are important for supporting aquatic ecosystems, providing 

habitats for fish, birds, amphibians, and other aquatic species. The wetlands and lakes in 

Gurupá contribute to the overall biodiversity and serve as important breeding and feeding 

grounds for many species. Gurupá is in a region characterized by numerous river islands. 
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These islands are formed by the branching and shifting of the rivers over time. They 

exhibit diverse vegetation and are often inhabited by local communities. 

Gurupá is located in the Amazon region of Brazil, which is known for its extensive 

network of rivers. 

1. Amazon River: The Amazon River is the largest river in the world by volume and

is of great significance to the region. It flows through Gurupá, providing a vital

waterway for transportation, fishing, and trade. The Amazon River is a lifeline for

many communities in Gurupá and supports a diverse ecosystem.

2. The Gurupi River is a tributary of the Amazon River and runs through the

municipality of Gurupá. It is an important watercourse in the region, contributing

to the drainage of the area and serving as a transportation route. The Gurupi River

has its headwaters in the Tocantins state of Brazil and eventually joins the

Amazon River near Gurupá.

3. Jari River: The Jari River is another significant river that borders Gurupá. It forms

part of the boundary between the states of Pará and Amapá. It originates in the

Serra do Tumucumaque mountains in the Guiana Shield and forms the border

between Brazil and the country of Guyana. The Jari River passes through Gurupá

before joining the Amazon River.

4. Xingu River: While not directly flowing through Gurupá, the Xingu River is a

significant tributary of the Amazon River located to the west of Gurupá. The

Xingu River is known for its rich biodiversity and its connection to Indigenous

cultures in the region.
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2.7 Maximum Entropy approach for suitability analysis 

Maximum Entropy (MaxEnt) modeling is a statistical modeling approach that has 

gained popularity in various fields, including archaeological research (Sales et al. 2022; 

McMichael, Palace, and Golightly 2014; Cruz et al. 2020; De Souza et al. 2018). 

Maximum entropy modeling is a machine learning technique used for predicting species 

distribution based on environmental variables. While it is commonly used in ecological 

studies, it can also be applied to archaeological research to understand past human 

behaviors and land-use patterns.  

In archaeological research, MaxEnt modeling can be used to predict the 

distribution of archaeological sites or artifacts across a landscape (Bush et al. 2015; 

McMichael et al. 2014). It involves analyzing the relationships between known 

archaeological sites and environmental variables such as topography, vegetation, climate, 

soil types, and proximity to water sources. In this case, I have selected topographical 

variables such as elevation, slope, aspect, hydrological variables flow direction, 

catchment area, and average river slope, as well as edaphic conditions derived from FAO 

world soil maps. Additionally, I used derived NDVI and NDWI indices from a 

mosaicked, annual composite of the region from the Sentinel-2a satellite, to also be 

included in the model. These variables were chosen because they collectively represent 

the crucial environmental factors that affect the distribution of terra preta soils, such as 

topography, which influences soil formation and erosion; hydrology, which affects soil 

moisture and nutrient transport; soil type, which determines the base fertility and physical 

properties of the soil; and vegetation indices, which are proxies for plant health and 

biomass productivity. The interplay of these variables is essential for modeling terra preta 

site likelihood as they encapsulate the conditions under which these anthropogenically 
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altered soils are most likely to be found. More detail on data source and processing are 

provided in the methods. By examining these relationships, MaxEnt modeling can 

generate a probabilistic map of potential site distributions.  

The basic principle behind MaxEnt modeling is to find the distribution of 

maximum entropy (most uniform) that satisfies the observed constraints. In 

archaeological applications, the constraints are derived from known site locations, in the 

case of this study, Aycajó, Aldeinha, Cedro, Cemitério dos Antigos, Centro Antigo, Grota 

do Amado, Inajá, Piquiá do Jocojó, and others (Fig. 1). The model seeks to find the 

distribution of environmental variables that maximizes the entropy while remaining 

consistent with the observed data. In this context, the methodology around identifying 

possible terra preta sites involves using specific environmental variables to model where 

these archaeologically significant soils are likely to be found. By analyzing factors such 

as elevation, slope, soil type, and vegetation indices, the model aims to pinpoint areas 

with conditions similar to known terra preta sites, thereby guiding archaeological efforts 

towards unexplored regions that hold potential for discovering new sites. 

This modeling approach can have several benefits, such as site prediction, as 

mentioned above. This approach can identify potential areas where archaeological sites 

are likely to be found. The integration of the environmental data I have acquired by 

generating elevation, shaded relief, slope, and aspect maps, MaxEnt provides a more 

comprehensive approach than relying solely on known site locations. Furthermore, 

analyzing the distribution of archaeological sites through MaxEnt can provide insights 

into past land-use patterns and settlement dynamics. It can help reconstruct ancient 

landscapes and understand how humans interacted with and modified their environments. 
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 Additionally, MaxEnt modeling can assist in prioritizing areas for archaeological 

survey and excavation. By identifying areas with the highest predicted probabilities of 

site occurrence, it helps optimize limited resources and target efforts more effectively. 

Another benefit is environmental analysis. MaxEnt modeling allows for the investigation 

of relationships between archaeological sites and environmental variables. It can help 

identify environmental factors that influenced human settlement decisions, such as 

proximity to water sources or favorable soil conditions. 
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Figure 1. State of Pará and study area of Gurupá, with 13 known terra preta sites. 
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CHAPTER 3 

METHODS

3.1 Data 

The study focuses on Gurupá, located in Brazil's Amazon region (Figure 1.). 

Utilizing elevation, slope, and aspect data from NASADEM (30m resolution), soil types 

from FAO (1km), and NDVI/NDWI from Sentinel-2A imagery (quarterly, 10m), I aim to 

Variable Source Resolution Literature 

elevation NASADEM Merged DEM 

Global 1 arc second V001. 

Distributed by 

OpenTopography. 

30m Law et al. 2017. 

slope Ibid. 30m Takata et al. 2007. 

aspect Ibid. 30m Li et al. 2022. 

D8slope Ibid. 30m Becker and 

Siegmüller 2021. 

D8flowdirection Ibid. 30m Seibert and 

McGlynn 2007. 

D8Area Ibid. 30m Welivitiya et al. 

2021; Summerell et 

al. 2005; Zahedi et 

al. 2017. 

FAO soil type FAO & IIASA. 2023. 

Harmonized World Soil 

Database version 2.0. Rome 

and Laxenburg. 

30 arc-

second 

(1km) 

Adem et al. 2020. 

NDVI Zanaga et al. 2022. 10m Agapiou et al. 2013. 

NDWI Ibid. 10m Krofcheck et al 

2015. 

Table 1. Variables used in the model, their sources, resolution, and previous uses in 

the literature. 
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predict terra preta site locations. Data preprocessing involved cleaning and TauDEM 

analysis for hydrology. These data were chosen to reflect environmental factors relevant 

to terra preta distribution, capturing both physical terrain and vegetation health indicators. 

Initial data from thirteen terra preta sites, including proximity to rivers, surface presence 

of historic and pre-colonial ceramics, and signs of anthropogenic disturbances, set the 

groundwork for this analysis.  

The study also leverages soil data from the Pre-LBA RADAMBrasil project 

(Negreiros, Alencar, and Schlesinger 2009) to address potential sampling biases and 

enhance the predictive model's accuracy. These data (ibid.) used a combination of soil pit 

information, aerial photography, and geologic maps from 1,153 soil pits distributed 

throughout the Amazon basin which were sampled by horizon and analyzed for texture 

and chemical composition. I examine whether interfluvial sites located further inland may 

have suffered a sampling bias relative to near-floodplain and upland sites (for interfluves 

as zones of dense habitation, see De Souza et al. 2018).  

To understand the regional landscape ethnography of the Lower Xingu and a 

more localized one surrounding the municipality of Gurupá, I subsequently analyze these 

regions through the lens of cartography. It will be shown that the Gurupá municipality 

and its surrounding areas display a broad array of landscapes and corresponding 

complexity. Specifically, this complexity will be investigated through several maps. 

These maps were generated with the purpose of investigating whether they are potentially 

useful environmental variables and predictors of regions conducive to terra preta 

formations. 
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Figure 2. Topographic variables extracted from DEM in order of Bottom Left – Top: 

1. D8 Catchment Area delineating likely areas of streams 2. Flow Direction showing

how flow direction changes from East-Southeast on the northern Amazon, compared

to West-Southwest on the southern half. 3.D8 Slope is higher in the southeast 4.

Aspect/Direction of Slope 5. Slope showing very low slope overall, with slight

increase near Carrazedo 6. Digital Elevation Model showing overall flat landscape,

with slight increase toward southeastern border. (Source: s. Table 1)
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Figure 3. Gurupá and its dominant soil types. Dystric Gleysols are most common and 

found in association with Xanthic Ferralsols. 
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I used an available DEM (Fig. 2) to generate a series of maps using ArcGIS to 

represent topographic variables elevation, slope, and aspect. This enabled to analyze 

individual landscape variables to observe landscape variation. The first, an elevation map, 

will show differences in elevation and consequentially, the way water flows across the 

landscape. These maps were generated with the purpose of investigating whether they are 

potentially useful environmental variables and predictors of regions conducive to terra 

preta formations. The shaded relief map (also named Hillshade map) was generated from 

NASADEM in global 1 arc second resolution [NASA JPL (2021)]. According to the 

USGS website shaded relief, or hillshading, is a technique where a lighting effect is 

Figure 4. NDWI (left) and NDVI (right) maps of Gurupá show flooded areas 

concentrated in the south-southwestern borders and around streams. Except for 

flooded-, urban, and cultivated areas south of Carrazedo, Gurupá is densely vegetated. 
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added to a map based on elevation variations within the landscape. It provides a clearer 

picture of the topography by mimicking the sun's effects (illumination, shading and 

shadows) on hills and canyons. The third map (Fig. 2), a slope map, will give more 

detailed information that the illumination of elevation in our shaded relief map cannot 

provide. It will show the amount of how steep or flat the terrain in and around the Gurupá 

municipality is. In contrast to the elevation map (Fig. 2), a slope map will specifically 

show how elevation changes varies across the landscape in greater distances. These 

values are represented in percentages.  

In addition to topography, I have made use of other variables in the domain of 

hydrology and vegetation for the region (all these derivative maps in Appendix). For 

hydrology, I have derived data such as D8 flow direction and contributing area with the 

TauDEM product made available on the OpenTopography website through David 

Tarboton of Utah State University and the parallel support of the US Army Corps of 

Engineers (2010-2015). An in-depth explanation of how to install and work with 

TauDEM data can be found on the Utah State University hydrology website 

(https://hydrology.usu.edu). For vegetation data, I have adduced the Sentinel-2 

WorldCover Annual Cloudless Mosaic product made available through the Copernicus 

browser (https://dataspace.copernicus.eu/browser). I have selected the quarterly 

composite for January 2021, and downloaded pre-processed Normalized Difference 

Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) imagery 

(Zanaga et al. 2021). NDVI is a standardized index that allows us to generate an image 

highlighting vegetation on Earth's surface. NDVI uses the visible and near-infrared light 

absorbed by vegetation to produce an indicator of photosynthetic activity that can be 

https://hydrology.usu.edu/
https://dataspace.copernicus.eu/browser
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compared across various conditions and times. The NDVI is calculated based on the 

following equation: 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑

where: 

𝑁𝐼𝑅 is the reflectance of the near-infrared band, and 

𝑅𝑒𝑑 is the reflectance of the red band. This index ranges from -1 to 1, with higher 

values indicating greater levels of live green vegetation. 

NDWI is used to monitor changes in water content of leaves and is also applied in the 

delineation of open water features. Similar to NDVI, it is a normalized difference index, 

but it uses different bands of the electromagnetic spectrum. The NDWI is calculated 

using the following equation: 

𝑁𝐷𝑊𝐼 =
𝐺𝑟𝑒𝑒𝑛 − 𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 + 𝑁𝐼𝑅

where: 

𝐺𝑟𝑒𝑒𝑛 is the reflectance of the green band, and 

𝑁𝐼𝑅 is the reflectance of the near-infrared band. 

The range of NDWI is also from -1 to 1, with positive values indicating higher moisture 

content and negative values indicating lesser moisture content. 

Utilizing this pre-processed imagery is convenient because it saves the user the work 

of processing these images with the raw data available. Additionally, it significantly 

reduces the possibility of potential errors introduced by users who might not be familiar 

with processing raw imagery data, including the undoubtedly crucial step of removing 
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noise introduced by cloud cover. This region of the Amazon is unsurprisingly extremely 

cloudy, so having a pre-processed cloudless mosaic available is supremely useful.  

3.2 Data Processing 

The elevation map (Fig. 2) is created from the Hillshade map and presents a good 

view of streams, channels, and flooded forest areas in the southwest. Of note is the 

generally low-elevation, floodplain type layout of the landscape. 

Moving south, and away from the Amazon, elevation increases up to 77%.hse areas are 

intersected by the Igarape Ipixuna and Braço Camutá rivers. The Rio Pucuruí and 

surrounding floodplains are also visible toward the southwest.  

The slope map (Fig. 2) emphasizes differences in incline on the landscape. The 

Slope tool measures the gradient from cell to cell within a digital elevation model. For 

each cell in the DEM, the slope function measures the rate of change to each neighboring 

cell, and outputs the maximum rate of change within that neighborhood into the target 

cell. The resulting slope raster characterizes the steepness of the terrain in the study area. 

Slope values are measured as percent (from 0% to 100%) or degrees (from 0° to 90°)” 

(Biddle 2020). For example, the elevation map above shows some high elevation towards 

the south-western part of the region. Looks can be deceiving; even though elevation 

increases upwards to 77%, the slope in these areas only increases to 11%. This means 

that relatively to the floodplains surrounding the Amazon River, the southwestern areas 

are indeed higher in elevation. They are not, however, high enough to display a large 

degree in slope. Of interest are the light-yellow areas along the Igarape Ipixuna and 

Braço Camutá rivers. The increase in slope here results from low-lying hillsides which 

surround the banks of channels of these two rivers. This aspect map (Fig. 2) is different 
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from the others in that it shows us specifically which areas receive light and at which 

angles and sides. Certain vegetation thrives only in specific conditions, namely the angle 

at which the sun strikes the surface of the landscape.  

The Pit Removal tool within ArcGIS Pro is the starting point for all hydrological 

derivative maps from the TauDEM processing service. A pit in a DEM is specifically 

defined as any cell(s) which has/have no downstream cells around it. If they are not 

removed, then they become sinks and isolate portions of hydrologic analysis. Pit filling 

increases elevation until a pit drains to a neighbor (Fig. 10). The comparison of the pit 

filled DEM to the original DEM is visualized in Fig. 11. 

The requirement for calculating D8 Flow Direction takes this input, namely a 

corrected elevation grid, resulting in an output with each grid cell containing the D8 flow 

direction and slope. The former is similar to the aspect map I have already generated but 

models the direction water flow across terrain instead of the direction of slope across the 

landscape. As the name suggests, steepest descent from each grid cells is numbered 1-8 

(Fig. 12) 

The subsequent map is called D8 Contributing Area (also known as Flow 

Accumulation) and requires having completed the previous creation of D8 Flow 
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Direction. This function models the contributing area at different directions of flow. The 

process is visualized in Fig. 13.  

I have also created a simple stream network for the area (App. V), which is based 

on defining a threshold for the contributing area calculated before. The output is a stream 

Figure 5. The process of Pit Filling. Elevations are filled to that of the pools pour point. 

[(IN Tarboton, D.G., (1997)] 

Figure 6. Effect of Pit Filling on Elevation. [(IN Tarboton 1997)] 
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raster grid, which displays values in between 0 and 1 for each pixel in the image. I have 

selected a threshold of c.a. 30,9 – 2,000,000 from the contributing area as the value 0 in 

the stream network, and 2000,000 – 119,349,808 as a threshold for the value 1 in the 

stream network. I have selected these thresholds in order to visualize smaller streams 

further inland and away from the major Amazon River.  
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Figure 7. In the D8 Flow direction model, steepest descent from each grid cells is 

numbered 1-8. [(IN: Tarboton 1997)]. 

Figure 8. In the D8 Contributing Area or Flow Accumulation model, the area draining 

each grid cell includes the grid cell itself. [(IN: Tarboton 1997)] 
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I also utilized a TOPMODEL wetness index map (Topographic Wetness Index), 

which defines the ratio of slope to the specific catchment area / contributing area that I 

calculated before. This variable was not included in the MaxEnt model because it 

contained too many nodata values. I believe this index is useful to have on hand because 

it removes errors from dividing by 0 when slope is 0 by putting contributing area in the 

denominator. 

 If we are indeed assuming that site type (e.g. terra preta, historic site) is correlated 

with terrain type (e.g. flooded forest, terra firme, sandy), then there is the possibility of a 

relationship between slope direction, soil conditions, hydrological conditions, and 

possible resulting vegetation health. The question is: Is hydrology positively correlated 

with the presence/absence of terra preta sites? Is vegetation health correlated? 

3.3 Model Description 

First run 

Input samples are all 13 confirmed points of terra preta presence. Environmental 

layers selected were those created for 4 categories: topography, hydrology, edaphic, and 

vegetation index. 

The subcategories for topography were slope, elevation, and aspect. 

For hydrology they were catchment area, flow direction (or paths) and their average 

downslope. Topographic wetness index was considered but excluded because of 

excessive nodata pixels.  

For the edaphic category, layers selected were the world dominant and FAO soil 

maps (restricted to ROI). Since both layers are highly correlated, the world dominant soil 

type map was excluded from analysis, and the world FAO soil map was used instead. 
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Lastly, I used NDVI and NDWI maps from a mosaicked, annual (2021) Sentinel-2a 

composite image. These were included as layers for the vegetation category. 

Two separate runs were conducted. First, a very simple run of all selected layers 

with one replicate. A random test percentage of 25% was selected instead of the more 

common 30% for ecological species distribution models, considering the latter often 

consist of up to hundreds of input samples because of more accessible data sources. In 

this case, the number of input samples were 13, and I decided a good compromise would 

be 25%. A regularization multiplier of 2 (as compared to, say, 0.5) was selected to 

minimize geographic bias. The importance of this study lies in its hypothesis that the 

probability of terra preta occurrence away from major rivers is high. Therefore, it is 

important not to limit the probability of presences, and instead assess the prediction 

power of the model across the entire area of interest, meaning any distance from major 

rivers is included. Setting this value =<1 runs the risk of overfitting. Maximum iterations 

of the optimization algorithm were set to 5000 instead of 500 to increase training. 5000 

iterations vastly increase the probability of the sample locations for terra preta sites. 

Threshold rules were considered, especially a rule of maximum test sensitivity and 

specificity (MSS). It has been suggested that this is one of the most appropriate threshold 

rules for maximum entropy modeling (Liu, White, and Newell 2013). 

3.4 Subsampling and Cross-validation 

All parameters are the same, except the number of replicates and the replicated 

run type. 15 replicates were selected as a good size for average, minimum, maximum, 

median, and standard deviation statistics. 
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 While the first run was just one cross validation of one replicate, this run subsamples 10 

separate runs. This is a form of replication where presence points are repeatedly split into 

random training and testing subsets. Most importantly, each run consisted of a randomly 

selected seed.  

The cross-validation run was done because it randomly splits occurrence data into 

equal-sized folds. The result is different models that leave out each of these folds in turn. 

It is advantageous to perform a cross-validation because compared to just defining a 

random test percentage (e.g., 25%) and training data split, it validates all of the data 

which is helpful when working with small datasets. Cross-validated ROC curves give 

unique information, namely the variability between models. 

3.5 Model Metrics 

I set the output format for all output data to logistic. The MaxEnt software 

(Phillips, Anderson et al. 2006) lets its users choose from 4 different output formats (raw, 

cumulative, logistic, cloglog). All of these formats show probabilities as output values 

between 0-1, but each with different scales. Different research questions require different 

scaling for better interpretation of the results. A raw output is better for comparing 

multiple distributions, whereas logistic and cloglog scaling are better for comparing the 

probabilities within one distribution because it better visualizes the relative differences 

between the output data. For example, a researcher wanting to investigate occurrences for 

different things (let’s say, geoglyphs and terra preta) and compare their distribution for 

the area of Gurupá, that researcher would be making best use of the raw output option. 

In this research however, the question is how much of one area (i.e., Gurupá) is 

suitable and/or unsuitable for terra preta presence. This means only logistic or clogclog 
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outputs would be viable choices. I tested logistic and cloglog outputs and chose the 

former because it better visualized the output data. By choosing the logistic option, a 

default prevalence value of 0.5 is set, which I or ‘the user’ can change in the settings 

panel. Any output with a higher value than 0.5 will be considered as a suitable site or 

terra preta presence. 

This predictive model provides probability scores between 0 and 1 compared to 

binary classifications, but ROC curves and related metrics are used to evaluate their 

performance in the same way as one would with a binary classification. The key is to 

choose a threshold for converting probabilities into binary predictions.  

1. Sensitivity or True Positive Rate is the proportion of actual positive cases that are

correctly identified by the model. Since I am dealing with probability scores, I

have set a threshold above which I consider a case as positive. Specifically, I set a

threshold of 0.5, and so any predicted probability above 0.5 is classified as

positive. So, sensitivity can be expressed as:

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

2. Specificity or True Negative Rate is the proportion of correctly classified negative

cases by the model compared to the number of total negative cases. The true

negative rate is calculated using the same formula:

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

3. False positive rate is the proportion of incorrectly classified negative cases, i.e.,

False positives, by the model compared to the number of total negative cases:
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𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠+𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
  

False positive rate is also the complement of specificity and can be expressed as: 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =  1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦  

4. The Receiver Operating Characteristic (ROC) curve is a plot of the true positive 

rate against the false positive rate for different threshold values. As you vary the 

threshold, you generate different points on the ROC curve, showing the trade-off 

between Sensitivity and 1- Specificity. 

5. Area Under the Curve (AUC) is a measure of the model’s ability to discriminate 

between positive and negative instances. It reflects the area under the curve for all 

possible threshold values. It ranges from 0 to 1, where a higher value indicates 

better discrimination. An AUC of 0.5 suggests a model that performs no better 

than random chance, while an AUC of 1.0 indicates a perfect model. 

6. Commission or False Discovery Rate (FDR) is the rate of falsely identifying 

instances as positive. It is expressed as: 

𝐶𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛 (𝐹𝐷𝑅) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
  

7. Omission or False Omission Rate (FOR) is the rate of failing to identify positive 

instances. It is expressed as: 

𝑂𝑚𝑖𝑠𝑠𝑖𝑜𝑛 (𝐹𝑂𝑅) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠+𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
  

8. Response curves are a graphical representation that shows the relationship 

between the model’s predicted probabilities and the actual outcomes. It provides 

insights into how the model’s predictions vary across different probability 

thresholds. In the context of ROC curves, the response curve shows how 

sensitivity and specificity change as the decision threshold is adjusted. 
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9. Jackknife testing refers to a resampling method which is used for cross-validation

of a predictive model. The model is first evaluated on all data points. Then a data

point is dropped from the evaluation sample and the performance of the model is

evaluated on all data points except the excluded one. This process is repeated for

each data point, and the overall performance is averaged. Jackknife is a useful

technique to estimate the performance of a model while maximizing the use of

available data.

In the context of this work, it is used to assess the stability and precision of the

model’s predictive ability.

With that being said, what follows are the results of the first run, or the cross validation 

of one replicate type. All forthcoming results presented were gathered with the MaxEnt 

software by Phillips, Dudík, and Schapire Version 3.4.1.
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CHAPTER 4 

RESULTS 

Attribute Description 

Model Type Maximum Entropy (MaxEnt) 

Input samples 13 known terra preta sites 

Variables included 8 (Topography, Hydrology, Edaphic, Vegetation Index) 

Spatial Resolution 30m 

Validation method Test-train split (75% training, 25% testing) 

AUC (Training) 0.806 

AUC (Testing) 0.813 

Variable Importance 1. FAO Soil Type (High)

2. Average Downslope (Moderate)

3. NDVI (Moderate)

4. Slope (Low)

5. Elevation (Negligible)

Table 1(c). Summary of Model Characteristics and Results of first run. 
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4.1 Comission and Commission 

Table 1(b). ROC (receiver operating characteristic) curve for the omission rate and 

predicted area for terra preta.

Table 1 (a) Omission rate and predicted area. Omission rate for training (in blue) and 

presence records (light green) are moderately close to predicted omission (in black). 
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For a cumulate threshold of 100, omission for training and test samples intersect with 

predicted omission at fractions 0.4 and 0.9-1 of background predicted. The ROC curve 

shows that the model resulted in a training AUC (area under curve) of 0.806 and test 

AUC of 0.813 for positives and negatives (i.e. presences and absences). Recall that 

training data represent 75% of the model, while test data represent 25% of the model. The 

training data here represents how well the model could fit to the data that was used to 

calculate (train) the model. Test AUC is about equal to training, which means that the 

model generalized fairly well to the test data. Test AUC is the crucial result here and 

shows the standard predictive performance of the model being 0.81. 

4.2 Thresholds 

Actual threshold values (logistic) based on a certain criterion. Minimum training 

presence describes that with an increasing threshold, the amount of suitable area 

predicted as presence shrinks. This means omission rates and number of presences that 

are correctly predicted increases. For a (log) threshold of 0.29, 67% of the study area 

would be predicted present. As the threshold increases (e.g. 10 percentile training 

presence) the proportion of the study area predicted will decrease (e.g. 35%). 

Table 2. Threshold rules for the same model.
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If a threshold were set as 0.371, to get a predicted area 30% of the region’s size, the test 

omission rate is 0, meaning the model would have a success rate of 100%, which in turn 

is statistically significant indicated by a p-value of 2.573e-2 = 0.02573 < 0.5. The above 

curves used for the run are drawn independently of any threshold rule. However, it might 

be useful to run the same model with multiple replicates with the max test sensitivity plus 

specificity rule in the future. 



49 

4.3 Response curves 

Table 3. Response curves for (a) Aspect (b) Catchment Area (c) FAO soil type (d) 

Elevation (e) NDVI (f) Flow Direction (g) Riverslope (h) NDWI (i) Slope 
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Favorable conditions for terra preta seem to exist when average downslope from 

streams is at 0.814, slope is at a value of 21.3, NDWI is at 1, and FAO soil type = 2 

(Gleysol type). Aspect, catchment area, flow direction, and elevation are not contributing 

to the model. Each curve represents the contribution of a variable when all other variables 

are held constant at their average sample. Notice that the same variables that were 

flatlining before are doing so in these curves as well. This means that it is unlikely there 

is any correlation between any variables. Response curves are very smooth, indicating a 

good fit of the model. 



51 

Figure 9. Map of areas predicted to be suitable for presence locations. Points represent 

locations of known terra preta sites. Zones of high interest are mainly located near 

streams and particularly around Carrazedo. 
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Table 4 gives estimates of relative contributions of the environmental variables to 

the Maxent model. To determine the first estimate, in each iteration of the training  

algorithm, the increase in regularized gain is added to the contribution of the 

corresponding variable, or subtracted from it if the change to the absolute value of 

lambda is negative. For the second estimate, for each environmental variable in turn, the 

values of that variable on training presence and background data are randomly permuted. 

The model is reevaluated on the permuted data, and the resulting drop in training AUC is 

shown in the table, normalized to percentages. 

From this table, it is evident that slope and elevation contribute the least to the 

model. Flow direction and aspect similarly do not contribute much to the model. NDVI 

and NDWI have a moderate contribution, while FAO soil type and average downslope 

have the largest contribution to the model. The right-hand column measures a different 

kind of variable contribution to the model. The contribution for each variable is 

determined by randomly rearranging the values of that variable among the training points 

Table 4. Variable importance with their relative contributions to Maxent model.



53 

(both presence and background) and measuring the resulting decrease in training AUC. A 

large decrease indicates that the model depends heavily on that variable. Values are 

normalized to give percentages. 

Interestingly, while slope does not appear to have a large overall contribution to 

the model, there is an 8% decrease in training AUC when it is rearranged among training 

points. This indicates that the model does rely on the slope variable more than it seems. 

For NDVI, this reliance of the model is even more apparent. The model relies on the 

NDVI variable almost 4x its contribution when it is permuted among training points. In 

contrast, the model does not rely significantly on NDWI and average downslope of 

watercourses, despite their larger contribution to the model. 

The results of the jack knife tests are displayed in Table 5. 

All variables are excluded in turn, and a model is created with the remaining 

variables. 

Aspect, flow direction, elevation, and NDWI display almost no gain, and 

therefore, when used in isolation, are not useful for estimating the distribution of terra 

Table 5(a). Jackknife of regularized training gain.
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preta sites. FAO soil type and average downslope at watercourses, by contrast, display a 

good fit to the training data. 

Turning to the lighter blue bars shows that one variable, FAO soil type, contains a 

substantial amount of useful information that is not already contained in the other 

variables. Omitting this variable in turn did decrease the training gain considerably. 

While significantly smaller, there is also useful information contained in NDVI and 

Table 5(b). Jackknife of test gain. 

Table 6. Jackknife sampling for AUC. 
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average downslope at watercourses, which is apparent through a decrease in training gain 

when these variables are omitted.  

In table 5(b) a model is created using each variable in isolation. The relative 

importance of the slope variable increases significantly, almost 5x that of average 

downslope at watercourses in the training gain plot. In addition, the light green bar for 

average downslope at waterways is twice as long as the red bar, meaning predictive 

performance of the model increases when this variable is not used. The opposite is true 

for slope and NDVI. 

The AUC plot (Table 6) shows that slope is the most effective single variable for 

predicting the distribution of the occurrence data that was set aside for testing when 

predictive performance is measured using AUC. This is surprising, given the fact that it 

was hardly used when the model was built using all variables. Interestingly, slope now 

seems to have a slightly higher predictive performance over average downslope of 

watercourses. Like the test gain plot, the light green bar is larger than the red one, 

indicating here as well that predictive performance increases when the downslope at 

waterways variable is omitted. 

4.4 Second Run 

Sub-sampling and Cross-validation 

To test the reliability of these results, the same variables were used for a second 

run (Tables 6a). Average, standard deviation, median, min and max results of 15 split-

sample models were calculated (Table 7). In addition, a cross-validation with 13 folds 

was executed (Table 6b). Results of the second run confirm the observations 
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Attribute Description 

Model Type Maximum Entropy (MaxEnt) 

Input samples 13 known terra preta sites 

Variables included 8 (Topography, Hydrology, Edaphic, Vegetation Index) 

Spatial Resolution 30m 

Validation method 15 Sub-sample split-validation 

AUC (Average) 0.706 

Variable Importance 

(Average across sub-

samples) 

1. FAO Soil Type (High)

2. Slope (High)

3. NDVI (Moderate)

4. Average Downslope (Low)

5. Elevation (Negligible)

Attribute Description 

Model Type Maximum Entropy (MaxEnt) 

Input samples 13 known terra preta sites 

Variables included 8 (Topography, Hydrology, Edaphic, Vegetation Index) 

Spatial Resolution 30m 

Validation method 13-fold Cross-validation

AUC (Average) 0.68 

Variable Importance 

(Average across sub-

samples) 

1. FAO Soil Type (High)

2. NDVI (Moderate)

3. Slope (Moderate)

4. Average Downslope (Low)

5. Elevation (Negligible)

Table 6(a). Summary of Model Characteristics and Results (Second Run with 15 

Sub-Samples). 

Table 6(b). Summary of Model Characteristics and Results (13-fold Cross-

validation). 
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 gleaned from the first model. 15 split-sample models show that slope, rather than 

average river slope, is the most consistent predictor of suitable conditions for terra preta 

presence. Results also confirm that elevation is a consistently absent variable when it 

comes to model contributions. Cross-validation of 13-fold samples shows results do not 

corroborate either those from the single replicate or the 15-split sample model. Instead, 

riverslope is a more important predictor than slope. An important distinction between the 

two types of model is that the split-sample uses 25% of presence records as testing (3/13) 

and the cross-validation only sets aside one presence record as a test sample. The results 

of one model from the 15 split samples is shown because it uses 2/3 test samples that are 

interfluves. This model shows that slope is a more consistent predictor of TP presence as 

compared to the above model which uses fluvial presence records as test samples and 

riverslope is a more important contributor to the model there. Cross-validation results 

show elevation as absent in list of important contributors to the model. 
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 Table 7(b). ROC (receiver operating characteristic) with mean +/- 1 standard deviation 

(in blue) for the Omission rates and predicted area and mean AUC (in red) for 15 samples 

terra preta. 

Table 7(a). Omission rate and predicted area. Omission rate for training (in blue) and 

presence records (light green) are moderately close to predicted omission (in black). 
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Figure 10. Point-Wise mean of 15 Sub-sample output grids. 
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Figure 11. Standard deviation of 15 Sub-sample output grids. 
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Table 8(a). Marginal Response curves of all variables. 

Table 8(b). Maxent model with only the corresponding variable. 
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Table 9. Relative contributions of environmental variables for second run. 

Table 10(a). Jackknife training gain of 15 Sub-sampling. 
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Table 10(b). Jackknife test gain of 15 Sub-sampling. 

Table 11. Jackknife AUC for 15 split-samples. 
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Figure 12. Example of one of the 15 subsamples where interfluvial sites made up 2 of 3 

test samples. 
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Table 12. Relative contributions of variables for the example sub-sample. Slope had the 

highest contribution and riverslope none. Compare this to the first run where test samples 

were largely riverine sites, and the highest contribution is riverslope. 

Table 13. Average Omission rate for 13-fold cross-validation. 
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 Table 14. Marginal Response curves for (a) Aspect (b) Catchment Area (c) FAO soil 

type (d) Elevation (e) NDVI (f) Riverslope (g) NDWI (h) Slope 
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Table 15. Maxent model with only corresponding variable. 
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Table 16. Variable contributions for 13-fold cross-validation. 



69 

Figure 13. Point wise mean for 13-fold Cross-Validation. 



70 

Figure 14. Standard deviation of 13-fold cross-validation 
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CHAPTER 5 

DISCUSSION 

The predictive modeling of terra preta sites in Gurupá using a Maximum Entropy 

approach reveals significant insights into the environmental predictors of these ancient 

soils. The main findings highlight the robustness of this model in identifying terra preta 

sites with a high degree of accuracy, emphasizing the critical role of soil type, 

specifically Gleysol, and topographical features, such as slope and elevation, in 

predicting site locations. These results challenge and refine our understanding of terra 

preta distribution, suggesting a nuanced interaction between soil properties and 

topographical characteristics that influence the presence of these anthropogenic soils. 

Comparing these findings to broader literature, this research contributes to the evolving 

narrative of pre-Columbian Amazonian land use, aligning with studies that underscore 

the complexity of human-environment interactions in the region. Unlike basin-wide 

models that might overlook micro-regional environmental variability, this study 

demonstrates the importance of localized environmental analysis for a more accurate 

prediction of terra preta sites. The study, however, is not without limitations. The reliance 

on current environmental data to model historical phenomena introduces uncertainties, 

given the potential changes in landscape and climate over centuries. Additionally, the 

study's scope, constrained by the availability of high-resolution environmental data and 

the complexity of modeling techniques, suggests areas for future 
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research. Improvements could include integrating paleoenvironmental data to account for 

historical landscape changes and exploring alternative modeling algorithms to enhance 

predictive accuracy. 

Observable from these plots is that FAO soil type and average downslope at 

waterways variables are helping the model to obtain a good fit to the training data. In 

comparison, the slope variable performs better, as evidenced through its better results on 

the 25% of samples set aside as testing data. In summary, one might assume that FAO 

soil type and average downslope at waterways variables are less useful when applied to 

other predictive models of terra preta. The latter variable being less transferable might be 

considered a function of fluvial erosion. There is evidence that, “Terras Caidas” 

(Bandeira et al. 2021), or areas of soil displacement erosion, are known to occur at the 

rims of major Amazonian tributaries. Another important consideration are the effects of 

seasonal rainfall on water levels, and the resulting variability of downslope at major 

rivers. Water levels are known to fluctuate as much as 10m or more during an average 

year at major confluences with the Amazon River. Additionally, the discharges of its 

three large tributaries, Tapajos, Madeira, and Xingu rivers cause strong backwater effects 

on the Amazon River. Seasonal rainfall affects their discharge rates, which in turn modify 

annual rise and fall of the lower Amazon River. It has been found that, as a result of this, 

mean river slope is greater during falling stages than during rising stages (Meade, Rayol 

et al. 1991).  

What this paper aims to address, is the fact that sampling bias is likely to occur 

for terra preta presences in proximity to major waterways, and a comparative lack of 

targeted sampling efforts in interfluvial zones away from major waterways. The 
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implication of average downslope at waterways not being a transferrable variable for 

other predictive models indicates that riverine environments are not always suitable 

conditions for terra preta presence, but that their presence depends more on average slope 

independently of the proximity to large rivers. Broadly, these results show some 

significant signal away from major rivers (i.e., interfluves) which very much corroborates 

a shift of thinking away from a floodplain-centric terra preta distribution model (e.g., 

“Cardiac Model”: Lathrap 1970) but towards a much more complex model of terra preta 

distribution which does not run the risk of over simplifying human settlement decisions 

to the nearest body of water.  

5.1 First Run 

The results of this study provide substantial insights into the environmental 

factors that influence the distribution of terra preta soils. The Receiver Operating 

Characteristic (ROC) curve and subsequent Area Under the Curve (AUC) analyses 

indicate a robust predictive model with high accuracy. A test AUC of 0.813, in close 

agreement with the training AUC of 0.806, demonstrates the model’s generalizability and 

its potential utility in the identification of new Terra Preta sites. 

The intersection of omission for training and test samples with predicted omission 

suggests that the model has effectively balanced sensitivity and specificity across the 

range of thresholds. Particularly, at a logistic threshold of 0.371, achieving a 100% 

success rate in predicting terra preta presence within the test samples is both remarkable 

and statistically significant, given the p-value of 0.02573. This precision in predicting 

terra preta presence is crucial for practical applications such as targeted archaeological 

surveys. 
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The analysis of variable contribution and permutation importance provides 

nuanced insights into which environmental factors are most critical for the distribution of 

terra preta. Notably, FAO soil type and average downslope have emerged as the largest 

contributors to the model. The moderate contributions of NDVI and NDWI, along with 

their greater reliance indicated by permutation importance, suggest that vegetation 

indices are significant in understanding the ecological niche of terra preta. Conversely, 

slope, despite showing a lesser overall contribution, exhibits a disproportionate influence 

on model accuracy when its values are rearranged, suggesting an underlying complexity 

in its relationship with terra preta distribution. 

The jackknife test results further substantiate the significance of FAO soil type 

and downslope in model training and testing. The decline in training gain upon the 

omission of these variables indicates that they hold unique information that is not 

captured by other variables in the model. In contrast, aspect, flow direction, and elevation 

showed negligible gains, questioning their relevance in the predictive modeling for this 

context. The elevated importance of the slope in single-variable models, as opposed to its 

minor role in multivariate models, points to a nonlinear and possibly synergistic 

interaction with other factors. 

The findings from this research have several implications for the field of 

archaeological predictive modeling. Firstly, they highlight the significance of integrating 

diverse environmental variables to enhance the predictive accuracy of models. Secondly, 

the differential importance of these variables, both independently and in combination, 

underscores the complex interplay of factors that influence terra preta site distribution. 



75 

5.2 Second Run with 15 Sub-Samples 

The secondary analysis of the predictive modeling for terra preta sites reinforces and 

elaborates upon the findings from the initial model. The average omission and predicted 

area graph show a strong correlation between predicted omission and cumulative 

threshold, indicating that as the threshold increases, the model becomes more 

conservative in predicting presences. The shaded area representing one standard 

deviation from the mean demonstrates the model's consistency across different threshold 

levels. 

The average sensitivity versus specificity curve, with an AUC of 0.706, reveals that 

the model maintains a fair discriminative ability across its operational range. Although 

this AUC is slightly lower than that reported in the initial run, it remains significantly 

above random prediction, supporting the model's validity. The shaded region in this curve 

also suggests some variability in the model's performance across different runs, which is 

an expected aspect of any model that relies on real-world data where variability is 

inherent. 

The consistency in the model's variable contributions, particularly with respect to 

slope and FAO soil type, underscores the importance of topographical and soil-related 

variables in the distribution of terra preta. This consistency is critical, as it suggests that 

these factors have a stable influence on the presence of terra preta, irrespective of the 

model iteration or the specific subset of data used. 

The jackknife tests provide insightful revelations about the individual contribution of 

each environmental variable. For example, slope's significant individual contribution 

suggests that it has a unique and substantial influence on the model's predictions. In 
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contrast, elevation appears to have a negligible effect, both when included with other 

variables and when tested in isolation.  

5.3 Second Run with 13-fold Cross-validation 

Results of the 13-fold cross-validation show a continuation of the model's 

performance evaluation, focusing on the reliability and consistency of predictions across 

different variables and thresholds. The average omission and predicted area plots 

underscore the variability inherent in ecological and environmental modeling, 

highlighting the importance of considering uncertainty in model predictions. 

The average omission and predicted area graph showcases the variability in the 

model's performance at different thresholds. The mean area under the prediction curve, 

along with its standard deviation, provides an estimate of the model's reliability. It 

indicates that while the model performs well on average, there is variability around this 

performance, likely reflective of natural heterogeneity in the distribution of terra preta or 

in the environmental variables themselves. 

The variable response curves offer a clear visual representation of each 

environmental factor's influence on the model. For example, the curves for slope and 

FAO soil type variables demonstrate a distinct trend, suggesting a strong correlation with 

terra preta presence, consistent with the ecological understanding of soil and 

topographical influence on such anthropogenic soils. On the other hand, variables such as 

aspect and catchment area show flat response curves, indicating little to no change in 

model prediction with varying levels of these variables. 

The permutation importance results offer further insight into the model's reliance on 

each variable. The large discrepancy between the percent contribution and permutation 
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importance for variables like FAO soil type and slope confirms their critical roles in the 

model. Notably, a significant drop in model performance upon permutation of the slope 

variable (49.4%) suggests that the model is highly sensitive to changes in this particular 

environmental factor, echoing the significance of topography in terra preta distribution. 

The cross-validation results, reflected in Table 16, underline the robustness of FAO 

soil type and slope variables, with permutation importance showing high dependence on 

these factors. This reinforces the initial findings, affirming that soil type and slope are 

decisive in predicting the presence of terra preta. The low contribution of other variables 

such as catchment area and aspect during cross-validation further cements the limited 

predictive power of these variables. 

Cross-validation and split-sample testing are pivotal in evaluating the model's 

reliability and the generalizability of its predictions. The divergence in the importance of 

river slope and slope between the 15 split-sample models and the cross-validation results 

highlights the model's sensitivity to the sampling and testing strategy. Notably, the cross-

validation approach, which tests the model against multiple subsets of data, suggests that 

river slope may be a more reliable predictor than initially anticipated. 

5.4 Implications 

The predictive model developed in this study has demonstrated notable accuracy in 

identifying terra preta sites, as evidenced by the close alignment of the Area Under the 

Curve (AUC) for both training (0.806) and test (0.813) datasets in the first run. This level 

of performance is indicative of the model's strong generalization capabilities, which is 

crucial for ecological and archaeological predictive modeling (Elith et al., 2011). The 
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generalization of the model suggests that it has effectively learned the underlying 

distribution patterns without overfitting to the training data. 

The importance of specific environmental variables, such as FAO soil type and 

average downslope from streams, in predicting the presence of terra preta underscores the 

nuanced relationship between soil properties and hydrological factors in the formation 

and distribution of these anthropogenic soils. This finding aligns with studies that 

highlight the significance of edaphic conditions in the Amazon and their influence on 

human land use and soil modification practices (McMichael et al. 2014). 

Interestingly, the model's reliance on variables like slope and NDVI, despite their 

initial appearance as minor contributors, points to a complex interplay of factors 

influencing terra preta distribution. This complexity echoes findings from ecological 

niche modeling, where seemingly marginal variables can significantly impact model 

outcomes when their interactions with other factors are considered (Austin 2007). 

The predictive accuracy of the model, particularly its success at certain 

thresholds, offers a powerful tool for archaeological exploration and research. By 

efficiently identifying potential terra preta sites, the model can guide field surveys and 

excavation efforts, optimizing resource allocation and enhancing the discovery of new 

sites (Chase et al., 2012). Moreover, the model's insights into the environmental 

conditions conducive to terra preta formation can contribute to ongoing debates regarding 

the extent and impact of pre-Columbian land use in the Amazon (Denevan, 1992).

The predictive modeling results for the second run of terra preta distribution offer 

valuable insights into the environmental predictors of these anthropogenic soils. The 
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average omission and predicted area graphs provide a nuanced understanding of the 

model’s performance across various threshold values. Such an approach aligns with 

methodologies that consider the stochastic nature of presence predictions, acknowledging 

inherent uncertainties and emphasizing the importance of mean performance indicators 

alongside variability measures (Hastie et al., 2009). 

The variable response curves for slope and soil types underscore the ecological 

significance of these factors. Slope, in particular, has been identified as a key variable in 

landscape ecology, influencing soil development and hydrological processes (Brown et 

al. 2017). The strong correlation between slope and terra preta presence suggests that 

these soils are likely found in areas where topographical gradients influence the 

accumulation of organic matter and pedogenetic processes (2017). 

The soil types represented by the FAO soil type variable reaffirm the critical role that 

edaphic factors play in the distribution of anthropogenic soils (McMichael et al. 2014). 

These findings are in line with previous research indicating that soil properties can 

influence the spatial patterns of archaeological sites (Cutright 2009). 

Cross-validation is a robust statistical technique for model validation, often used to 

assess the generalizability of predictive models. The strong performance of the FAO soil 

type and slope variables across 13-fold cross-validation suggests that these factors are 

reliable predictors of terra preta presence. This is consistent with the literature that 

highlights the significance of cross-validation in evaluating model consistency 

(Dietterich, 1998). 

The model's reliance on key environmental variables such as soil type and slope has 

important implications for archaeological predictive modeling. These variables can guide 
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survey strategies, informing targeted excavations and conservation efforts (Evans et al., 

2013). Furthermore, understanding the environmental contexts of terra preta contributes 

to broader discussions on pre-Columbian land use and its legacy on Amazonian 

landscapes (Denevan 1992). 
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CHAPTER 6 

CONCLUSION 

The combined effects of highly seasonal rainfall, its effects on the discharge rates 

of three major Amazonian tributaries, and the resulting strong backwater effects on the 

Amazonas, are likely to affect its mean river slope. I propose here that this latter fact 

results in proximity to rivers not being consistent predictors of terra preta sites. Rather, 

conditions are more likely to be consistently suitable and transferable to other models 

when mean slope in interfluvial zones is at 21 degrees, or 11.86 degrees. In contrast to 

other, much larger scale predictive models, this study finds that statistically significant 

environmental variables in Basin-wide predictive models, like elevation, are not 

predictors of terra preta presences in the smaller region of Gurupá. The findings 

presented here suggest that large scale predictive models may not reflect suitability 

conditions and their dynamics at play for terra preta distributions at the micro-regional 

level. 

The reliance on current environmental data to predict historical phenomena 

introduces an inherent uncertainty. Future research could enhance model accuracy by 

incorporating paleoenvironmental data, offering a more nuanced understanding of terra 

preta formation conditions over time. 

Furthermore, expanding the model to include additional or alternative 

environmental variables (e.g., remotely sensed data), as suggested by the surprising 

importance of NDVI and NDWI in these findings, could uncover other significant
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predictors of terra preta presence. The exploration of different modeling frameworks or 

algorithms could also provide new insights into the predictive modeling of archaeological 

phenomena. The consistency in variable importance across different validation methods 

reinforces the potential application of the model for predictive purposes in identifying 

new terra preta sites. However, the variation observed in the model's performance at 

different thresholds suggests that future research should explore adaptive thresholding 

techniques that might better capture the complexities of terra preta distribution. 

Furthermore, incorporating additional environmental or anthropogenic variables could 

improve the model's predictive accuracy and offer more detailed insights into the 

conditions favoring terra preta formation. 

Of additional concern is the selection of DEM datasets for predictive models in 

the Amazon. While the performance of a model may stay stable across multiple runs, it is 

questionable whether this would be the case when using different DEMs with varying 

spatial resolutions. It is worth carefully investigating DEMs with coarser spatial 

resolutions and comparing the performance of that model with that of a model using a 

DEM with a finer spatial resolution (e.g. 90m vs. 30m).  

I did some additional processing on the DEM, namely hydrologic terrain analysis 

(TauDEM) in order to remove some artifacts in the DEM (like pits). It seems prudent to 

me that future predictive models not only aim for a comparison of multiple DEMs at 

differing resolutions in the Amazon, but that hydro-terrain analysis functions from 

TauDEM are included. 

The approach used in this paper has some additional limitations. Ideally, a 

multitude of machine learning techniques would be used to produce multiple predictive 
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models that are not limited to the presence-background model used here. Of particular 

interest was a random forest classification. Unfortunately, the number of input samples 

here are short of the minimum of 20 required for the classifier to run. The single most 

powerful addition to any predictive model of a similarly small scale as this one would be 

LiDAR data. These data products should be used when/if they become available because 

there is an indisputable advantage to having such high-resolution terrain data available.  
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APPENDIX 

I. Municipal Boundary coordinates used to create a Boundary polygon

Latitude Longitude 

-52.265 -1.485 

-52.21 -1.455 

-52.105 -1.425 

-51.99 -1.41 

-51.915 -1.32 

-51.91 -1.26 

-51.9 -1.25 

-51.885 -1.25 

-51.885 -1.235 

-51.875 -1.225 

-51.85 -1.22 

-51.805 -1.19 

-51.8 -1.105 

-51.77 -1.065 

-51.71 -1.03 

-51.7 -1.01 

-51.71 -0.9 

-51.705 -0.785 

-51.645 -0.68 

-51.58 -0.59 

-51.54 -0.55 

-51.485 -0.505 

-51.44 -0.455 

-51.385 -0.45 

-51.265 -0.41 

-51.235 -0.415 
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-51.16 -0.395 

-51.135 -0.405 

-51.125 -0.46 

-51.135 -0.475 

-51.135 -0.5 

-51.16 -0.515 

-51.14 -0.535 

-51.095 -0.535 

-51.08 -0.555 

-51.08 -0.59 

-51.1 -0.635 

-51.075 -0.65 

-51.075 -0.67 

-51.145 -0.705 

-51.17 -0.745 

-51.15 -0.935 

-51.17 -1.04 

-51.19 -1.08 

-51.22 -1.18 

-51.24 -1.21 
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II. 

III. 

 Overview of the area requested. NASADEM Merged DEM Global 1 arc second V001. 
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IV. 

Coordinate system, projection, units, and area size. 
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V. A proposition of locations of streams in Gurupá based on hydrology analysis.
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