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ABSTRACT 
 

MULTIMODAL STYLOMETRY: A NOVEL APPROACH FOR AUTHORSHIP 
IDENTIFICATION 

Glory O. Adebayo 

April 18, 2024 

This dissertation introduces multimodal stylometry, a novel approach to authorship 

identification that integrates text and source code features for a comprehensive 

understanding of an author's unique style. Traditional stylometric methods have 

primarily focused on either text stylometry or source code stylometry, thereby 

neglecting the potential insights that multimodality may provide. This research 

aims to bridge this gap by proposing a framework that combines textual and source 

code data to enhance the accuracy and reliability of authorship identification. 

The study begins by reviewing existing literature on authorship identification and 

stylometry, highlighting the limitations of unimodal approaches. Leveraging recent 

advancements in multimodal biometrics and feature fusion, the research 

introduces a methodology that extracts stylometric features from written text and 

source code. These multimodal features are then integrated using an extended 

feature fusion technique that introduces an extra layer of feature selection. 

To validate the proposed approach, a diverse dataset comprising texts and 

corresponding source code data from various authors is curated. The dissertation 

explores the effectiveness of multimodality when compared to unimodality. 
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Furthermore, the research investigates the transferability of the proposed 

multimodal stylometry framework in distinguishing AI and Human generated text 

and source code. 

The findings not only advance authorship identification techniques but also hold 

implications for applications in forensic linguistics, digital humanities, and content 

analysis. Ultimately, this research underscores the significance of multimodal 

stylometry in estimating the identity of an author
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CHAPTER ONE 

INTRODUCTION 
1.1 Introduction 

Stylometry is a growing field of study that analyses, and quantifies the 

stylistic features exhibited by individuals, be they authors, artists, singers, or even 

programmers. The primary goal of this discipline is to discern and attribute the 

authorship of a work, pinpoint its origin, or unravel the distinct attributes of the 

creator. Over recent times, stylometry has garnered a burgeoning level of attention 

and interest, primarily due to its various applications across diverse domains, 

including but not limited to forensic science, literary studies, and computational 

linguistics.  

Stylometric analysis typically involves the extraction of stylistic or linguistic features 

from a body of work usually text. These features are then compared across 

different text to identify patterns and similarities that can be used to determine 

authorship, origin or estimate the attributes of the author (gender, native language 

[1], [2], [3]. 



2 

1.2 The Human Stylome Hypothesis  

Recently, a couple of researchers have put forward the “human stylome 

hypothesis” [4]. This intriguing hypothesis suggests that authors can be 

distinguished from one another through the quantification of specific features within 

their written works. However, the effectiveness of this approach is contingent on a 

case-by-case assessment, often closely tied to the context in which it is applied. 

In practical terms, this implies that the differentiation process is primarily relevant 

when comparing a known author or group of authors, characterized by established 

stylometric signatures, with an unknown text or corpus of text. This scenario is 

commonly referred to as a "close-world problem" since we possess knowledge of 

certain variables within the system. In this context, the approach serves to mitigate 

potential sources of noise in the dataset and offers a means to corroborate or 

challenge results obtained through other authorship identification methods, such 

as historical or documentary evidence. 

However, some scholars have proposed an even more stringent criterion for author 

differentiation. They contend that authors should exhibit stylometric signatures that 

are not only identifiable but also invariant [5]. In other words, these signatures 

should remain consistent and unaltered over time and across various contexts. 

This concept poses a significant challenge, given that individuals often adapt and 

modify their writing style in response to different contexts and genres. For instance, 

an author's writing style may vary when composing a formal document as opposed 

to an informal communication. Consequently, the pursuit of such highly consistent 

signatures, both theoretically and practically, necessitates their applicability across 
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languages and linguistic boundaries. This ambitious aim seeks to uncover the core 

of an author's unique writing style, transcending temporal and contextual 

constraints.  

As we investigate research that has been done in the field of stylometry, some 

classes of features have been identified for analysis [6]. These features are 

typically categorized into three main classes: lexical features, which measure the 

richness and diversity of an individual's vocabulary or domain; syntactic features, 

encompassing the structural aspects of a language, such as n-grams, parts of 

speech, punctuation usage, and non-context-sensitive function words; and 

semantic features, which delve into the meaning-based facets of language. Among 

these, the most highly prized are those that prove resistant to subconscious 

manipulation. Stylometric researchers often refer to this coveted entity as the 

"author's stylometric print," likening it to the writing equivalent of a handwritten 

signature or fingerprint. It is often discerned from latent data, which emerges from 

the author's unconscious and habitual linguistic behaviors, providing a valuable 

anchor for stylometric analysis to identify the unique and immutable style of an 

author. For example, research done by Montero et al [7] showed that the gender 

of an author could be identified based on how emotion is expressed in writing. The 

work showed that women tend to be more contextual, personal, and emotional 

than male writing. While male writing tends to be typically more impersonal, formal, 

and judgmental.  
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1.3 Closed world vs open world  

In a closed-world scenario, the fundamental premise revolves around the 

binary classifications of True or False. It's a stark dichotomy where we are tasked 

with either successfully identifying the author, marking it as True, or encountering 

a situation where we cannot establish authorship, labeled as False. This outcome 

hinges on the overarching objective of the system, which essentially dictates 

whether we can pinpoint the author's identity. In a close world scenario, all the 

authors are known and are part of the training set used to build the model. Any 

writing from an author not in the training set would probably be misclassified as an 

author in the training data. 

On the other hand, within an open-world scenario, the landscape of possibilities 

extends far beyond the confines of mere True or False classifications. Here, we 

grapple with the nuanced inclusion of an "unknown" element. This notion implies 

that authorship identification doesn't always fall into a straightforward binary 

paradigm. In this context, the elusive "unknown" introduces a compelling layer of 

complexity, suggesting that the true author might not necessarily belong to the set 

of initial suspects (training data). It challenges us to explore the realm of potential 

authorship beyond the confines of our preconceived classifications, introducing an 

intriguing element of unpredictability into the equation. 

1.4 Multimodal stylometry 

The world we inhabit is a rich combination of sensory experiences, involving 

diverse modalities. Our senses are engaged in multiple ways: we hear sounds, 

touch and feel the texture of objects, and see the vibrant world around us. Modality, 
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in this context, is the lens through which we engage with our surroundings and the 

medium through which experiences manifest. It refers to the specific way 

something is both experienced and communicated. Multimodality can therefore be 

referred to as the combination of different modalities (sight, sound, images, text, 

source code, music etc.) to produce a given output or message.  

The intricacies of multimodality are instrumental in our daily lives and across 

various domains. From the multi-layered narratives of literature and film to the 

immersive experiences in virtual reality, the interplay of modalities is at the heart 

of effective communication. Moreover, in the digital age, the fusion of text, images, 

and sound on websites, social media, and other digital platforms has become the 

norm. The significance of multimodality extends to education, accessibility, and 

design, where the deliberate integration of multiple modalities can facilitate 

comprehension and engagement, enriching our interactions with the world and 

with one another. While the problems of identifying the authors of source code [8], 

[9] and written text [10], [11] has been tackled individually, less attention has been 

paid to multi-modality to the field of stylometry or combining the features of textual 

documents  with features from source code documents  to improve the 

classification accuracy of Authorship identification. Multimodality has been shown 

to improve accuracy in some other areas of research. (Biometrics [12], [13]). 

Multimodal stylometry is therefore a novel approach in stylometry that involves the 

analysis of multiple modalities or sources of information. We propose that this 

approach has the potential to capture more comprehensive and nuanced stylistic 
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information than traditional unimodal stylometry. In the context of this research, it 

pertains to the concurrent analysis of text and source code data to identify 

authorship patterns. This approach offers an exciting prospect, one that holds the 

potential to leverage the advantages of stylistic characteristics of two modalities 

compared to unimodal stylometry. The combination of these modalities can 

improve authorship profiling, identification and plagiarism by considering a broader 

range of expressive elements. 

Multimodality has already demonstrated its efficacy in diverse studies. For 

instance, Agrawal et al. [14] introduced the utilization of multimodal approaches, 

incorporating both audio and video data, to achieve successful personality 

recognition. This success serves as a testament to the vast potential of multimodal 

stylometry in authorship analysis. 

One major challenge that might be encountered in multimodal stylometry is the 

integration of different modalities and features known as multimodal fusion. 

Several studies have proposed different approaches of multimodal fusion that 

would be discussed later. The diagrammatic representation in Figure 1 illustrates 

the process of multimodal stylometry. 
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Figure 1: Multimodal Stylometry 

 

1.5 Objectives of the Study 

• Gather a dataset that comprises of text and source code written by the same 

author. 

• Extract stylometric features from textual and source code data. 

• Identify the best method of feature fusion for multimodal stylometry. 

• Build a model from the extracted features for authorship identification. 

• Can we use our methodology to distinguish between text and source code 

written by an AI chatbot (e.g., ChatGPT) and text and source code written 

by a human? 

1.6 Significance of Study 

Stylometry and by extension, multimodal stylometry carries profound 

implications across a multitude of domains, making it a field of immense relevance 

and impact. Its applications extend far and wide, encompassing forensic, security, 

digital humanities, literary analysis, academia, and cybersecurity. This study 
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delves into the heart of these applications, unraveling the potential and significance 

of multimodal stylometry in diverse areas of knowledge. 

1.6.1 Forensic and Security Advancements 
Multimodal stylometry plays a pivotal role in forensic and security 

endeavors. The ability to analyze non-linguistic features such as typing patterns, 

keystroke dynamics, and mouse movements holds the promise of identifying 

individuals engaged in computer-mediated communications. In contexts ranging 

from online harassment to cybercrime, this method offers a potent tool for tracking 

down wrongdoers. Multimodal stylometry goes beyond the boundaries of 

conventional linguistic analysis and single mode stylometry allowing for the 

identification of intricate patterns of style in both text and source code written by a 

hacker or cyberbully. It provides a holistic approach that surpasses the limitations 

of single-feature analysis, presenting an invaluable asset to those working in the 

fields of law enforcement and digital security. 

1.6.2 Literary and Cultural Exploration 
Beyond its forensic utility, multimodal stylometry adds a new dimension to 

digital humanities and literary analysis. Researchers find in it a means to explore 

shifts in an author's style, offering insights into the historical and cultural contexts 

that have left their mark on an author's work. By examining the evolution of 

vocabulary, sentence structure, and literary devices over time, scholars can 

unravel the intricacies of an author's creative journey. This approach enables a 

deeper understanding of how an author's style adapts and transforms in alignment 

with shifting cultural norms and evolving ideologies. It provides a lens through 
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which the narrative of literary and cultural change becomes clearer, fostering a 

deeper appreciation of the human creative process. 

1.6.3 Academic Integrity 
Multimodal stylometry also finds practical application in academia, 

especially within computer science and programming classes. In an academic 

setting, where students grapple with complex problems and submit both source 

code and written text, it can serve as a powerful tool for upholding academic 

integrity. Its capability to detect plagiarism and the use of large language models 

to complete class projects promotes honesty and ensures that students receive 

the recognition they deserve for their original work. 

1.6.4 Cybersecurity and Ransomware Detection 
In the realm of cybersecurity, multimodal stylometry assumes a critical role. 

The rising threat of ransomware attacks, which involve malicious payloads (source 

code) and ransom notes (text), can be more effectively countered through this 

approach. Multimodal stylometry equips experts with the means to uncover the 

identities of ransomware hackers, enhancing the chances of bringing them to 

justice. This capability represents a significant advancement in the ongoing battle 

against cyber threats. 

In sum, this study not only investigates the potential of multimodal stylometry but 

also underscores its far-reaching significance, spanning from enhancing security 

and academic integrity to deepening our understanding of literary evolution and 

aiding in the identification of cybercriminals. The multifaceted implications of 

multimodal stylometry position it as a valuable tool with a broad spectrum of 
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applications, transcending traditional boundaries to reshape the way we analyze 

and understand various facets of human communication and behavior. 

1.7 Research Contributions 

The aim of this research is to show that multimodality in Stylometry 

improves the accuracy of identifying an author compared to unimodal stylometry. 

The introduction of multimodality in stylometry is a novel approach in stylometry 

and in this work we combine features from both text and source code. This 

approach promises to enhance the comprehensive understanding of authorship 

attributes by considering a broader spectrum of expressive elements. The 

research goes a step further by proposing an efficient feature fusion method, one 

that adeptly captures and consolidates information from both modalities. This 

fusion process extends the already existing early feature fusion by adding a 

second feature selection step after the fusion of features from the modalities we 

use (Text and Source Code). 

 

1.8 Document Organization 

The rest of our work is organized as follows. 

In chapter 2, we review work that is related to our research. In Chapter 3, we 

present our proposed method. Chapter 4 gives a detailed evaluation of the results 

we obtained and finally, in chapter 5, we present our conclusions and propose 

future work. 
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CHAPTER TWO 

LITERATURE REVIEW 
2.1 Introduction 

The application of authorial discriminators to discern distinct authorial styles 

is a practice with a rich historical lineage, rooted in the fundamental premise that 

human behavior tends to follow patterns of consistency and habit. This approach, 

which forms the bedrock of stylometry, is not a recent development but an enduring 

concept. Its historical origins can be traced back to the mid-19th century when 

Augustus de Morgan, an English mathematician and logician, introduced this 

method. De Morgan's work extended beyond the theoretical realm, as he applied 

this approach to analyze the Pauline letters (Epistles) of the New Testament, 

marking an early and notable instance of authorship identification. 

A follow up work was carried out by Thomas Corwin Mendenhall in 1887. During 

these early stages of stylometric analysis, the primary tool employed was the 

examination of frequency distributions, particularly in the form of histograms, 

capturing the variation in word lengths. These histograms emerged as a critical 

means of differentiation, shedding light on the distinctive writing styles of various 

authors. 
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The historical underpinnings of stylometry, characterized by the recognition of 

consistent authorial patterns, underscore the enduring nature of this approach. 

Over the centuries, it has evolved into a powerful and sophisticated field with a 

broad spectrum of applications, ranging from literary analysis to cybersecurity. The 

study of authorial styles continues to captivate researchers and scholars, reflecting 

the enduring relevance of this fundamental concept in the digital age. 

The advent of the digital age, characterized by the widespread use of computers 

and the internet, has ushered in an era of unprecedented access to vast 

repositories of textual data. This exponential growth in the availability of text has, 

in turn, propelled the rapid expansion of the field of stylometry. The digital 

landscape is swarming with an abundance of textual content, spanning various 

genres, styles, and languages, and this wealth of data has become a fertile ground 

for stylometric exploration. 

Furthermore, the proliferation of machine-generated text has added a new 

dimension to the field of stylometry. Coherent chatbots, now integrated into some 

social media platforms, possess the remarkable capability to deceive and mimic 

human communication. These advanced chatbots are equipped with artificial 

circadian rhythms, distinctive personas, and the ability to improvise by scouring 

the web for answers. For instance, certain text generators like SCIgen 1, originally 

designed to create fictitious research papers, has managed to hoodwink digital 

repositories, exposing the remarkable sophistication of these AI systems. Going 

 
1 https://pdos.csail.mit.edu/archive/scigen/ 
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even further, chatbots such as ChatGPT have demonstrated the capacity to 

generate source code solutions for a wide array of user-proposed problems, 

underscoring the evolving and dynamic nature of human-machine interaction. 

Despite the burgeoning interest in multimodality within other fields of research, the 

concept remains relatively nascent in the field of stylometry, and there is a dearth 

of established research papers in this specific domain. Consequently, in this 

chapter, we undertake a comprehensive review of the extensive body of work in 

the fields of text stylometry and code stylometry, encompassing various methods 

and techniques that have been developed to uncover authorship. We also explore 

the field of feature fusion which is a critical facet of multimodality. This is the 

process of combining the features from multiple modalities. Additionally, we delve 

into select studies that have ventured into multimodality in biometric, shedding light 

on their contributions and insights.  

2.2 Corpus 

In the field of Natural Language Processing (NLP) and, more specifically, 

Stylometry, the term "corpus" takes on a pivotal role. A corpus, by definition, 

encompasses all writings or works of a specific kind or on a particular subject, often 

referring to the complete literary output of an author. However, in the context of 

NLP and our current exploration into Stylometry, a corpus represents a diverse 

collection of texts or documents. This corpus functions as the fundamental dataset 

that is analyzed to make predictions or estimations. 
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The advent of the digital age and the meteoric rise of social media platforms, 

including Twitter and Facebook, have revolutionized the accessibility of vast 

corpora. The digital footprints left by individuals in the form of tweets, posts, and 

comments have ushered in a new era of data-rich resources for Stylometry and 

NLP. For instance, the CLEF initiative, the Conference and Labs of the Evaluation 

Forum [15], which is a self-organized body with the sole mission of promoting 

research, innovation and development of information access systems with an 

emphasis on multilingual and multimodal information with various levels of 

structure have since 2010 extracted tweets from twitter to build a  corpus that is 

used by researches for author profiling tasks [16], [17], [18] 

Beyond the realms of social media, numerous other sources of corpora have 

emerged to fuel the ever-growing demands of NLP research. Notable examples 

include the International Corpus for Learner English, crafted to explore the English 

writing of non-native English speakers [2], and genre-controlled corpora known as 

the British National Corpus [3].  

It's worth noting that corpora can exist in a variety of formats, adapting to the needs 

of researchers and the demands of their projects. They may take the form of 

Extensible Markup Language (XML) structures, offering structured data for in-

depth analysis [19], or they may present themselves in the more accessible and 

unadorned plain text format [20]. This flexibility ensures that corpora can be 

harnessed to suit the unique requirements of a wide array of NLP and Stylometry 
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investigations, providing a rich and versatile resource for the exploration of 

language, style, and authorship. 

2.3 Text Stylometry 

In the field of Stylometry, the most researched modality is text stylometry. 

Research in this area of stylometry encompasses a spectrum of intriguing findings 

and observations. Some studies have delved into sociolinguistic aspects, revealing 

the captivating notion that distinct groups of people, when communicating within a 

particular genre or using different languages, exhibit unique and identifiable 

linguistic characteristics [21]. In essence, the language itself becomes a canvas 

for stylistic variation, a notion that is both captivating and revealing. 

Moreover, the exploration of text stylometry has unveiled a remarkable landscape 

of stylistic features that can be leveraged to determine the authorship of a written 

text. For instance, the presence of errors in writing, whether intentional or 

inadvertent, has emerged as a powerful discriminator for the native language of an 

author. These studies underscore the richness and complexity of text stylometry, 

where the idiosyncrasies of human expression come to the forefront, offering a 

trove of insights into authorial attribution. 

Stylometry, according to Ramyaa et al [21], in the context of author attribution, 

assumes that an unconscious aspect exists to an author’s style of writing that 

cannot be manipulated but possess distinctive and quantifiable features. These 

characteristic features an author possess should be frequent, salient, quantified 

easily and should be relatively immune to conscious control. Furthermore, these 



16 

features should be able to distinguish authors especially if they write in the same 

genre, on similar topics or even in the same period. Yet, within the field of 

stylometry, Ramyaa et al [21] has identified that one of the biggest problems is that 

there is no consensus as to what characteristic features, methodology or 

techniques that could be applied in standard research. This problem has been 

exhibited in most studies in stylometry were most of the experiments have been 

directed to different authors with different techniques and there has not necessarily 

been a comparison of results that demonstrates which features prove to be more 

representative or which techniques can be more effective.   

Koppel et al. (2005) [2] approached the author profiling problem by showing that 

some stylistic text features (e.g. error in writing) could be used to determine the 

native language of an anonymous text.  Their work illuminated the notion that 

certain stylistic characteristics of the errors made in a text could serve as potent 

determinants of the author’s native language. To achieve this, they harnessed a 

diverse array of stylistic features, classifying them broadly into three categories: 

1. Function Words: These encompass the frequently used, seemingly 

inconspicuous words that play essential roles in constructing sentences, 

such as articles, pronouns, and prepositions. 

2. Letter n-grams: These involve the study of consecutive sequences of 'n' 

letters within words, which can offer insights into language-specific patterns. 

3. Errors and Idiosyncrasies: This category delved into the intriguing world 

of linguistic errors and peculiarities.  
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Koppel et al. scrutinized various error types, automatically tagging them within 

documents. The four error types considered were: 

• Orthography: Focusing on spelling errors, this category 

encompassed a range of issues, including missing letters and letter 

inversions. 

• Syntax: Non-standard usages that deviate from conventional 

grammar, such as repeated words or missing words. 

• Neologisms: The creation of neologisms and the study of parts-of-

speech related to these innovations, like the playful "fantabulous." 

• Parts-of-Speech bigrams: This category dealt with rare parts-of-

speech bigrams, shedding light on unique linguistic patterns. 

Their study leveraged the International Corpus for Learner English, a corpus 

designed for the study of English writing by non-native speakers. The authors in 

this corpus consisted of university students primarily in their 3rd or 4th years, all 

taking English as a second language class and typically in their 20s, demonstrating 

a similar proficiency in English. The nationalities represented included Russia, 

Czech Republic, Bulgaria, Spain, and France, with 258 authors considered for 

each language. 

Each document in the corpus was represented by a numeric vector of length 1035, 

signifying the frequency of various features within the document. These features 

encompassed: 

• 400 standard function words. 
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• 200 letter n-grams. 

• 185 error types. 

• 250 rare parts-of-speech bigrams. 

The study employed a multi-class linear Support Vector Machine, employing a 10-

fold cross-validation experiment to assess the accuracy of their methodology. The 

results were intriguing, showcasing that when all feature types were strategically 

juxtaposed, they achieved an accuracy of 80.2%. It's noteworthy that a significant 

portion of errors occurred among the three Slavic languages—Russian, Czech, 

and Bulgarian—indicating language-specific patterns that the methodology adeptly 

exploited. 

The success of this methodology was highly dependent on the interaction of 

hundreds of features and as Koppel et al. (2005) [2] showed, there were several 

patterns that were unique to certain languages that they were easily able to exploit. 

For example, it was seen that for many authors in the Spanish corpus, there was 

a difficulty with doubling consonants (either they doubled unnecessarily as in fullfill 

or they omitted one of a double as in effect). This was also seen with a relatively 

huge number of the authors in the Czech corpus. This methodology also poses 

some question for future research (i) was method precise enough to handle a lot 

of different candidate native languages? (ii) How short can the body of text be and 

still permit accurate categorization? 

Argamon et al. [23] explored the sociolinguistic observation that different groups 

of people speaking or writing in a genre and in a language use that language 
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differently. The main aim of the paper was to profile an author of a written text 

using a written text by the author. The profile dimensions that were being explored 

was gender, age, native language, and personality (Neuroticism). They identified 

content-based features and style-based features and applied Machine learning on 

the content-based features and style-based features independent of each other 

and combined them. 

1. Content-Based Features: These features delved into the content of the 

written texts, exploring the linguistic patterns, word choices, and themes 

used by authors to convey their thoughts and ideas. 

2. Style-Based Features: Style-based features probed the stylistic nuances 

present in the text, encompassing syntactic structures, punctuation usage, 

and other markers of an author's unique style and expression. 

A novel feature set was introduced that naturally subsumes both functional and 

part-of-speech which has been known to be useful in linguistics. Systemic 

functional linguistics provided taxonomies describing meaningful distinctions 

among various function words and parts-of-speech. Three separate corpora were 

used to identify the profiles (age and gender shared the same corpus, but they 

were labelled differently): 

• Gender and Age Corpus: This corpus was a comprehensive compilation 

of the complete writings of 19,320 blog authors. Its primary purpose was to 

enable profiling based on gender and age. Authors willingly self-reported 
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their age and gender, allowing for the creation of distinct categories such as 

Teens, Twenties+, and Thirties+. 

• Native Language Corpus: Sourced from the International Corpus of 

Learner English, this corpus was curated to study the English writing of non-

native speakers originating from various non-English-speaking countries, 

including Russia, Czech Republic, Bulgaria, Spain, and France. This sub-

corpus comprised 258 authors from each language group, with any 

surpluses being randomly discarded. 

• Personality Corpus: A unique facet of this exploration was the quest to 

profile authors based on their personality traits. To achieve this, the 

researchers tapped into essays written by psychology undergraduates at 

the University of Texas at Hendrix. The students were given the creative 

freedom to craft a "stream of consciousness" essay that mirrored their 

unfiltered thoughts and feelings during a 20-minute free-writing session. 

Furthermore, each writer completed a questionnaire assessing the "Big 

Five" personality dimensions. However, for this study, the spotlight was on 

neuroticism, a trait associated with worry and emotional instability. 

To facilitate the classification tasks, the researchers strategically defined positive 

and negative examples. Positive examples included participants exhibiting 

neuroticism scores in the upper third, while negative examples consisted of those 

with scores in the lowest third. The research leveraged Bayesian Multinomial 

Regression, a probalisticaly well-founded multivariate logistic regression technique 
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known for its resilience against overfitting. This method had proven its 

effectiveness in a range of text classification and related problems. 

The study rigorously examined the performance of their methodology through 10-

fold cross-validation, yielding results that showed the potential of precise 

combinations of linguistic features and machine learning methods: 

• Combining content-based and style-based features resulted in the most 

robust outcomes for age and gender profiling, achieving classification 

accuracies of 76.1% and 77.7%, respectively. 

• Content-based features, when employed independently, emerged as the 

leaders in native language profiling, boasting a classification accuracy of 

82.3%. 

• Style-based features took the center stage in neuroticism profiling, 

achieving a classification accuracy of 65.7%. 

This research demonstrated the immense potential of linguistic features and 

machine learning methods when combined. It illuminated the path toward the 

estimation of various profile aspects of an anonymous author, ushering in a new 

era of authorship exploration. In addition, it posed pivotal questions that open the 

doors to further research: 

Can educational background and personality components be reliably extracted 

from texts, provided an appropriate training corpus and methodological 

framework? 
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To what extent do variations in genre and language influence the nature of models 

used in author profiling problems? 

These intriguing questions beckon further exploration and hold the promise of 

improving research in the field of author profiling. The application of genre-

controlled corpora and datasets featuring diverse languages promises to expand 

the horizons of author profiling research, offering a deeper understanding of the 

intricate web of linguistic authorship. 

Koppel et al. (2002) [3] proposes a methodology showcasing how a genre-

controlled corpus can be employed to automatically classify formally written texts 

according to the gender of the author. Their approach drew upon established 

techniques commonly used for text categorization and authorship attribution, 

delivering a fresh perspective to address this intriguing challenge. 

The dataset at the core of their research consisted of 566 documents selected from 

the British National Corpus (BNC). What makes this corpus particularly unique is 

that it was constructed in such a way that no single author contributed more than 

three documents, ensuring a diverse and balanced representation. These 

documents varied in length, spanning from 554 to a substantial 61,199 words, with 

an average document size of 34,320 words. 

One of the distinctive aspects of this methodology was the preprocessing phase. 

Instead of relying on a manually curated set of features, as is customary, the 

researchers began with an extensive collection of lexical and quasi-syntactic 

features. These features were chosen not based on their universality but rather on 
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their relevance to the specific topic at hand. This approach was groundbreaking in 

its departure from convention, seeking to explore the richness of language for 

author gender classification. 

Each document was represented as a vector, comprising a total of 1,081 features. 

Within this feature set, 405 function words were included, each appearing at least 

once in the document. Additionally, a comprehensive list of part-of-speech (POS) 

n-grams was incorporated, utilizing the British National Corpus's tag set, which 

included 76 different parts of speech (e.g., PRP for prepositions, NNI for singular 

nouns, and so on). The top 500 most frequent ordered triples, the 100 most 

common ordered pairs, and all single tag features were considered. The utilization 

of POS n-grams was particularly ingenious, as it allowed the capture of deeper 

syntactic information. 

However, the feature set was significantly streamlined using automated methods. 

These methods relied on iterative runs of a learning algorithm to eliminate features 

with low predictive power. In essence, this process can be described as a form of 

feature selection. Initially, a model was trained using all the available features. 

Subsequently, an automated procedure was employed to assign weights to each 

feature based on their contribution to the model's accuracy. Features with the 

highest weights were retained, while those with the lowest weights were 

systematically discarded. 

The methodology's core mechanism revolved around identifying a linear separator 

between documents authored by male and female authors. This was accomplished 
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by assigning a weight vector (w) to each training document (x). The dot product of 

this weight vector (w) and the document vector (x) had to surpass a predetermined 

threshold (T) for the document to be classified as authored by a female writer. To 

compute these weights, the researchers employed a variant of the Exponential 

Gradient algorithm. This iterative process allowed for the continuous adjustment 

of weights based on a learning constant, which remained fixed at a value of 3 

throughout the experiment. The weights were updated in such a way that they were 

increased for features that improved the accuracy and decreased for those that 

hindered it. While document vectors (x) could assume non-binary values, the score 

function (s(w, x)) was restricted to binary values (Balanced Winnow). 

The process was further refined by randomly reordering the training samples and 

running another cycle, continuing until all training samples were classified correctly 

or until 100 consecutive cycles failed to yield an improvement in the classification 

accuracy. This iterative and adaptive approach showcased the methodology's 

ability to dynamically fine-tune its feature set and classification parameters. 

Table 1 shows the results obtained after ten separate runs of 56-fold cross 

validation using a feature set that includes POS only, Function words only and both 

function words and POS. This experiment (& as seen in table 1) showed that using 

a combination of FW and POS yielded the best results across genres even though 

using more parameters (features) than constraints (documents) could have easily 

led to over-fitting during training thereby affecting the testing accuracy. 
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Domain FW POS FWPOS 
All 73.7 ± 0.86 70.5 ± 0.90 77.3 ± 0.79 
Fiction 78.8 ± 1.1  77.1 ± 0.85 79.5 ± 1.1 
Nonfictio
n 

68.5 ± 1.3 67.2 ± 1.2 82.6 ± 0.99 

Table 1: Results obtained after ten separate runs of 56-fold cross validation using 
a feature set that includes POS only, Function words only and both function 

words and POS [3] 

Achieving higher accuracy across the board was indeed a commendable 

achievement, but it was not without its share of challenges, particularly when 

distinguishing between fiction and non-fiction. This divergence in content type was 

identified as a factor that adversely affected the results. To tackle this issue, the 

researchers implemented the Winnow algorithm, which adeptly harnessed subtle 

interdependencies between various features. In stark contrast, less nuanced 

learning methods like Naïve Bayes and Ripper proved less effective in mitigating 

this content-type disparity, leading to suboptimal classification performance. 

The subsequent stage of the research sought to pinpoint the optimal number of 

features that would most significantly contribute to enhanced classification 

accuracy. To achieve this, for each model trained within the cross-validation trial, 

a selection process was implemented to identify 128 features deemed the most 

vital. The importance of a feature in each model was determined as the absolute 

value of its weight, multiplied by its average frequency in the training set. This 

curation resulted in a total of 256 selected features, half of which were assigned to 

each direction (e.g., male or female). The cross-validation process was then re-

run exclusively using these carefully chosen features. 
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This selection process was iterated, each time halving the number of chosen 

features in each direction until a final set of only 8 features in each direction 

remained. The process aimed to pinpoint those with the most discriminative power, 

ultimately unveiling the most crucial linguistic distinctions between male and 

female authors within the realm of modern formal English articles. 

The outcomes of this research displayed a compelling demonstration of the 

notable differences in the writing styles of male and female authors, specifically in 

the context of formal English articles. The Winnow-like algorithm, employed to 

harness these distinctions, achieved a classification accuracy of approximately 

80%. This research underlines the existence of a marked divergence in writing 

styles between genders and effectively illustrates how certain selected features, 

along with their frequency distributions within the British National Corpus (BNC), 

significantly differ between male and female authors. 

Furthermore, this study serves as an exemplar of the methodology adopted in 

contemporary text categorization research, with the primary differentiator being the 

selection of features. In this case, the focus was on content-independent features, 

shedding light on the efficacy of style-based categorization in addressing a wide 

array of text classification challenges. The approach showcased in this work holds 

the potential for success in other domains that necessitate style-based 

categorization techniques. 
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2.4 Feature Classification for Text Stylometry 

In the field of stylometry, previous studies have set forth various feature 

classifications to quantitatively dissect an individual's writing style [21]. These 

classifications encompass an array of dimensions, each offering a unique lens 

through which an author's distinctive style can be examined. It's imperative to note 

that the focus of the current review lies not only in the identification of these 

stylometric features but also in understanding the computational resources and 

tools essential for their measurement [6]. Different feature categories demand 

varying levels of computational depth: Lexical and Character Features typically 

treat a text as a straightforward sequence of word tokens or individual characters. 

The computational requirements for measuring these features are relatively 

straightforward, as they primarily involve counting and analyzing the frequency and 

distribution of words and characters. In contrast, syntactic and semantic features 

require more profound linguistic analysis. These features necessitate the use of 

advanced linguistic tools and resources, such as syntactic parsers and semantic 

analyzers. They delve into the structural and meaning-based aspects of language, 

demanding a higher level of computational complexity. There are also features 

tailored to specific text domains or languages that can only be defined and 

measured within those defined contexts. For instance, in an HTML-based corpus, 

features like font color counts or font size counts might be crucial [24]. This 

highlights the need for domain-specific expertise and resources to capture the 

nuances unique to a particular application. 
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The following tables provide a comprehensive overview of the stylometric feature 

types, offering insight into their key characteristics and the computational tools and 

resources essential for their measurement. These features collectively serve as 

the building blocks for unraveling the intricacies of stylometry and offer a rich 

foundation for advancing the field. 

2.4.1 Lexical Features 
This category dissects the text as a sequence of word tokens. Lexical 

features often consider the author's vocabulary richness, word frequency, and the 

distribution of words throughout the text. They provide valuable insights into an 

author's diction and linguistic choices. 

Features Required Tools and Resources 
Token-based (word length, sentence 
length etc.) 

Tokenizer, [Sentence Splitter] 

Vocabulary richness Tokenizer 
Word frequencies Tokenizer, [Stemmer, Lemmatizer] 
Word n-gram Tokenizer 
Errors Tokenizer, Orthographic spell 

checker 
Table 2: Stylometric lexical features and the computational tools & resources 

required to measure them [6] 

2.4.3 Character Features 
On the other hand, character features zoom in even further, examining the 

text as a sequence of individual characters. They delve into aspects like character 

frequency, character combinations, and character-level patterns within the text. 

These features uncover nuances in an author's textual fingerprint. 

Features Required Tools and Resources 
Character types (letters, digits, etc.) Character dictionary 
Character n-grams (fixed – length) - 
Character n-grams (variable – 
length) 

Feature selector  

Compression methods Text compression tool 
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Table 3: Stylometric character features and the computational tools & resources 
required to measure them [6] 

2.4.4 Syntactic Features 
Unlike the previous two categories, syntactic features require a deeper level 

of linguistic analysis. They delve into the sentence structure, grammatical 

elements, and the arrangement of words. Syntactic features explore how an author 

constructs sentences, their use of punctuation, and grammatical idiosyncrasies. 

Features Required Tools and Resources 
Part-of-Speech Tokenizer, Sentence Splitter, POS tagger 
Chunks Tokenizer, Sentence splitter, [POS tagger], text 

chunker 
Sentence and phrase 
structure 

Tokenizer, Sentence Splitter, POS tagger, Text 
chunker, Partial parser 

Rewrite rules frequencies Tokenizer, Sentence splitter, POS tagger, Text 
chunker, Full parser 

Errors Tokenizer, Syntactic spell checker, Sentence 
splitter 

Table 4: Stylometric syntactic features and the computational tools & resources 
required to measure them [6] 

2.4.5 Semantic Features 
This category of features scrutinizes the author's use of semantics, 

examining how words and phrases are employed to convey ideas. Semantic 

features tap into the deeper layers of an author's style, unveiling their unique ways 

of expressing thoughts and ideas. 

Features Required Tools and Resources 
Synonyms Tokenizer, [POS tagger], Thesaurus 
Semantic 
Dependencies 

Tokenizer, Sentence splitter, POS tagger, Text Chunker, 
Partial parser, Semantic parser 

Functional  Tokenizer, Sentence splitter, POS tagger, Specialized 
dictionaries 

Table 5: Stylometric semantic features and the computational tools & resources 
required to measure them [6] 
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2.4.6 Application – Specific Features 
These features are tailored to a particular text domain or language domain, 

with a clear focus on characteristics that hold relevance within those specific 

contexts. 

 

 

Features Required Tools and Resources 
Structural HTML parser, Specialized parsers 
Content – specific  Tokenizer, [Stemmer, Lemmatizer], Specialized 

dictionaries 
Language – Specific  Tokenizer, [Stemmer, Lemmatizer], Specialized 

dictionaries 
Table 6: Stylometric Application – specific features and the computational tools & 

resources required to measure them [6] 

 

2.5 Code stylometry 

The importance of code stylometry is something that is heavily disputed 

especially among underground programmers or programmers on the dark web. 

Certain programmers decide to hide their identity for several reasons (a 

programmer who does not want their employer to know about their side gigs, the 

creator of bitcoin or they may live in a country that prohibits some type of software). 

A poignant illustration of the stakes involved can be found in the case of an Iranian 

programmer in 2012. This individual faced a dire sentence and capital punishment, 

for their involvement in developing a seemingly innocuous photo sharing software 

that was ultimately used on pornographic websites [25]. This tragic event 

underscores the potential life-and-death consequences that can emerge from code 

authorship within certain jurisdictions. 
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However, on the other hand, source code attribution might be very useful in 

forensics (ghostwriting detection, plagiarism, or copyright investigation). 

Furthermore, code stylometry can also help in detecting the identity of authors of 

malware. In this section, we present an overview of work done in code stylometry 

especially as it relates to our research.  

Caliskan-Islam et al [25] presents research that showed that Abstract Syntax Trees 

(ASTs) carry authorial ‘fingerprints.  Their work not only achieved good accuracy 

but also overcame limitations that were encountered in previous studies [26]. This 

milestone in code stylometry yielded a 97% accuracy on a small sample set of 30 

programmers. Significantly, their success was achieved without relying on 

programmers' comments, which had been a common practice, and with a reduced 

dependency on extensive training data [27], [28]. Furthermore, Caliskan-Islam's 

research attained an accuracy of 92.83% on a larger dataset comprising 1600 

programmers, demonstrating the scalability and effectiveness of their approach. 

Central to their contribution was the astute utilization of syntactic features extracted 

from Abstract Syntax Trees, which provided a syntactic style representation for 

code stylometry. 

The corpus consisted of code written by 250 different programmers for nine (9) 

different problems written in C and C++. The comments were taken out from the 

code samples to identify authors on purely just their coding style. During the 

feature extraction stage, the use of unigram term frequency and TF/IDF measures 

and the diversity of individual terms in the code yielded a large and spare feature 
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vector with over 120,000 features. The features used can be classified into Lexical, 

Layout and Syntactic (extracted using Abstract Syntax Trees) features. 

Due to the number of features extracted from the source code, the curse of 

dimensionality was very evident which meant that the feature set had to be 

reduced. A feature selection process was introduced, leveraging WEKA's 

information gain criterion [29]. This criterion, essentially, assesses the individual 

worth of each feature concerning its contribution to the class, as articulated in 

Equation 1: 

𝐼𝐼𝐼𝐼(𝐴𝐴,𝑀𝑀𝑖𝑖) = 𝐻𝐻(𝐴𝐴) − 𝐻𝐻(𝐴𝐴|𝑀𝑀𝑖𝑖)        (1) 

Where: 

A is the class corresponding to an author. 

H is the Shannon entropy 

𝑀𝑀𝑖𝑖  is the ith feature of the dataset. 

The Feature set was ranked based on the extent of information they supplied 

towards the outcome or class. Those features demonstrating non-zero information 

gain were selectively retained and coined as IG-CSFS features. In a bid to validate 

the robustness of this approach, the dataset was bifurcated into two subsets, and 

an intriguing consistency emerged: the features with non-zero information gain 

exhibited striking similarity across both sets, underscoring the reliability of the 

feature selection process. 
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For the classification task, a Random Forest classifier was used as the learning 

algorithm, and a 10-fold cross-validation methodology was employed. The 

resulting classification model was subjected to a comprehensive assessment 

against another dataset, encompassing 250 programmers and nine distinct 

solutions spanning various years of the Google Code Jam (GCJ) 2  competition. 

The results can be seen in the table below. 

A = #programmers, F = max #problems completed 
N = #problems included in dataset (N ≤ F) 
A = 250 from 2014 A = 250 from 2012 A = 250 all years 
F = 9 from 2014 F = 9 from 2014 F ≥ 9 all years 
N = 9 N = 9 N = 9 
Average accuracy after 10 iterations with IG-CSFS features 
95.07% 96.83% 98.04% 

Table 7: Validation Experiments for Caliskan-Islam et al [25] 

One of the phenomena that was explored by the researchers was to see the effect 

of code obfuscation on the accuracy of their model. The table below shows the 

results obtained after the codes were passed through an obfuscation software. 

Obfusc
ator 

Programmers Language Results 
without 
Obfuscation 

Results with 
obfuscation 

Stunnix 20 C++ 98.89% 100.00% 
Stunnix 20 C++ 98.89% 98.89% 
Tigress 20 C 93.65% 58.33% 
Tigress 20 C 95.91% 67.22% 

Table 8: Effects of Obfuscation on De-anonymization [25] 

The culmination of this study goes beyond mere standalone observations. It 

extends its impact by situating the results within the broader landscape of code 

stylometry. The researchers thoughtfully benchmarked their findings by comparing 

 
2  https://code.google.com/codejam, 



34 

them to the outcomes of prior studies in this field, thereby facilitating a 

comprehensive understanding of the research's context and its contribution to the 

existing body of knowledge.  

By juxtaposing these results with those of past studies, this research endeavor 

establishes a crucial link to the existing literature, highlighting both the 

consistencies and novel insights that have emerged from this investigation. 

This result is presented in the table below. 

Related Work Number of 
Programmers 

Results 

Pellin [28] 2 73.00% 
MacDonell et al. [29] 7 88.00% 
Frantzeskou et al. [26] 8 100.00% 
Burrows et al. [30] 10 76.78% 
Elenbogen and Seliya [31] 12 74.70% 
Kothari et al. [32] 12 76.00% 
Lange and Mancordis [33] 20 75.00% 
Krsul and Spafford [34] 29 73.00% 
Frantzeskou et al. [26] 30 96.90% 
Ding and Samadzadeh [35] 46 67.20% 
Caliskan – Islam et al. [12] 8 100.00% 
Caliskan – Islam et al. [12] 35 100.00% 
Caliskan – Islam et al. [12] 250 98.04% 
Caliskan – Islam et al. [12] 1600 92.83% 

Table 9: Comparison of results between previous studies and Caliskan et al. [25] 

Dauber et al. [8], explored the problem of authorship attribution by using code 

obtained from open-source systems (GitHub) to ascertain how contributions can 

be attributed to either the individual authors or based on the contributing accounts. 

The source codes used were fragments and not necessarily complete programs. 

The aim of this work was to see if they could identify authors who have contributed 



35 

to a complete work by identifying authorship styles in the different fragments of the 

code.  

They revealed that when previous methods [25] were applied to these code 

fragments, as opposed to complete programs, the accuracy of attribution peaked 

at a modest 50% to 60% at best. This highlighted the challenge of dissecting and 

identifying authorship patterns within code fragments, which are often more 

compact and exhibit less comprehensive authorship indicators. 

A key innovation introduced in this study involved the use of calibration curves to 

assess the trustworthiness of attributions made for unknown and previously 

unencountered authors. These curves leveraged the output probabilities, 

effectively assessing the confidence levels of the classifiers. The critical threshold 

delineated below the calibration curve was used to categorize an author as either 

within the known and suspect set (Closed World) or outside of it (Open World). 

This sophisticated approach brought a new dimension to authorship attribution in 

code, acknowledging the dynamic and ever-evolving landscape of collaborative 

coding projects. 

In addition, two significant modifications were incorporated into the method 

inspired by Caliskan-Islam et al. [25] to tailor it for the specific context of code 

fragments: 

1. A form of ensembling whereby they ensembled outputs of multiple linked 

samples for the classifier instead of ensembling the outputs of different 
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classifiers on the same sample. This showed that accuracy can be greatly 

improved if they were able to link several fragments to the same unknown 

author. 

2. The use of calibration curves to determine if an attribution can be trusted 

for a given fragment or a set of code fragments. 

Fig 2 shows the methodology of this work. 

Data Collection Data Preparation Extract AST 
(Fuzzy Parsing)

Extract Features (AST nodes 
and bigrams, keywords etc)

Single Sample Attribution 
(Random Forest)

Multiple Sample Attribution (if 
possible) (average classifier 

confidence)
Bin Results by Classifier Confidence

Construct Calibration Curve (optional if 
Multiple sample done)

Open World Analysis (threshold on correct and out of 
world precision/recall

Attributed Programmer 
or Unknown  

Figure 2: Authorship Attribution methodology for Dauber et al. [8] 

In this study, data was gathered from a repository of 1649 C++ projects hosted on 

GitHub3, involving contributions from 1178 programmers (also referred to as 

contributors). After data preprocessing was completed (programmers with at least 

150 fragments that was at least one line of code), 104 programmers were left. An 

important aspect of this study, worth highlighting, is the retention of comments 

within the code, a departure from previous research like Caliskan-Islam et al. [25], 

 
3 https://github.com/ 

Yampolskiy, Roman
Check ABD and Orecision
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which often stripped comments. This unique approach brought this study closer to 

the real-world coding scenarios, where comments can carry valuable contextual 

information. 

The feature set utilized in this investigation was extracted using Abstract Syntax 

Trees, a technique akin to Caliskan-Islam et al. [25]. It encompassed word 

unigrams, API symbols, and keywords, revealing the intricate linguistic 

characteristics imprinted in the code. The results of this meticulous research 

endeavor yielded a series of intriguing findings: 

1. Authorship Attribution and the Closed World: The study revealed that 

authorship attribution was markedly more manageable when all 

programmers were treated within the suspect set, adhering to the Closed 

World paradigm.  

2. The Influence of Sample Size: An interesting observation was that 

increasing the number of code samples significantly contributed to the 

accuracy of the attribution method.  

3. Comments and Personalized Function Declarations: Code samples 

containing plaintext, such as comments, and those featuring highly 

personalized function declarations, presented distinct characteristics that 

were easily attributable to their respective authors. Interestingly, these 

features could potentially be exploited to deceive the classifiers, 

underscoring the intricate interplay between code style and authorship 

attribution. 
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4. Anonymity for Short Codes: The research revealed that authors of short 

code snippets could maintain a degree of anonymity for a limited period if 

they took specific precautions to obfuscate their code. However, this 

anonymity was not guaranteed. 

5. The Evolving Landscape of Authorship Attribution: As advances 

continue to be made in authorship attribution and as more features are 

extracted from code, it is anticipated that programmers' ability to remain 

anonymous online will diminish. The increasing sophistication of attribution 

techniques and the expanding feature set availability are set to challenge 

the boundaries of online anonymity in the coding world. 

This study stands as a significant milestone in the field of code stylometry, offering 

valuable insights into the challenges and potential solutions in attributing code to 

its authors. By embracing the complexity of real-world coding scenarios and 

retaining comment data, this research offers a more realistic depiction of the 

coding landscape. It opens exciting possibilities for enhancing attribution methods 

and understanding the evolving dynamics of code attribution in a digital age.  

2.6 Feature Classification for Code Stylometry 

In the field of code stylometry, a comprehensive understanding of the 

features employed to discern the nuances of an author's programming style can 

be classified into three: Lexical, Layout, and Syntactic features. 
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2.6.1 Lexical Features 
Lexical features derive their essence from the source code itself and are 

gauged by counting specific elements, tokens, keywords, or the length of functions. 

These features delve into the lexical richness of the code, shedding light on the 

author's choice of expressions and the distribution of linguistic elements within the 

codebase. Lexical features are instrumental in unveiling an author's programming 

vocabulary and the frequency of constructs. 

Feature Definition 
WordUnigramTF Term frequency of word unigrams in source code 
ln(numkeyword/l
ength) 

Log of the number of occurrences of keyword divided by 
file length in characters, where keyword is one of do, else-
if, if, else, switch, for or while 

ln(numTernary/le
ngth) 

Log of the number of ternary operators divided by file 
length in characters 

ln(numTokens/le
ngth) 

Log of the number of word tokens divided by file length in 
characters 

ln(numComment
s/length) 

Log of the number of comments divided by file length in 
characters 

ln(numLiterals/le
ngth) 

Log of the number of strings, character, and numeric 
literals divided by file length in characters 

 
ln(numKeywords
/length) 

 Log of the number of unique keywords used divided by file 
length in characters 

 
ln(numFunctions/
length) 

 Log of the number of functions divided by file length in 
characters 

ln(numMacros/le
ngth) 

Log of the number of preprocessor directives divided by 
file length in characters 

nestingDepth Highest degree to which control statements and loops are 
nested within each other 

avgParams The average number of parameters among all functions 
stdDevNumPara
ms 

The standard deviation of the number of parameters 
among all functions 

avgLineLength The average length of each line 
stdDevLineLengt
h 

The standard deviation of the character lengths of each 
line 

branchingFactor Branching factor of the tree formed by converting code 
blocks of files into nodes 
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avgParams The average number of parameters among all functions. 
stdDevNumPara
ms 

The standard deviation of the number of parameters 
among all functions 

AvgLineLength The average length of each line 
stdDevLineLengt
h 

The standard deviation of the character lengths of each 
line 

Table 10: Lexical Features for Code Stylometry and their definitions 

2.6.2 Layout Features 
Layout features are centered around the spatial arrangement of code, 

notably code indentation. This category explores the structural aspects of code 

formatting, providing insights into the author's coding style. For instance, a typical 

layout feature could involve calculating the ratio of whitespace characters at the 

beginning of a line relative to the overall file size. By assessing code indentation 

patterns, layout features decode an author's approach to structuring their code, 

reflecting their stylistic preferences. 

Feature Definition 
ln(numTabs/length
) 

Log of the number of tab characters divided by file 
length in characters 

ln(numSpaces/len
gth) 

Log of the number of space characters divided by file 
length in characters 

ln(numEmptyLines
/length) 

Log of the number of empty lines divided by file length in 
characters, excluding leading and trailing lines between 
lines of text 

whiteSpaceRatio The ratio between the number of whitespace characters 
(spaces, tabs, and newlines) and non-whitespace 
characters 

newLineBeforeOp
enBrace 

A boolean representing whether most code-block 
braces are preceded by a newline character 

tabsLeadLines A boolean representing whether most indented lines 
begin with spaces or tabs 

Table 11: Layout Features for Code Stylometry and their definitions 
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2.6.3 Syntactic Features 
Syntactic features dive into the structural intricacies of the source code and 

are rooted in language-dependent abstract syntax trees (ASTs). Abstract syntax 

trees represent a hierarchical, tree-like structure that encapsulates the syntactic 

structure of a block or segment of source code. These trees break down the code 

into its constituent elements, facilitating a granular examination of the code's 

structure. Syntactic features extracted from ASTs unlock a deeper level of insight 

into the author's coding style, uncovering their approach to code organization, the 

arrangement of control flow constructs, and the interaction of code components.  

 

 

 

Feature  Definition 
MaxDepthASTN
ode 

Maximum depth of an AST node 

ASTNodeBigram
sTF 

Term frequency AST node bigrams 

ASTNodeTypes
TF 

Term Frequency of 58 possible AST node type excluding 
leaves 

ASTNodeTypes
TFIDF 

Term frequency inverse document frequency of 58 
possible AST node type excluding leaves 

ASTNodeTypeA
vgDep 

Average depth of 58 possible AST node types excluding 
leaves 

cppKeywords Term frequency of 84 C++ keywords 
CodeInASTLeav
esTF 

Term frequency of code unigrams in AST leaves 

CodeInASTLeav
esTFIDF 

Term frequency inverse document frequency of code 
unigrams in AST leaves 

CodeInASTLeav
esAvgDep 

Average depth of code unigrams in AST leaves 
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Table 12: Syntactic Features (Extracted from ASTs) for Code Stylometry and 
their definitions. 

Therefore, syntactic features are extracted from the leaves and nodes of the tree. 

Consider the pseudocode below. 

x = y + 3 

The AST representation for the above pseudocode can be seen in Figure 3 

Assign

X = BinOp

Y + 3

 
Figure 3: AST representation of the pseudocode x = y+3 

 

In essence, Lexical, Layout, and Syntactic features are the fundamental building 

blocks of code stylometry. They collectively enable the in-depth analysis of source 

code, empowering researchers to discern the author's unique fingerprints woven 

into the fabric of their code. By combining these feature categories, code 

stylometry ventures beyond the surface of code repositories, offering a profound 

understanding of programming styles, syntax choices, and code organization [25]. 
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2.7 Feature Fusion 

Feature Fusion is a vital component of multimodality, and it entails 

combining the information drawn from various modalities into a cohesive 

framework for making predictions and inferences. In this section, we look at the 

various feature fusion techniques used in multimodality. In essence, feature fusion 

represents the synergy of information extracted from a medley of sources or 

modalities. 

Multimodality boasts multiple tiers of feature fusion, catering to distinct research 

domains and objectives. In the field of biometrics, for instance, feature fusion can 

manifest at various levels: 

2.7.1 Feature Level Fusion 
The process of fusing features from multiple modalities plays a pivotal role 

in multimodality. It encompasses the collection and preprocessing of datasets, 

followed by feature extraction. With feature level fusion, these features are then 

merged through concatenation, and the resulting feature set is utilized for 

classification purposes. This approach aligns the data at its most granular level, 

fostering a direct juxtaposition of feature vectors. The resulting feature fusion 

reflects the diverse characteristics of each modality, creating a richer, 

multidimensional representation. 

Some research has shown that feature level fusion when compared with other 

fusion levels, is the most effective [30] [31], . Fusion at feature level provides 
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more distinctive information because of the high dimensional space between the 

impostor and the genuine samples.  

For instance, Hezil et al. [32] conducted a remarkable study involving feature 

level fusion of ear and palm print data. Their findings demonstrated a notable 

increase in recognition rates when compared to unimodal biometrics. 

Additionally, Haghighat et al. [30] leveraged Discriminant Correlation Analysis 

(DCA) in their feature level fusion approach, effectively maximizing pairwise 

correlations while diminishing between-class correlations. These endeavors 

underscore the substantial potential of feature level fusion in enhancing biometric 

recognition systems. 

2.7.2 Comparison Score Level Fusion 
Comparison scores fusion (known previously as “matching scores”) is done 

by combining results obtained from many modalities. These results are obtained 

by calculating similarity or the distance measurement for the input sample and the 

template from the dataset.  T-norms functions can be used to merge the input 

scores usually using max, min or some fuzzy logic combinations of the results.. 

Hanmandlu et al. [33] conducted an extensive evaluation of score level 

combination approaches, emphasizing the use of T-norms. In a similar vein, Ross 

et al. [34] explored score level fusion employing face, fingerprint, and hand 

geometry in the context of a multimodal biometric system. The simplicity and 

versatility of fusion at the comparison score level make it adaptable to a multitude 

of modalities. 
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2.7.3 Decision Level Fusion 
Decision level fusion involves the integration of individual decisions or 

outcomes derived from each modality. This fusion level requires a framework for 

aggregating the decisions and arriving at a final consensus or inference. Decision 

level fusion is particularly potent in scenarios where modalities offer 

complementary insights. Following the preprocessing of each modality, an 

individual classification is obtained from each source. These classification results 

are subsequently fused using logical operations such as min, max, or min-max, 

which can be further enhanced through the incorporation of fuzzy logic. Score level 

and decision level bear some similarities since in both cases a decision is made 

after results have been obtained from the individual modalities. 

Rajasekar et al. [35] have showcased decision and score level fusion techniques, 

showcasing how decision-making can be refined through the application of an 

optimized fuzzy genetic algorithm. 

2.7.4 Hybrid Fusion 

This is a combination of feature level fusion and decision level fusion. With 

the hybrid fusion, data from each modality is preprocessed, features extracted 

and classified separately. Also, the features are combined in a separate 

experiment and classified. The results obtained from the individual modalities 

and the combination of features from the modalities are now combined at the 

decision level using some form of logical operation. 

Wang et al. [36] aimed to maximize information gain by combining features 

derived from feature level fusion with features from individual modalities. This 
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hybrid approach reflects the quest for superior biometric recognition 

performance, leveraging the strengths of both feature and decision level fusion 

strategies to achieve the desired outcomes. 

In multimodality research, feature fusion emerges as an indispensable tool for 

unlocking the potential hidden within the convergence of diverse modalities.  

2.8 Multimodal Biometrics 

This section provides a succinct yet comprehensive overview of multimodal 

biometrics, as it aligns closely with the focal point of our research. In biometrics 

research, a system is deemed biometric when it possesses the capability to 

automatically identify and authenticate individuals based on their unique 

physiological or behavioral traits. These traits encompass a broad spectrum, 

including but not limited to facial features, retinal patterns, vein structures, speech 

patterns, ear design, nail bed characteristics, keystroke dynamics, and 

fingerprints. While fingerprint recognition stands out as one of the most frequently 

employed biometric traits due to its prevalence and reliability, the iris emerges as 

a standout contender in the terms of accuracy. The iris's distinctiveness and 

consistency render it a powerhouse in the biometric landscape. 

While unimodal biometric techniques can often deliver high accuracy, the synergy 

of multiple modalities, encapsulated within multimodal biometrics, offers a range 

of compelling advantages. Multimodal biometrics, with its fusion of various 

biometric traits, excels in terms of resilience against spoofing attacks and 

enhances the overall capabilities of biometric recognition systems [37]. 
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Rajasekar et al. [38] explored a multimodal biometric technique that improved 

accuracy and recognition rate for a biometric system in a smart city. The technique 

used is based in score-level fusion. This work focused on using two modalities 

(fingerprint and iris) with a score-level fusion technique which also consisted of an 

enhanced optimized fuzzy genetic algorithm (OFGA). The fig 3 below shows a flow 

of the proposed method. 

Iris Processing

Wildes Iris 
Localization

Daugman’s rubber 
sheet Iris 

Normalization

Log Gabor filter 
Feature ExtractionIris Matching Module

CASIA V3 Iris 
Dataset

Decision

Iris Score

Fingerprint Score

Matching 
Module

FVC2006 
fingerprint 

dataset

Fingerprint Preprocessing

Gabor filter Image 
Enhancement

Core points ROI 
Selection

Line Based Feature 
Extraction

Optimized Fuzzy 
Genetic Algorithm

Score Level 
Fusion

Fingerprint

 

Figure 4: Process flow and methodology for Rajasekar et al. [38] 

The data used were the CASIA Iris V3 dataset (iris) and the FVC2006 fingerprint 

dataset (fingerprints). Their techniques used the OFGA to improve the recognition 

of fingerprints and Iris data for biometrics. The crux of this methodology involved 
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the extraction of morphological features from both fingerprints and irises. They 

quantified the matching rates, denoted as 𝑀𝑀𝑀𝑀𝑓𝑓 for fingerprints and 𝑀𝑀𝑀𝑀𝑖𝑖 for irises, 

as depicted in Equations 2 and 3: 

𝑀𝑀𝑀𝑀𝑓𝑓 = 𝑤𝑤𝑓𝑓𝑚𝑚𝑓𝑓            (2) 

𝑀𝑀𝑀𝑀𝑖𝑖 = 𝑤𝑤𝑖𝑖𝑚𝑚𝑖𝑖           (3) 

Where, 𝑀𝑀𝑀𝑀𝑓𝑓 and 𝑀𝑀𝑀𝑀𝑖𝑖  represent the matching rates for fingerprints and iris, with 𝑤𝑤𝑓𝑓 

and 𝑤𝑤𝑖𝑖 signifying the corresponding weights, while 𝑚𝑚𝑓𝑓 and 𝑚𝑚𝑖𝑖 denote the matching 

scores for fingerprints and irises, respectively. 

To fuse the matching scores obtained from these diverse modalities, they 

employed the weighted sum rule, as defined in Equation 4: 

𝑀𝑀𝑠𝑠 = 𝑤𝑤𝑖𝑖𝑚𝑚𝑖𝑖 +  𝑤𝑤𝑓𝑓𝑚𝑚𝑓𝑓             (4) 

The OFGA method proposed is a stochastic optimization method that combines 

fuzzy approach and a genetics algorithm where mutation and crossover are 

incorporated to minimize convergence. The primary objective of the OFGA is to 

minimize the weights, as exemplified in Equation 5: 

�𝑤𝑤𝑖𝑖,𝑤𝑤𝑓𝑓�             (5) 

Where obj(Z) symbolizes the objective function of feature Z, and the minimization 

of the weight vector w is the overarching goal. 

The steps integral to the genetic algorithm implementation are as follows: 
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1. Initialization: In this inaugural phase, the genetic algorithm generates an initial 

population with randomized parameters. 

2. Fitness Function: For their approach, the Equal Error Rate (EER) and accuracy 

was considered as the fitness functions of the OFGA. In this context, higher 

accuracy and lower EER values signify enhanced biometric recognition. Each 

member of the population is assigned a fitness value closely linked to these fitness 

functions, thus reflecting the importance of each function. These fitness values 

play a pivotal role in the global convergence achieved at the culmination of the 

mission. 

3. Fuzzy Clustering Approach (Selection): This crucial step entails the allocation 

of each data point into specific clusters. For every population y = (𝑦𝑦1, 𝑦𝑦2, 𝑦𝑦3,, 𝑦𝑦𝑛𝑛), 

rules were defined that segregate the data into distinct C = (𝑐𝑐1,𝑐𝑐2, 𝑐𝑐3, , 𝑐𝑐𝑚𝑚), 

minimizing data feature 𝑂𝑂𝑥𝑥, where the degree of fuzziness is constrained by the 

factor x. The partition matrix is denoted as W = 𝑤𝑤𝑖𝑖𝑖𝑖, indicating that element 𝑦𝑦𝑖𝑖 

belongs to 𝐶𝐶𝑖𝑖, as elucidated in Equation 6: 

 𝑎𝑎𝑎𝑎𝑎𝑎 _𝑚𝑚𝑚𝑚𝑚𝑚   𝐶𝐶 = ∑𝑖𝑖=𝑛𝑛
𝑖𝑖=1 ∑𝑖𝑖=𝑚𝑚

𝑖𝑖=1 𝑤𝑤𝑖𝑖𝑖𝑖|𝑦𝑦𝑖𝑖 − 𝑐𝑐𝑖𝑖| 2                (6) 

Where. 

𝑤𝑤𝑖𝑖𝑖𝑖 = 1

∑𝑚𝑚𝑘𝑘=1 �
𝑦𝑦𝑖𝑖−𝑐𝑐𝑗𝑗
𝑦𝑦𝑖𝑖−𝑐𝑐𝑘𝑘

 �
2

𝑚𝑚−1
               (7) 

4. Crossover and Mutation: The corresponding correlations and probabilities for 

the crossover and mutation operators are thoughtfully applied to the global 

solution, as shown in Equation 8: 
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𝑝𝑝𝑖𝑖
𝑖𝑖 = 𝑝𝑝𝑖𝑖

𝑖𝑖−1  × 𝑎𝑎𝑎𝑎𝑚𝑚𝑟𝑟(𝑦𝑦𝑖𝑖
𝑖𝑖−1 −  𝑥𝑥𝑖𝑖

𝑖𝑖−1)                  (8) 

The results obtained can be seen below. 

 

N TP FN FP TN FAR 
(%) 

FRR 
(%) 

TPR 
(%) 

TNR 
(%) 

Precisi
on 

Accuracy 
(%) 

100 100 0 0 100 0 0 100 100 100 100 
300 300 0 0 300 0 0 100 100 100 100 
500 499 1 1 499 0.2 0.2 99.8 99.8 99.8 99.8 
800 797 3 2 798 0.25 0.38 99.63 99.75 99.75 99.63 
100
0 

997 3 3 997 0.3 0.3 99.7 99.7 99.7 99.7 

130
0 

129
6 

4 4 129
6 

0.31 0.31 99.69 99.69 99.69 99.69 

150
0 

149
5 

5 5 149
5 

0.33 0.33 99.67 99.67 99.67 99.67 

180
0 

179
2 

8 8 179
2 

0.44 0.44 99.56 99.56 99.56 99.56 

210
0 

208
9 

11 12 208
8 

0.57 0.52 99.48 99.43 99.43 99.48 

Table 13: Performance evaluation without OFGA [38] 

 

N TP FN FP TN FAR 
(%) 

FRR 
(%) 

TPR 
(%) 

TNR 
(%) 

Precisio
n 

Accurac
y (%) 

100 100 0 0 100 0 0 100 100 100 100 
300 300 0 0 300 0 0 100 100 100 100 
500 500 0 0 500 0 0 100 100 100 100 
800 798 2 1 799 0.13 0.25 99.7

5 
99.8
8 

99.87 99.81 

1000 998 2 1 999 0.18 0.18 99.8 99.9 99.9 99.85 
1300 129

6 
4 2 129

8 
0.15 0.31 99.6

9 
99.8
5 

99.85 99.77 

1500 149
7 

3 1 149
9 

0.07 0.02 99.8 99.9
3 

99.93 99.87 

1800 179
2 

7 5 179
5 

0.28 0.39 99.6
1 

99.7
2 

99.72 99.67 

2100 209
0 

10 8 209
2 

0.38 0.48 99.5
2 

99.6
2 

99.62 99.57 

Table 14: Performance evaluation with OFGA [38] 
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Modalities FAR 
(%) 

FRR 
(%) 

TPR 
(%) 

TNR 
(%) 

Accuracy 
(%) 

EER 
(%) 

Precisi
on 

Iris and 
Fingerprint 
without 
OFGA 

0.26 0.27 99.73 99.74 99.74 0.33 99.73 

Iris and 
Fingerprint 
with OFGA 

0.13 0.20 99.79 99.88 99.83 0.18 99.88 

Table 15: Average performance evaluation [38] 

 

Approaches FAR (%) FRR (%) Accuracy (%) EER (%) 
Gavisddappa et al. [45] 9.87 11.89 97 0.23 
Jagadiswary et al. [46] 0.01 0.27 87 0.37 
Vidya & Chandrause 
[47] 

0.32 0.33 91 0.32 

Yang et al. [48] 0.38 0.27 90 0.33 
Malarvizhi et al. [49] 0.58 0.02 96 0.22 
Selwal et al. [50] 3.30 3.39 97 0.20 
Rajasekar et al. [42] 0.13 0.20 99.83 0.18 

Table 16: Comparison of existing approaches with Rajasekar et al. [38] 

Where. 

FP = False Positives 

TN = True Negatives 

FN = False Negatives 

TP = True Positives  

FAR = False Acceptance Rate, the likelihood of a system incorrectly accepting a 

nonregistered or unauthorized user. 

FRR = False Rejection Rate, the likelihood of a system incorrectly rejecting a 

nonregistered or unauthorized user. 
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TRR = True positive rate, the likelihood of a device authorizing the registered user. 

It is also known as sensitivity. 

TNR = True Negative Rate, likelihood of the authorized user being approved by a 

system. It is otherwise defined as recall or specificity. 

Accuracy = registered users permitted at a rate proportional to the number of 

attempts they made. 

ERR = Equal error rate, the rate at which FAR is equal to FRR. 

Precision = the ratio of positive instances found among all positives mentioned. It 

is otherwise denoted as a positive predictive value. 

This research explores a novel approach for multimodal biometrics in a smart city 

that uses fingerprint and Iris. The features extracted from the modalities are given 

as input into a score-level fusion step. The output from this is fed into an optimized 

fuzzy genetic algorithm (OFGA) which improves the accuracy of biometric 

recognition. The proposed approach yielded an accuracy of approximately 99.89% 

and an EER of approximately 0.18%. 

Wang et al. [36] proposes a two-channel convolutional neural network (CNN) 

fusion framework which can be seen in fig 4, the fusion also occurs at the feature 

level. The modalities used were finger vein and facial recognition which were in 

the form of images. The datasets used were SDUMLA-FV (Finger vein), CASIA 
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WebFace (Face) and the USM-FV (Finger vein) datasets. 

Face

Preprocessing

Conv Block

Conv Block

Conv Block

Face Features

Face Attention

Softmax

Fusion Conv

Fusion Block

FV + Face Feature

Channel Concat

Fusion Feature

Channel Concat

Output Fusion Features

Full Connected layers

Finger Vein

Preprocessing

Conv Block

Conv Block

Conv Block

FV Features

FV Attention

Softmax

Fusion Conv

Feature 
Extraction

Feature 
Fusion

Classification 
Recognition

 

Figure 5: Feature Fusion Framework for Multimodal Biometrics using CNNs [36] 

Their methodology is divided into three stages – feature extraction, feature fusion 

and classification. For feature extraction, the data is preprocessed and then 



54 

convoluted into a neural network model, the features are then extracted through 

the multi-layer convolution and pooling layers. Next is the feature fusion stage 

where fusion convolution is done to reduce dimensionality and the output is then 

passed to the softmax layer which obtains the self-attention weights and multiplies 

the features obtained from the feature extraction and then channel concat 

combines the two set of features together to get a fusion of the features extracted 

from finger vein and face. To prevent information loss, the features from the feature 

extraction step are obtained. The classification step is mainly done in the fully 

connected layer of the CNN.   AlexNet and VGG-19 were used as the networks of 

choice with their fully connected layers discarded. Only convolutional and pooling 

layers before the fully connected layers were used.  

The results obtained can be seen in the table 17 & 18 showing both the accuracies 

obtained by using unimodal and multimodal experiments. 

          Dataset 
  
 Model 

Parameter 
Quantity 

Test Set Accuracy 
SDUMLA-FV USM-FV CASIA-

WebFace 
AlexNet-Fusion 16,630,440 0.7020 0.4561 0.5395 
VGG-19-
Fusiom 

143,667,240 0.8757 0.6734 0.5575 

Table 17: Results of Single-mode Biometrics [43] 
 

 

            Dataset 
   
Model 

Parameter 
Quantity 

Test Set Accuracy 
SDUMLA-FV + 
CASIA-
WebFace 

USM-FV +  
CASIA-
WebFace 

AlexNet-Fusion 9,858,994 0.9990 0.9935 
VGG-19-
Fusiom 

45,229,938 0.9998 0.9842 

Table 18: Results of Multimodal Biometrics [43] 
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This study showed a multimodal feature layer fusion method that was based on 

convolutional neural network. Their method introduced the weight of the self-

attention mechanism to update the features in the feature fusion step but also uses 

the separate feature sets from the different modalities to maximize feature 

information. The highest accuracy obtained was 99.98% which was gotten when 

VGG-19 was used for fusing the features obtained from SDUMLA-FV and CASIA-

WebFace datasets. 

2.9 Chapter Summary 

In this chapter, we do an overview of studies done in text stylometry, code 

stylometry, Feature Fusion and Multimodal biometrics. Our proposed method 

combines text stylometry, code stylometry and feature fusion and we do an 

overview of multimodal biometrics to show success of modality on another area of 

research. The results from Multimodal biometrics show that multimodality yields 

better results that unimodality. We also discuss different level of feature fusion that 

have been used in previous studies. Selecting the best feature fusion for 

multimodality is very important for a multimodal experiment to work. 
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CHAPTER THREE 

RESEARCH METHODOLOGY 
3.1 Introduction 

In this chapter, we do an overview of the data gathering process, 

experimental design, and research methodology. As discussed in the previous 

chapters, the aim of our research is to improve classification accuracy of 

authorship identification by combining the stylometric features from text and source 

code (multiple modalities). The research goal is to show that authors can be 

identified better when these features are combined than when they are used 

independently. To achieve our goal, we need to have a dataset (or corpus) that 

would include source code and text written by the same author.  

Therefore, our research methodology can be defined as, given a set of authors, 

aptly denoted as A,  
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Where, 

A = {𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3,…, 𝑎𝑎𝑛𝑛}   (9) 

 

a set of written text files, symbolized as files, 

T = {{𝑡𝑡1}, {𝑡𝑡2}, {𝑡𝑡3}…, {𝑡𝑡𝑛𝑛}}  (10) 

and a set of sets of source code files, represented as  

S = {{𝑠𝑠1}, {𝑠𝑠2}, {𝑠𝑠3}…, {𝑠𝑠𝑛𝑛}}   (11) 

Where, 𝑡𝑡𝑛𝑛 and 𝑠𝑠𝑛𝑛 are also a set of written text and source code, respectively. 

For a more granular view, we break down the structure of 𝑡𝑡𝑛𝑛 and 𝑠𝑠𝑛𝑛, as illustrated 

in Equations 12 and 13: 

𝑡𝑡𝑛𝑛 = {𝑡𝑡𝑛𝑛1, 𝑡𝑡𝑛𝑛2, 𝑡𝑡𝑛𝑛3, …, 𝑡𝑡𝑛𝑛n}             (12) 

𝑠𝑠𝑛𝑛 = {𝑠𝑠𝑛𝑛1, 𝑠𝑠𝑛𝑛2, 𝑠𝑠𝑛𝑛3, …, 𝑠𝑠𝑛𝑛n}            (13) 

With this foundational structure in place, the next step involves the construction of 

an author's feature set, a concatenation of stylometric features from textual files 

and source code files. This feature set is defined as: 

𝑎𝑎𝑛𝑛 = F (𝑡𝑡𝑛𝑛) + F (𝑠𝑠𝑛𝑛)                (14) 

Where a symbolizes the author in question, F (𝑡𝑡𝑛𝑛) represents a compendium of 

stylometric features extracted from a textual file written by the author, and F (𝑠𝑠𝑛𝑛) 

encapsulates a collection of stylometric features derived from a block of code 
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(source code) written by the author. This form of feature fusion is known as early 

stage or feature level feature fusion. 

In this chapter, we outline our research design and methodology. 

3.2 Data Gathering (Corpus) 

We live in the information age, and this is characterized by the rapid growth 

in the data that can be collected and made available in electronic media [39]. In 

this digital landscape, the bounty of data that can be amassed and harnessed is 

virtually boundless, offering an array of opportunities for researchers and scholars. 

To create our corpus, we needed to find multiple authors who have written both 

texts and source code. Furthermore, for our research we decided to focus of 

source code written in C/C++ to ensure a level of uniformity across the board. In 

recent times, the internet has been a major source of gathering data that is useful 

for research.  

We scraped data from three different programming tutorials websites456.  We 

chose these websites because they allow various contributors to offer tutorials in 

multiple programming languages for users to learn how to code. Each tutorial 

focuses on a particular problem usually determined by the contributor. Also, each 

tutorial comprised of an explanation (text) of the programming problem and a 

 
4 www.tutorialspoint.com 
5 www.medium.com 
6 www.geniuspoint.com 
 

http://www.tutorialspoint.com/
http://www.medium.com/
http://www.geniuspoint.com/
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corresponding solution (source code) to the problem. In addition, each tutorial was 

done by exactly one contributor.  

Using a python script, we were able to scrape the websites and extracted the 

tutorials for C/C++. We only extracted tutorials that included both texts and source 

codes. We tagged every text and source code extracted with their authors. The 

corpus was deidentified to protect the identity of the authors. We extracted texts 

and codes for a combined total of 396 authors covering over 3000 different topics: 

tutorials.com (92), medium.com (217) and genius.com (87). A subsection of the 

topics covered can be seen in the appendix. It is worth noting however that even 

though we extracted works written by 396 authors form these websites, not all the 

authors had both textual and source code documents. We discuss this in the data 

cleaning section of this chapter.  

To provide a glimpse into the data acquisition process, Figure 6 gives a 

representative snapshot of a typical webpage, illustrative of the content we 

scraped.  
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Text

Source 
Code

Author

 

Figure 6: Sample webpage used for data extraction. 

 

3.3 Data Cleaning/Preparation 

In any machine learning or stylometry task, an essential part of the process 

is data cleaning. This is the process of removing unwanted or unnecessary items 

from the corpus that could cause the results to be inaccurate. However, prior to 

this cleansing process, a critical criterion was set to lay the foundation for data 
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quality. We ensured that all selected authors had both text and source code files, 

eliminating those who possessed only one of these modalities. This thoughtful 

selection process ensured the coherence and integrity of our dataset. Below we 

outline the process of cleaning the text documents and the source code 

documents. 

3.3.1 Text Documents 
Below, we outline the steps that we undertook to cleanse the text 

documents. 

1. Stop Words Removal: Our first stride involved the elimination of stop 

words. These are commonly occurring words that, while significant in 

language, tend to be overrepresented and contribute little to the context. 

Removing them streamlines the dataset, enhancing its focus on more 

meaningful content. 

2. Removal of URLs: To safeguard the dataset's coherence, we excised 

URLs, ensuring that the corpus remained pertinent and devoid of external 

references. The presence of URLs in textual documents do not provide any 

information to the identity of the author so every URL was removed from 

our textual documents. 

3. Removal of Special Characters: Special characters such as the hyphen 

(–) or slash (/) are typically deemed as non-contributory and were therefore 

excluded from our textual documents. The choice to remove specific 

characters was contingent upon the specific task at hand. For instance, for 
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research task where currency symbols like "$" have no relevance, they are 

eliminated. 

4. Removal of Non-English Words: to maintain linguistic uniformity, non-

English words were removed from the corpus. 

5. Exclusion of Documents with Less than 10 Words and 2 Sentences: A 

threshold for document length was set, and any document falling short of 

this criterion was excluded, contributing to data consistency.  

Furthermore, term frequency and TFIDF, so additional layers of cleaning were 

implemented. 

1. Removal of Punctuations: The elimination of punctuations further refined 

the text, placing the focus on words 

2. Removal of Single Letters: Isolated single letters, often devoid of 

meaningful content, were removed, ensuring that the corpus remained 

contextually rich. 

3. Converting Digits to Words: The process included the conversion of digits 

to their textual representations, preserving the linguistic coherence of the 

dataset. 

4. Lemmatization: A linguistic technique, lemmatization, was applied to 

harmonize different forms of words into their base form. This step ensured 

that words were consistently represented, irrespective of their inflected 

forms. 
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5. Stemming: Leveraging stemming, we further condensed words into their 

root form, harmonizing variations to streamline the dataset. 

 

3.3.2 Source Code Documents 
The process of cleansing the source code documents, in comparison to text 

documents, presented a relatively straightforward task. The specific steps involved 

in the cleaning process are as follows: 

1. Rectification of Scraping Artifacts: The initial phase entailed addressing 

and rectifying scraping artifacts, including but not limited to anomalies like 

"Ã" and "Â." These artifacts were replaced with spaces to ensure the 

integrity of the code. 

2. Elimination of Line Padding: Another integral step in the cleaning process 

involved the removal of any extraneous line paddings located at the top of 

the source code.  

After the data cleaning and preprocessing stage, we were left with 34 authors with 

more than 10 textual and source code documents. 50 text files and 50 source code 

files were randomly selected from each author to best maximize our corpus.. This 

led us to the selection of a final author list of 19 authors resulting in a total of 950 

observations. We selected the number authors and documents because at 19 

authors and 50 documents, we can maximize our limited corpus. These 

parameters made sure that we got the maximum number of observations from our 

dataset.   
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3.4 Feature Extraction 

This stage of our methodology describes how we extract stylometry features 

from our corpus (dataset). This is basically the process of converting the text 

documents and source code documents to their numerical representation so that 

they can be fed to a machine learning classifier. The stylometric features used can 

be categorized into four basic categories for text and three categories for source 

code. All features were extracted using a script written in Python.  

These features are identified and defined in tables 19 and 20. 

S/N Category Features Explanation 
1 Lexical Vocabulary 

Richness 
This can also be called Vocabulary 
diversity. It is the propensity of an 
author to avoid the repetition of 
words. Type Token Ratio was used 
as a measure of vocabulary 
richness  

Hapax 
Legomena 

The count of words that appear only 
once in a document 

Average Word 
Count 

This is the count of words divided 
by sentence count 

Average Word 
Length 

Average length of words used by 
the author 

Sentence 
Count* 

Count of sentences 

Term Frequency This quantifies how frequently a 
word or term appears in a 
document 

TFIDF Also known as Term Frequency-
Inverse Document Frequency (TF-
IDF) is a numerical statistic 
designed to quantify the 
significance of a word within a 
document. 

2 Character Letter Count Count of all alphabet tokens 
Digit Count Count of all number tokens 
Punctuation 
Count 

Count of all punctuation tokens 
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Upper Case 
Count 

Count of all upper-case tokens 

Lower Case 
Count 

Count of all lower-case tokens 

3 Syntactic  Verb Count Count of all verbs in the document 
Noun Count Count of all words that are nouns. 
Adverb Count Count of adverb words 
Adjective Count Count of adjective words 

4 Semantic  Function words These are words that signal 
grammatical relationships but are 
less central to expressing meaning. 
This feature captures the 
propensity of an author to use 
function words 

Table 19: Textual Stylometric Features 

 

S/N Category Features Description 
1 Lexical Log (Number of 

keywords) 
Log of the number of keywords in 
the code (do, else-if, if, else, switch, 
for, while) 

Log (Number of 
Ternary) 

This is the log of ternary operators  

Log (number of 
Token) 

This is the number of the word 
tokens 

Log (number of 
Comments) 

This is the log of the number of 
comments 

Log (number of 
literals) 

This is the log of the number of 
string, character and numeric 
literals 

Log (number of 
digits) 

This is the log of the number of 
digits in the code 

Vocabulary 
Richness  

This is the number of unique 
keywords used by the author in the 
code 

Log (number of 
functions) 

This is the log of the number of 
functions in the code 

Log (number of 
Macros) 

This is the log of the number of 
preprocessor directives 

Nesting Depth This is the highest degree to which 
control statements and loops are 
nested 

Branching 
Factor 

This is the branching factor of the 
tree which is formed by converting 
code blocks into nodes 
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Standard 
Deviation of 
Number of 
Parameters 

This is the standard deviation of the 
number of parameters of the 
functions in the code 

Average Line 
Length 

The average length of each line 

Standard 
Deviation of 
Line Length 

This is the standard deviation of the 
character lengths of each line 

2 Layout Maximum Line 
Length 

This is the length of the longest line 
in the code 

Minimum Line 
Length 

This is the length of the shortest line 
in the code 

Average 
Indentation 

This is the average number of 
indentations in the code 

Code Block 
levels  

This is the number of levels of code 
blocks 

Leading Space 
Count 

This is the count of leading spaces 
in the code 

Tab Characters 
Count 

This is the count of tab characters in 
the code 

Space 
Characters 
count 

This is the count of space 
characters in the code 

Count Empty 
lines 

This is the count of empty lines in 
the code 

Whitespace 
ratio 

This is the ratio between the 
number of whitespaces (spaces, 
tabs and newlines) and non-
whitespace characters. 

New Line before 
open brace 

A Boolean representing whether 
most of the code block braces are 
preceded by a newline or not 

Tab Leading 
lines 

A Boolean representing whether 
most indented lines begin with 
spaces or tabs. 
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3 Syntactic AST Node Type 
Term 
Frequency 

Term Frequency of AST node types 
excluding leaves 

AST Node types 
TFIDF 

TFIDF of node types excluding 
leaves 

AST Node types 
of Average 
Depth 

Average depth of AST node types 
excluding leaves 

C++ Keywords Term frequency of C++ Keywords 
Code 1n AST 
Leaves Term 
frequency 

This is the term frequency of code 
unigrams in AST leaves 

Code 1n AST 
Leaves TFIDF 

This is the TFIDF of the code 
unigrams in AST Leaves 

Code 1n AST 
Leaves Average 
Depth 

This is the average depth of the 
code unigrams in AST leaves 

Max Depth AST 
node 

This is the max depth of ab AST 
node 

Table 20: Source Code Stylometric Features 

In addition to feature extraction, we employed an approach to feature engineering, 

ensuring that the extracted features were not only informative but also attuned to 

the unique characteristics of each document. This involved the division of features 

(excluding Term frequency and TFIDF because they are already divided by 

document size when they are calculated) by the length of sentences in textual 

documents, subsequently excluding sentence length from the final textual feature 

set. Similarly, in the case of source code documents, each feature was divided by 

the total length of the source code, quantified by the number of lines.  

These strategic adjustments served a twofold purpose. Firstly, they homogenized 

the features, rendering them comparable across diverse documents. Secondly, the 

process offered a level playing field, ensuring that the relative magnitude of 

features did not overshadow their actual significance. Afte the feature extraction 
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process, we had two datasets, one for text documents with 3,959 features, source 

code documents with 38,843 features and each with a total of 950 observations 

(19 authors with 50 documents each). 

3.5 Feature Scaling (Normalization) 

At this point in our research, we have two distinct datasets, text dataset and 

source code dataset. Both datasets are a collection of numerical values that 

epitomize the features extracted from our corpus. However, the feature extraction 

process, which comprises of counts and term frequencies, had resulted in the 

creation of a sparse dataset. A Sparse dataset (matrix) is a dataset that is 

characterized by a preponderance of zero values. The prevalence of sparse 

dataset is a recurring theme, that is prominent within machine learning and even 

in entire subfields of machine learning, such as natural language processing and 

Stylometry. Table 21 shows the percentage of sparsity encountered in our dataset 

 Source Code dataset Text dataset 
No of Features 38843 3959 
No of Non-zero values 163861 85316 
Total matrix size 36900850 3761050 
Percentage of Sparsity 99% 97% 

Table 21: Summary of Datasets showing sparsity 

Dealing with sparse matrices as if they were dense (opposite of a sparse matrix 

where non-zero values are dominant in the dataset) incurs significant 

computational overhead and could also lead to tainted classification results. To 

maximize the performance or efficiency of the machine learning classifiers, it is 

imperative to employ dedicated representations and operations tailored to the 



69 

unique challenges posed by dataset sparsity. This approach is known as 

Normalization. 

Feature scaling or Normalization is a preprocessing step in which each input 

variable is individually scaled to a standardized range, typically from 0 to 1. This 

range is for floating-point values which offers the optimal precision, ensuring that 

the data is well-suited for subsequent analysis and modeling. Normalization is 

implemented to mitigate potential bias in supervised learning models, preventing 

them from favoring a particular value range. For example, in a linear regression 

model, if feature scaling is omitted, certain features might exert a 

disproportionately significant influence compared to others. This imbalance can 

detrimentally impact prediction accuracy by unfairly elevating the importance of 

certain variables over others.  

For our research, we use min-max scaling method of normalization. Min-max 

scaling was employed on all the feature columns in our dataset (text and source 

code dataset). This approach ensures that data across various feature columns is 

transformed into a consistent range, enhancing the suitability of the dataset for 

modeling and analysis. Min – max scaling can be defined in equation 15 below. 

𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚 =   𝑋𝑋−𝑋𝑋𝑚𝑚𝑖𝑖𝑚𝑚
𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚− 𝑋𝑋𝑚𝑚𝑖𝑖𝑚𝑚

             (15) 

Where; 
• Xnorm is the normalized data, 
• X is the original data, 
• Xmin  is the minimum value within the dataset, and 
• Xmin stands for the maximum value found within the dataset. 
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3.6 Feature Selection  

3.6.1 Curse of Dimensionality 
This is the process of picking or selecting features from our feature set that 

would give the best output or results for the model. With our dataset containing 

38,843 features for the source code dataset, 3959 features for the text dataset and 

950 observations, we are confronted with the challenges of high dimensionality. 

The curse of dimensionality is a phenomenon that arises in machine learning when 

dealing with high-dimensional data. As the number of features or dimensions 

increases, the amount of data needed to generalize accurately grows 

exponentially. In high-dimensional spaces, the volume of the data space expands 

rapidly, and data points become increasingly sparse. This sparsity can lead to 

overfitting, where a model performs well on training data but fails to generalize to 

unseen data. The curse of dimensionality also affects the efficiency of algorithms, 

as computations become more resource intensive. 

To mitigate the curse of dimensionality, techniques such as feature selection, 

dimensionality reduction, and regularization are employed. Feature selection 

involves choosing a subset of relevant features, while dimensionality reduction 

techniques like Principal Component Analysis (PCA) aim to transform the data into 

a lower-dimensional space while preserving essential information. Regularization 

methods penalize overly complex models, helping prevent overfitting. 

3.6.2 Feature Selection Methodology 
This involves the process of cherry-picking the most pertinent features from 

our feature set. The objective is to assemble a subset of features that will yield the 
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most robust and meaningful results for our modeling efforts.  An ideal situation is 

for the number of features to be less than the number of observations. 

In this work, we employ the use of ANOVA f-test combined with the Extra Tree 

classifier and 10 – fold cross validation to select the best features from our textual 

dataset and the best features from our source code datasets. We also introduce 

the use of hyperparameters so we can get the best possible set of features that 

will contribute to a better classification accuracy. 

 

3.6.2.1 ANOVA F-Test 
ANOVA, the acronym for "Analysis of Variance," stands as a foundational 

parametric statistical hypothesis test. Its primary mission is to unveil whether the 

means derived from two or more data samples—often three or more—originate 

from a shared distribution or diverge significantly. 

An F-statistic, or F-test, is a class of statistical tests that delves into the evaluation 

of variance ratios, comparing variances like those originating from distinct data 

samples or the explained and unexplained variances arising from a statistical 

test—in the case, ANOVA. The ANOVA method is a type of F-statistic referred to 

here as an ANOVA f-test. 

It's crucial to grasp that ANOVA assumes a numeric-variable/categorical-variable 

dynamic, making it ideal for scenarios where one variable is numeric, and the other 

is categorical. Such situations often manifest in the form of numerical input 
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variables and a classification target variable, mirroring the configuration of our 

datasets (text and source code data). 

The results of the ANOVA F-test was used for our feature selection stage, helping  

us to identify and eliminate features that exhibit independence from the target 

variable. To achieve this in python we used SelectKBest function of the 

sklearn.feature_selection module. This function takes the dataset as an input and 

ranks the features using the ANOVA f-test score form the largest score to the 

smallest score. This function also takes in a score_function which determines 

which selection function to use which in this case is the ANOVA f-test (f_classif) 

and k which is the number of features to be selected after the ranking. 

3.6.2.2 Hyper-parameter Tuning 
A parameter or model parameter is an internal configuration variable of the 

model, and its value can be inferred based on various reasons. For instance, an 

internal configuration variable for the ANOVA f-test would be the number of 

features to select. An hyperparameter is an external configuration setting that lies 

beyond the internal structure of the model. Hyperparameters are manually 

specified or tuned based on prior knowledge, domain expertise, or 

experimentation. In the case of our feature selection, we wanted to select the best 

features that were dependent on the output variable (author). To achieve this, we 

couldn’t just pick an input number of features to be selected in the ANOVA F-test, 

so we needed to automatically decide which number of features best contributes 

to the outcome.  
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3.6.2.3 Extra Tree Classifier 
Much like Random Forest Classifier, Extra Trees leverages the power of 

multiple decision trees, and aggregates the results of the decision trees to yield a 

robust prediction. A notable difference is in their approach to feature splitting. While 

Random Forests uses a greedy algorithm to determine the optimal feature split at 

each node of a decision tree, Extra Trees takes a more randomized approach. 

Specifically, Extra Trees introduces an additional layer of randomness by randomly 

selecting the threshold values for feature splits.  

The computational efficiency of Extra Trees emerges as a significant advantage 

over Random Forests. The randomization in feature splitting not only adds an 

element of unpredictability but also renders the process much faster. Unlike 

Random Forests, which evaluate various splitting points to find the optimal one, 

Extra Trees expedites the process by randomly choosing thresholds. As a result, 

Extra Trees demonstrates a notable reduction in computational cost, making it an 

attractive option for scenarios where efficiency is a critical consideration. 

3.6.2.4 K – fold Cross – Validation  
Cross-validation is a resampling technique employed to assess the 

performance of machine learning models with a limited dataset. When you have a 

machine learning model and a dataset, you need to determine how well your model 

can generalize to unseen data. The typical approach involves dividing your dataset 

into a training set and a test set. You train your model on the training data and then 

evaluate its performance on the test data. However, a single evaluation might not 

be sufficient, as its possible to get a good result by chance. To ensure a more 
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robust assessment of a model, you want to evaluate it multiple times. This is where 

k-fold cross-validation comes into play. The parameter "k" specifies how many 

groups your dataset should be divided into. For our feature selection, we set "k=10" 

signifying 10-fold cross-validation and we use the 10-fold cross validation 

combined with an Extra Tree classifier to evaluate the performance of the selected 

features. We record the accuracy of every iteration of model and use the features 

that yielded the highest accuracy. The Algorithm 1 below shows our feature 

selection process. 

 

Input: Dataset D,  
Output: Selected_Features F  

1. Split Dataset into input features X and output (Class) Y 
2. Compute min_lenght = 0.4 * Length of (D) 
3. Compute max_length = 0.95 * Length of (D) 
4. Set Selected_length = 0 
5. Set Selected_features = list() 
6. Set max_accuracy = 0 
7. For length in range (min_length to max_length): 

i. Compute (Anova f-test, no. of features to select = length) =  
Feature_set 

ii. Build model using ExtraTreeClassifier and 10-Fold Cross 
Validation  = model 

iii. Evaluate accuracy(model) = a 
iv. IF a ≥ Selected_length: 

a) Selected_length = length 
b) Selected_features = Feature_set 

8. Return Selected_Features 
 

Algorithm 1: Feature Selection Methodology 
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3.7 Stylometric Feature Fusion (SFF) 

Feature fusion is a crucial step in multimodal stylometry which involves the 

integration of features extracted from diverse modalities or sources of data, in our 

case text and source code. This integration allows for the creation of a unified and 

enriched feature representation that captures valuable information from each 

modality, thereby enhancing the overall analysis and decision-making process. By 

synthesizing this comprehensive feature set, the model gains a holistic 

perspective, enabling more robust and accurate outcomes. This is particularly 

valuable in the context of our research in authorship identification where multiple 

modalities could contribute to improved accuracy, which makes feature fusion a 

pivotal aspect of this work. In this work, we create a novel feature fusion method 

called the Stylometric feature fusion. We create an algorithm tailored to the fusion 

of the stylometric features. We employ the use of early fusion, but we modify it by 

including a feature selection step before and after the concatenation of the 

features. This can be seen in Algorithm 2. 

3.7.1 Early Fusion  
Early fusion operates at the feature level. This works by concatenating the 

feature vectors from both textual dataset and source code dataset into a single, 

comprehensive feature vector which is used for classification. While this unified 

feature vector may be substantial in terms of the number of features it comprises, 

it has the potential to significantly enhance performance when coupled with 

appropriate learning techniques. This, however, may lead to longer training and 
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classification times due to the increased feature dimensionality. Early-stage fusion 

is defined in equation 16 below. 

𝑎𝑎  = F (𝑡𝑡 ) + F (𝑠𝑠 )  (16) 

Where a is the author, F(t) is a set of stylometric features extracted from a textual 

file written by the author and F(s) is a set of stylometric features extracted from a 

block of code written by the author.  

Following the feature selection process for both textual and source code 

documents, we were left with 587 textual features and 597 source code features 

with 950 observations. After the feature fusion and the second feature selection 

stage that we introduced, which only implies to multimodality, we had a third 

multimodal dataset with 798 number of features and 950 number of observations.  

Algorithm 2 shows our feature fusion process. 

 

 

Input: Selected_text_features F(T), Selected_code_features F(C)  
Output: Selected_Multimodal_features F(M)  

1. Set Multimodal_features M = F(T) + F(M) as seen in equation 16 
2. Computer F(M) = Algorithm 2(M) 
3. Output F(M) 

Algorithm 2: Feature Fusion Process 

3.8 Machine Learning Classifiers 

This phase represents the cognitive nucleus of our research, the hub of 

knowledge discovery. Within our methodology, we employ multiple classifiers: 

Random Forest, Naïve Bayes, Multilayer Perceptron (MLP), Extremely 

Randomized Trees and Support Vector Machines. The selection of these 
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algorithms is based on their established success in prior authorship identification 

studies.  

3.8.1 Random Forest 
Random Forests, often referred to as Random Decision Forests, represent 

a robust ensemble learning technique employed for a diverse array of tasks, 

encompassing classification, regression, and more. The essence of this method 

lies in the creation of a multitude of decision trees during the training phase. In 

classification tasks, the output of a Random Forest corresponds to the class that 

most of the decision trees select. Conversely, for regression tasks, the collective 

prediction from the individual trees is usually the mean or average. Its remarkable 

prowess is underscored by its consistent delivery of exceptional performance 

across an extensive spectrum of classification and regression predictive modeling 

challenges. This algorithm's versatility has solidified its status as a favorite in the 

field of machine learning [40], [41], [20], [42]. 

A noteworthy attribute of Random Decision Forests is their ability to mitigate a 

common pitfall encountered with decision trees—overfitting to the training dataset. 

3.8.2 Support Vector Machines 
Support Vector Machine (SVM) is a machine learning algorithm renowned 

for its versatility across a broad spectrum of tasks, including both linear and 

nonlinear classification, regression, and even the detection of outliers. Its utility 

extends to a myriad of applications, ranging from text classification [43], image 

classification [44], spam detection [45], and handwriting identification [46], to gene 

expression analysis [47], face detection [48], and anomaly detection [49]. SVMs 

exhibit adaptability and efficiency, making them a preferred choice in scenarios 
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involving high-dimensional data and intricate nonlinear relationships. The 

underlying principle that empowers SVM's effectiveness lies in its pursuit of 

identifying the optimal separating hyperplane, one that maximizes the margin 

between different classes within the target feature.  

The fundamental goal of the SVM algorithm is to identify the optimal hyperplane 

within an N-dimensional space. This hyperplane's crucial role is to effectively 

separate data points across different classes residing within the feature space. The 

optimization objective for this hyperplane is to maximize the margin between the 

closest points from distinct classes, ensuring the greatest possible separation. The 

dimensionality of this hyperplane directly correlates with the number of input 

features. In cases where there are precisely two input features, the hyperplane 

takes the form of a simple line. With three input features, the hyperplane 

transforms into a 2-D plane. However, as the number of features exceeds three, 

visualizing the hyperplane's configuration becomes increasingly complex. 

This algorithm, while computationally demanding, yields robust results, making 

SVM an asset in the field of machine learning.  

3.8.3 Naïve Bayes (Gaussian) 
Gaussian Naive Bayes is a fundamental machine learning algorithm that 

falls under the Naive Bayes family. It's particularly popular for classification tasks, 

especially in the field of text classification and sentiment analysis. The "Gaussian" 

in its name signifies that it assumes that the features associated with each class 

follow a Gaussian (normal) distribution.  
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One of the core principles behind Gaussian Naive Bayes is its application of Bayes' 

theorem, which enables the model to calculate the probability of a certain class 

given the observed features. Despite its simplicity, this algorithm has proven to be 

quite effective in many scenarios [20],[50],[51]. By assuming that features are 

conditionally independent of each other, it simplifies the model-building process 

while still yielding reasonable performance. 

Gaussian Naive Bayes is widely used in various domains, including spam email 

detection[52], document classification[53], and medical diagnosis[54]. Its speed 

and reliability make it a valuable tool for quick, preliminary classification tasks.  

3.8.4 Multilayer Perceptron (MLP) 
Multilayer perceptron (MLP) is a type of artificial neural network widely used 

in the field of machine learning and deep learning. It's known for its capability to 

handle complex problems, especially those involving non-linear relationships 

between input and output data. MLP is a feedforward neural network consisting of 

an input layer, one or more hidden layers, and an output layer. Each layer is 

composed of neurons (or nodes) that perform weighted sum calculations and apply 

activation functions to produce the output. These layers are interconnected with 

weighted connections that allow the network to capture intricate patterns in the 

data. 

One of the key strengths of MLP is its capacity to model complex relationships 

within data, making it suitable for various tasks like regression[55][56], 

classification[57][58], and pattern recognition [59]. Training an MLP involves using 

a supervised learning approach, typically backpropagation, where the network 
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adjusts its weights to minimize the error between predicted and actual outputs. 

While MLPs are known for their versatility, they often require a substantial amount 

of labeled training data to perform well. 

In recent years, multilayer perceptron has been integrated into larger and more 

advanced deep learning architectures[60]. By stacking multiple layers of MLPs and 

incorporating techniques such as dropout and batch normalization, deep neural 

networks have achieved remarkable success in tasks like image recognition, 

natural language processing, and reinforcement learning. Despite their 

capabilities, MLPs also come with challenges, such as overfitting and difficulties in 

training very deep networks. Researchers continue to innovate, working on novel 

approaches to address these issues and further enhance the power of multilayer 

perceptron. 

3.9 Evaluation Metrics 

Machine learning evaluation metrics are critical tools used to assess the 

performance of a machine learning model. These metrics provide quantifiable 

measures of how well a model is doing and are essential for understanding its 

strengths and weaknesses. Common evaluation metrics vary depending on the 

type of machine learning task. For classification tasks, metrics like accuracy, 

precision, recall, F1 score, and the ROC curve are commonly used.  

In regression tasks, metrics such as Mean Absolute Error (MAE), Mean Squared 

Error (MSE), and Root Mean Squared Error (RMSE) measure the error between 

predicted and actual values. These metrics help quantify how close the model's 

predictions are to the ground truth. Additionally, for probabilistic models, log loss 
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or cross-entropy is used to measure the quality of predicted probabilities, 

especially for binary classification problems. The choice of evaluation metrics 

should align with the specific objectives and characteristics of the problem, as well 

as the preferences for minimizing false positives or false negatives, depending on 

the context. 

Since our work is a classification problem, we use accuracy, precision, recall, F1 

score, and the ROC curve as our metrics to evaluate the performance of our model. 

 

3.9.1 Classification Accuracy 
Classification accuracy is a fundamental and easily interpretable evaluation 

metric used to gauge the performance of a classification model. It calculates the 

proportion of correctly predicted instances out of the total number of instances in 

a dataset, providing a simple and intuitive measure of the model's correctness. For 

instance, if a classifier is tasked with distinguishing between cats and dogs, and it 

classifies 95 out of 100 images correctly, the accuracy would be 95%, indicating 

that it is accurate in its predictions for 95% of the cases. This metric is especially 

helpful when the dataset has a balanced class distribution, where each class has 

roughly the same number of instances. Given a two-class classification problem, 

where the model can only classify an instance as positive or negative, classification 

accuracy can be defined as  

𝐶𝐶𝐶𝐶𝑎𝑎𝑠𝑠𝑠𝑠𝑚𝑚𝐶𝐶𝑚𝑚𝑐𝑐𝑎𝑎𝑡𝑡𝑚𝑚𝐶𝐶𝑚𝑚 𝐴𝐴𝑐𝑐𝑐𝑐𝐴𝐴𝑎𝑎𝑎𝑎𝑐𝑐𝑦𝑦 =  𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

   (17) 
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Where: 

TP = Number of correctly classified positive instances 

TN = Number of correctly classified negative instances 

FP = Number of incorrectly classified positive instances 

FN = Number of incorrectly classified negative instances 

However, classification accuracy may not be the most appropriate metric in all 

situations. It doesn't account for imbalanced datasets, where one class heavily 

outweighs the others. In such cases, a model might achieve a high accuracy by 

predicting the majority class correctly while completely missing the minority class. 

In these scenarios, other evaluation metrics like precision, recall, F1 score, or the 

area under the Receiver Operating Characteristic curve (AUC-ROC) are often 

preferred, as they provide a more comprehensive assessment of the model's 

performance, especially regarding its ability to identify positive instances and avoid 

false positives or negatives. 

3.9.2 Precision 
Precision is a crucial model evaluation metric in machine learning, 

particularly in classification tasks, where it focuses on the accuracy of positive 

predictions made by a model. It quantifies the proportion of true positive predictions 

(correctly identified positive cases) out of all instances classified as positive, 

whether they are true or false positives. In other words, precision measures the 

model's ability to make accurate positive predictions without producing a high rate 

of false alarms. High precision implies that the positive predictions are reliable, 
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making it a valuable metric in applications where false positives have significant 

consequences, such as medical diagnoses or fraud detection. Given a two-class 

classification problem, where the model can only classify an instance as positive 

or negative, classification accuracy can be defined as 

𝑃𝑃𝑎𝑎𝑃𝑃𝑐𝑐𝑚𝑚𝑠𝑠𝑚𝑚𝐶𝐶𝑚𝑚 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

   (18) 

Where: 

TP = Number of correctly classified positive instances 

FP = Number of incorrectly classified positive instances 

A higher precision value indicates that the model makes more cautious and 

conservative positive predictions, which can be beneficial in scenarios where false 

positives are costly. However, in applications where missing positive instances 

(lower recall) is more problematic than an occasional false alarm, it's important to 

strike the right balance between precision and recall ensuring the model's 

performance aligns with the specific objectives of the task. 

3.9.3 Recall 
Recall, often referred to as sensitivity or true positive rate, is a fundamental 

metric in machine learning that assesses a model's ability to identify all positive 

instances in a dataset. It measures the proportion of true positive predictions 

(correctly identified positive cases) out of all actual positive instances. In other 

words, recall quantifies how effectively a model captures and retrieves relevant 

data points from the dataset. High recall implies that the model excels at identifying 

as many positive instances as possible, which is crucial in applications where 
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missing a positive case could have severe consequences, such as disease 

diagnosis or security screening. Given a two-class classification problem, where 

the model can only classify an instance as positive or negative, classification 

accuracy can be defined as 

𝑀𝑀𝑃𝑃𝑐𝑐𝑎𝑎𝐶𝐶𝐶𝐶 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

   (19) 

Where: 

TP = Number of correctly classified positive instances 

FN = Number of incorrectly classified negative instances 

A higher recall value suggests a model that is conservative in making positive 

predictions, striving to minimize the risk of missing relevant instances. Striking the 

right balance between precision and recall is essential, as it depends on the 

specific objectives and requirements of the machine learning task. 

3.9.4 F1 Score 
The F1 score is a widely used metric in machine learning that strikes a 

balance between precision and recall. It is particularly valuable in situations where 

class imbalance is prevalent or when both false positives and false negatives are 

costly. The F1 score combines these two important aspects of classification 

performance into a single value, making it a reliable indicator of a model's overall 

effectiveness. It is calculated by taking the harmonic mean of precision and recall, 

providing a single score that reflects how well a model correctly classifies instances 

of the positive class while minimizing both false positives and false negatives. In 
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essence, the F1 score considers not only the correctness of positive predictions 

(precision) but also the ability to capture all actual positive instances (recall). 

𝐹𝐹1 𝑆𝑆𝑐𝑐𝐶𝐶𝑎𝑎𝑃𝑃 =  2 𝑥𝑥 𝑇𝑇𝑛𝑛𝑃𝑃𝑃𝑃𝑖𝑖𝑠𝑠𝑖𝑖𝑛𝑛𝑛𝑛 𝑥𝑥 𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅
𝑇𝑇𝑛𝑛𝑃𝑃𝑃𝑃𝑖𝑖𝑠𝑠𝑖𝑖𝑛𝑛𝑛𝑛+𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅

     (20) 

The F1 score is especially useful when it is essential to balance precision and 

recall, and its harmonic mean nature gives higher weight to the lower of the two. 

This means that the F1 score will be lower if either precision or recall is significantly 

lower than the other, making it a robust metric for evaluating models in various 

applications, including medical diagnostics, information retrieval, and fraud 

detection. The F1 score's value falls between 0 and 1, where higher values indicate 

better classification performance. It helps with finding a suitable trade-off between 

precision and recall, depending on the specific requirements and constraints of 

their classification tasks. 

3.9.5 ROC AUC score 
The ROC AUC (Receiver Operating Characteristic Area Under the Curve) 

score is a fundamental performance metric for classification models. The ROC 

AUC score provides a single value that summarizes the classifier's overall 

performance, making it easier to compare different models. An AUC score of 0.5 

indicates a random classifier, while a score of 1 suggests a perfect model that can 

separate the two classes. In practice, most classifiers aim for an AUC score greater 

than 0.5, signifying their effectiveness in making accurate predictions. 

The ROC AUC score is particularly useful when dealing with imbalanced datasets, 

where one class significantly outnumbers the other. It helps assess the model's 

ability to correctly rank instances and is robust to class distribution, making it a 



86 

preferred choice for evaluating classifiers in a wide range of applications, including 

medical diagnostics, credit risk assessment, and spam email detection. A higher 

ROC AUC score implies better discrimination power, and it serves as a valuable 

tool for selecting the most suitable model for a classification task. 

We identify that based on the very balanced nature of our dataset (all authors have 

equal number of documents); classification accuracy is enough to evaluate the 

effectiveness of our models. However, we introduce the use of the other metrics 

to give a better understanding of how well our methodology performs. 

 

 

3.9.6 Workflow of methodology 
 The workflow commences with the data gathering phase, where data is 

sourced and collected from multiple websites, creating our source code documents 

and text documents (corpus). The next stage is the data preprocessing and feature 

extraction stage which involves cleaning and filtering of the corpus. Following this, 

feature extraction takes place, focusing on extracting stylometric features from 

both text and source code documents. Feature fusion which combines the features 

from source code and text into one representation (Multimodal Features). 

The next and final stage is Classification, perhaps the heart of this work, which 

involves employing robust algorithms to build models that differentiate and identify 

authors accurately. In essence, the workflow acts as a roadmap guiding the 

research process from data acquisition to meaningful results. 
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Figure 7 illustrates the workflow adopted in this research to execute our 

methodology effectively.  
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Figure 7: Methodology Workflow 
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CHAPTER FOUR 

RESULT EVALUATION 
4.1 Introduction 

In this chapter, we discuss and evaluate the results obtained from carrying 

out authorship identification using multimodal stylometry by comparing the results 

with single mode stylometry which is our baseline method. We also carry out a 

second experiment using our methods to distinguish between human generated 

text and source code from machine generated text and source code (ChatGPT7

 
7 https://openai.com/ 

https://openai.com/
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4.2 Experimental setting 

Our evaluation focused on the application of multimodal stylometry 

techniques to our dataset, referred to as MMF. This dataset comprises 19 distinct 

authors, each contributing 50 documents for both text and source code, resulting 

in a total of 950 observations. After the feature selection process described in 

chapter 3, we were left with 597 features for source code data and 587 numbers 

of features for textual data. The selected features from both modalities are then 

concatenated to form a multimodal dataset. This dataset also goes through the 

feature selection process. After feature selection, the multimodal dataset has 798 

features, comprising of 458 source code features and 340 textual features.  

To comprehensively evaluate the effectiveness of our proposed multimodal 

approach, we utilized three machine learning algorithms, Gaussian Naïve Bayes, 

Multilayer perceptron, and Random Forest (Support Vector Machines was 

excluded from this experiment due to its very poor performance on the dataset) 

combined with a robust 10-fold cross-validation methodology. This process 

involved randomly partitioning the dataset into ten subsets, allocating 90% for 

training and reserving the remaining 10% for testing. To ensure the reliability and 

consistency of our evaluation, we iterated this 10-fold cross-validation procedure 

three (3) times. This approach was particularly well-suited to our research because 

our dataset size was relatively small, and cross-validation becomes crucial in such 

scenarios to mitigate the limitations associated with limited data availability. 
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The decision to perform three iterations of the 10-fold cross-validation process was 

a deliberate choice aimed at enhancing the reliability of our results. By repeating 

this comprehensive evaluation multiple times, we were better equipped to account 

for any potential variations that could occur due to the randomization inherent in 

the cross-validation process. This approach allowed us to extract more robust 

insights into the performance of our multimodal stylometry techniques under 

different conditions and settings, thus strengthening the validity of our findings. The 

eventual evaluation metric (classification accuracy, precision, recall, F1 and ROC 

AUC) score was determined by calculating the mean of the individual scores 

obtained from each individual run of the classifier. This method allowed us to 

consolidate the results from the multiple iterations, providing a more stable and 

representative measure of the classifier's performance. It effectively reduced the 

impact of any potential variability that might arise from individual runs and provided 

a comprehensive assessment of our proposed multimodal stylometry approach. 

To establish a baseline for our results, we compared the performance of our 

multimodal stylometry approach with the results obtained from single mode 

stylometry (source code and text). The baseline methods involved utilizing 50 

documents for both the text and source code datasets within the same set of 

authors (19), allowing us to gauge the improvements gained from adopting 

multimodal techniques.  
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4.2.1 Open World vs Closed World 
In machine learning and artificial intelligence, two fundamental paradigms 

shape the way systems approach data and decision-making: the closed world and 

open world paradigms. These paradigms encapsulate the varying degrees of 

knowledge and adaptability that AI systems exhibit, ultimately influencing their 

behavior in different contexts. 

In an open world setting, AI systems acknowledge the vastness and dynamism of 

the real world. There is an understanding that the training data and the knowledge 

encapsulated in it are inherently incomplete, and the system is designed to adapt, 

learn, and make informed decisions even in the presence of novel or unanticipated 

data. Open world systems can identify unknown entities and respond more flexibly 

to evolving situations. These systems are pivotal in handling the complexity of real-

world data but may face challenges in maintaining boundaries and certainty in 

situations where closed world assumptions could provide more stable results. 

Conversely, in a closed world scenario, the system operates under the assumption 

that the knowledge it possesses about the world is exhaustive and complete. This 

implies that the system recognizes and can make decisions only about entities and 

concepts that are well-defined and explicitly accounted for in its training data. Any 

input that does not align with this predefined knowledge is regarded as unknown 

or anomalous, often leading to rejection or incorrect classifications. Closed world 

systems tend to excel in well-defined, controlled environments but face limitations 

when confronted with real-world data that is dynamic, diverse, and unstructured. 
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In this research, we adopt a closed-world approach, focusing on a multiclass 

classification task, which implies that all possible classes or categories are known 

and predefined, and the model's objective is to classify data into one of these pre-

established categories. This approach was selected because it simplifies the 

classification task by assuming that data will belong to one of the known classes 

and this also makes it a practical choice for real-world applications. Throughout 

this research, we evaluate the performance of our models under the closed-world 

assumption to gain insights into the effectiveness of our proposed approaches for 

the multiclass classification problem.  

4.3 Result Evaluation 

In this section, we show the results obtained from identifying 19 distinct 

authors based on the analysis of their written text and source code and by 

combining the features obtained from both modalities (Multimodal Stylometry). Our 

approach follows a closed-world assumption, which implies that we can only 

recognize authors who are part of our predefined author set. Text or source code 

attributed to authors not included in our established set would inevitably be 

misclassified, possibly as one of the known authors within the set. This concept 

also holds relevance for addressing issues like ghostwriting. Our dataset 

encompasses 50 text files and 50 source code files for each of the 19 authors, 

leading to a comprehensive evaluation of our multimodal feature set. We 

conducted a comparative analysis of the results yielded by our multimodal 
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approach against those achieved through single mode stylometry, as illustrated in 

Table 22 below. 

No of Authors: 19 
No of Documents: 50 
Total Number of Instances: 950 
Feature Fusion % split: Text (42.6%), Code (57.4%) 
Classifiers  Modality No of 

Features 
CA 
(%) 

P 
(%) 

R 
(%) 

F1 
(%) 

AUC 
(%) 

Gaussian 
Naïve 
Bayes 

Code  597 39.6 38.4 39.6 36.4 75.5 
Text 587 41.8 41.6 41.8 39.6 74.7 
Multimodal 798 48.8 48.0 48.8 46.5 77.2 

Random 
Forest 

Code  597 43.3 43.3 43.5 42.1 82.8 
Text 587 55.4 56.9 55.8 54.9 91.0 
Multimodal  798 58.4 58.1 58.1 57.3 91.2 

MLP Code 597 43.4 46.6 43.2 43.8 86.3 
Text  587 52.0 55.2 52.2 52.6 90.0 
Multimodal  798 56.3 58.5 56.4 56.1 90.8 

Table 22: Results obtained from unimodal and multimodal stylometry.  

Where; 

CA: Classification Accuracy 

P: Precision   

R: Recall   

F1: F1 Score 

AUC: AUC ROC 

The comprehensive examination of the results depicted in the table above shows 

the notable superiority of multimodal stylometry in contrast to single mode 

stylometry across all our evaluation metrics. This advantageous performance 



94 

manifests in terms of precision, recall, F1 score, and accuracy. The noteworthy 

exception lies in the AUC ROC score, multimodality slightly outperforms text 

stylometry by a meagre 0.001 margin. Intriguingly, it is paramount to acknowledge 

that the Random Forest classifier exhibits a superior overall performance 

compared to other classifiers employed in the study in terms of the classification 

accuracy. 

The discernible improvement brought about by multimodal stylometry becomes 

particularly apparent when analyzing the post-fusion outcome of both code and 

text stylometric features. Following the fusion process, our feature selection 

algorithm identified and retained 798 salient features. This feature selection 

significantly contributed to the refined performance of our models. The 

discriminative power inherent in these selected features accentuates the efficacy 

of a multimodal approach, demonstrating its capacity to leverage complementary 

information from both text and source code domains. 

4.3.1 Precision vs Recall 
As highlighted in the previous chapter, precision and recall are two crucial 

metrics in evaluating the performance of classification models. Precision measures 

the accuracy of positive predictions by assessing the proportion of true positives 

among all instances predicted as positive. In other words, precision gauges the 

model's ability to avoid false positives. On the other hand, recall, also known as 

sensitivity or true positive rate, evaluates the model's capability to capture and 

correctly identify all relevant instances in the dataset. It calculates the proportion 

of true positives among all actual positive instances. Precision and recall are often 
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in tension; as one increases, the other may decrease. Striking the right balance 

between precision and recall is essential, depending on the specific goals and 

requirements of a given application. Achieving high precision is crucial when 

minimizing false positives is a priority, while emphasizing recall becomes 

imperative when ensuring the comprehensive identification of positive instances is 

paramount. 

In the presented results table, it is evident that the utilized classifiers generally 

maintain moderately balanced recall and precision scores. Notably, both the 

Random Forest and MLP classifiers achieve scores exceeding 50%, indicating 

their proficiency in minimizing false positives (precision) and accurately identifying 

all pertinent instances in the dataset (recall). However, it is crucial to clarify that 

the primary objective of this study was not to ascertain whether the classifiers could 

attain a higher classification accuracy or recall individually. Instead, the focus was 

on demonstrating that multimodal stylometry outperforms single mode stylometry, 

considering both text and source code. The results unequivocally indicate that 

multimodal stylometry excels in minimizing false positives (precision) and 

capturing all relevant instances in the dataset (recall), surpassing the performance 

of utilizing features exclusively from either text or code stylometry. 

4.4 Dataset Scalability 

Additionally, our investigation delved into exploring the impact of the 

number of documents per author on the task of authorship identification. Following 

the acquisition of the initial dataset, we implemented a controlled experiment by 
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randomly selecting a subset of N documents for authors with document counts 

greater than or equal to N. This strategic approach allowed us to systematically 

vary the size of the dataset, shedding light on how the quantity of documents 

influences the efficacy of the authorship identification process and Multimodal 

Stylometry. Such an inquiry into the dataset's scalability holds practical 

implications, offering insights into the robustness and adaptability of the proposed 

multimodal stylometry approach under different number of documents, number of 

authors and dataset size. 

Scaling up and down the dataset size is a pivotal aspect of understanding the 

generalizability and applicability of the proposed methodology. By systematically 

adjusting the number of documents per author, we gained valuable insights into 

our methodology’s performance across varying data densities. The objective was 

to discern whether the multimodal stylometry approach exhibits consistent 

proficiency in authorship identification across datasets of different sizes. This 

exploration of dataset scalability provides a more comprehensive understanding 

of our method's reliability and effectiveness, contributing to the robustness of our 

findings. The pseudocode below shows our selection process. It is worth noting 

that we increase the number of documents, the number of authors is reduced and 

vice versa. All the datasets went through the same features selection and feature 

fusion processes.  
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Input: Corpus C,  
Output: New_Corpus where X = N N_C  

1. X = number of documents per author 
2. N = number of documents to be selected 
3. If X >= N: 

i. Select author. 
ii. Random (Select N(documents) where N(documents) is a subset of 

X(documents)) 
4. Else: 

i. Discard author  
Algorithm 3: Dataset Scaling 

Algorithm 3 is executed for N = (10, 15, 20, 25, 30, 35, 40, 45, 55, 60, 65, 70) and 

gives an additional 12 datasets (7 datasets with document size smaller than our 

original dataset and 5 with documents size larger than our original dataset). The 

sections that follow show the results obtained from experimentation on all 12 

additional datasets. Also, we can see the effect of an increase or decrease in the 

number of documents. 

4.4.1 Dataset One 
No of Authors: 34 
No of Documents: 10 
Total Number of Instances: 340 
Feature Fusion % split: Text (48.9%), Code (51.3%) 
Classifier Modality No of Features CA 

(%) 
P 
(%) 

R 
(%) 

F1 
(%) 

AUC 
(%) 

Naïve 
Bayes 

Source Code 232 25.4 19.8 25.4 21.4 74.2 
Text  266 42.1 31.6 42.1 34.6 73.7 
Multimodal 269 43.5 36.1 43.5 38.4 77.4 

Random 
Forest 

Source Code 232 36.9 31.2 37.2 31.3 79.3 
Text 266 53.4 49.8 54.5 51.0 89.5 
Multimodal 269 57.2 51.1 56.5 52.8 90.0 

MLP Source Code 232 35.1 28.6 35.3 30.5 81.2 
Text 266 55.6 50.5 54.6 51.6 90.8 
Multimodal 269 54.4 49.1 54.1 50.8 91.0 

Table 23: Results obtained for unimodal and multimodal stylometry using 10 
documents. 
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Table 23 represents the results obtained using 10 documents and 24 authors. This 

gives a dataset with 340 observations. The results show that multimodality 

outperforms single modality (NB: ≈ 1.4%, RF: ≈ 4%) except with MLP classifier, 

where text stylometry does better than multimodal stylometry. This result shows 

that multimodal stylometry doesn’t do well on small document size when the MLP 

classifier is used. Also, we see that though the number of features selected for 

source code are slightly less than those selected for text, more source code 

features (51.4%) are selected after feature fusion. This highlights the beauty of 

multimodality where the best features are selected from each modality to improve 

model performance. 

4.4.2 Dataset Two   
No of Authors: 29 
No of Documents: 15 
Total Number of Instances: 435 
Feature Fusion % split: Text (49.4%), Code (50.6%) 
Classifier Modality No of Features CA 

(%) 
P 
(%) 

R 
(%) 

F1 
(%) 

AUC 
(%) 

Naïve 
Bayes 

Source Code 373 35.7 33.2 35.7 32.0 77.6 
Text 181 38.9 33.8 38.9 34.3 74.9 
Multimodal 344 43.7 38.7 43.7 39.0 75.5 

Random 
Forest 

Source Code 373 42.1 37.8 41.5 37.8 82.2 
Text 181 54.8 53.2 55.8 52.5 90.0 
Multimodal 344 58.2 56.9 58.5 57.1 91.2 

MLP Source Code 373 40.6 39.7 40.4 37.2 85.8 
Text 181 51.6 51.2 51.9 50.7 90.5 
Multimodal 344 56.6 56.6 57.6 55.5 92.1 

Table 24: Results obtained for unimodal and multimodal stylometry using 15 
documents. 

Table 24 shows the results obtained when the document size was increased to 15. 

We see an increase in the performance of multimodal stylometry in comparison 
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with single mode stylometry.  We also see that compared with the results in table 

23, MLP performs better with modality with the increase in document size. 

 

4.4.3 Dataset Three 
No of Authors: 28 
No of Documents: 20 
Total Number of Instances: 560 
Feature Fusion % split: Text (51.5%), Code (48.5%) 
Classifier Modality No of Features CA 

(%) 
P 
(%) 

R 
(%) 

F1 
(%) 

AUC 
(%) 

Naïve 
Bayes 

Source Code 511 35.5 35.9 35.5 33.5 76.8 
Text  486 44.5 42.0 44.5 40.1 73.1 
Multimodal 336 46.3 42.4 46.3 42.6 77.6 

Random 
Forest 

Source Code 511 40.5 36.7 39.9 37.1 82.7 
Text 486 55.8 55.8 54.8 54.3 90.3 
Multimodal 336 57.2 55.7 56.4 55.5 91.9 

MLP Source Code 511 40.8 41.2 40.9 38.7 86.3 
Text 486 53.9 57.3 53.8 53.3 90.6 
Multimodal 336 56.7 58.0 56.8 56.4 92.1 

Table 25: Results obtained for unimodal and multimodal stylometry using 20 
documents. 

As seen in table 25, we see a slight increase in modal performance as document 

size increased from 15 to 20 though there is a slight drop in the number of authors. 

We can deduce that document size increase may have more effect on model 

performance than the number of authors. 
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4.4.4 Dataset Four 
No of Authors: 25 
No of Documents: 25 
Total Number of Instances: 625 
Feature Fusion % split: Text (43.6%), Code (56.4%) 
Classifier Modality No of Features CA 

(%) 
P 
(%) 

R 
(%) 

F1 
(%) 

AUC 
(%) 

Naïve 
Bayes 

Source 
Code 

279 32.4 31.8 32.4 28.4 74.9 

Text 303 41.5 39.9 41.5 38.4 76.2 
Multimodal 417 44.4 43.5 44.4 41.5 77.1 

Random 
Forest 

Source 
Code 

279 40.0 39.4 40.2 37.8 82.1 

Text 303 53.2 53.1 52.7 51.9 90.3 
Multimodal 417 56.6 56.4 56.9 55.2 91.4 

MLP Source 
Code 

279 38.6 37.8 38.6 36.4 84.0 

Text 303 48.8 51.5 48.6 48.8 90.1 
Multimodal 417 53.9 55.0 53.4 53.4 91.2 

Table 26: Results obtained for unimodal and multimodal stylometry using 25 
documents. 

The results shown in table 26 above, we observe that it follows the trends of the 

previously examined results where multimodality performs better than single mode 

stylometry. However, there is a slight deep in the overall performance of the 

classification algorithms.  
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4.4.5 Dataset Five 
No of Authors: 24 
No of Documents: 30 
Total Number of Instances: 720 
Feature Fusion % split: Text (44.6%), Code (55.4%) 
Classifier Modality No of 

Features 
CA 
(%) 

P 
(%) 

R 
(%) 

F1 
(%) 

AUC 
(%) 

Naïve 
Bayes 

Source Code 457 36.2 36.5 36.2 33.7 74.4 
Text  485 38.8 37.5 38.8 35.4 72.7 
Multimodal 628 42.8 41.8 42.8 40.3 74.7 

Random 
Forest 

Source Code 457 37.9 35.1 38.1 35.0 80.6 
Text 485 49.4 48.9 48.8 47.1 88.3 
Multimodal 628 52.5 50.6 52.5 50.5 89.9 

MLP Source Code 457 42.1 44.0 41.9 40.7 85.5 
Text 485 49.3 51.5 49.5 48.5 89.1 
Multimodal 628 51.8 53.6 51.5 51.9 90.5 

Table 27: Results obtained for unimodal and multimodal stylometry using 30 
documents. 

The results obtained from dataset five show again that multimodality does a better 

job at author identification than single modality.  

4.4.6 Dataset Six 
No of Authors: 21 
No of Documents: 35 
Total Number of Instances: 735 
Feature Fusion % split: Text (51.4%), Code (48.6%) 
Classifier Modality No of Features CA 

(%) 
P 
(%) 

R 
(%) 

F1 
(%) 

AUC 
(%) 

Naïve 
Bayes 

Source Code 618 39.6 39.8 39.6 37.4 74.3 
Text 494 41.8 41.8 41.8 38.5 73.5 
Multimodal 533 48.0 47.9 48.0 45.8 77.7 

Random 
Forest 

Source Code 618 42.9 41.9 42.5 41.3 83.5 
Text 494 56.3 56.4 56.4 54.8 90.7 
Multimodal 533 58.6 56.7 58.3 56.0 91.3 

MLP Source Code 618 42.2 45.7 42.6 41.3 86.5 
Text 494 53.0 55.3 53.2 52.5 90.7 
Multimodal 533 56.7 58.6 57.1 55.9 91.9 

Table 28: Results obtained for unimodal and multimodal stylometry using 35 
documents. 



102 

Table 28 above show the results obtained from increasing the number of 

documents per author to 35. We begin to see a steady rise in model performance 

but what is evident is that the gap begins to widen between multimodality 

classification accuracy and single modality. Also, we see that the feature selection 

process yielded a reduced number of features for multimodality compared to 

source code features. This is because the feature selection process is designed to 

select on features from both modalities that best contributes to the output. There 

is also a slight drop in the overall accuracy for Naïve Bayes especially for source 

code stylometry. This is because the curse of dimensionality has little effect on 

Random Forest and MLP classifiers but can impact the results obtained using 

Naïve Bayes especially because the optimal number of features selected seemed 

to be large. 

4.4.7 Dataset Seven 
No of Authors: 20 
No of Documents: 40 
Total Number of Instances: 800 
Feature Fusion % split: Text (48.4%), Code (51.6%) 
Classifier Modality No of 

Features 
CA 
(%) 

P 
(%) 

R 
(%) 

F1 
(%) 

AUC 
(%) 

Naïve 
Bayes 

Source Code 725 39.8 40.8 39.8 37.9 74.8 
Text  668 42.8 42.8 42.8 39.7 72.9 
Multimodal 641 44.7 45.6 44.7 42.6 75.9 

Random 
Forest 

Source Code 725 45.3 45.1 44.9 42.8 84.5 
Text 668 56.5 57.7 56.7 56.2 91.6 
Multimodal 641 60.1 59.4 60.2 58.0 92.5 

MLP Source Code 725 41.8 46.5 41.9 41.4 86.4 
Text 668 56.0 59.7 57.0 55.9 90.8 
Multimodal 641 56.3 59.5 56.2 56.3 91.3 

Table 29: Results obtained for unimodal and multimodal stylometry using 40 
documents. 
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We begin to see a slight improvement in model performance across all modalities, 

but we also see the effect of dimensionality influencing source code stylometry. 

But the outperformance of multimodality remains constant. 

 

4.4.8 Dataset Eight 
No of Authors: 19 
No of Documents: 45 
Total Number of Instances: 855 
Feature Fusion % split: Text (47.3%), Code (52.7%) 
Classifier Modality No of Features CA 

(%) 
P 
(%) 

R 
(%) 

F1 
(%) 

AUC 
(%) 

Naïve 
Bayes 

Source Code 798 41.1 41.7 41.1 38.8 72.7 
Text 465 40.4 40.8 40.4 38.5 74.0 
Multimodal 692 47.2 48.1 47.2 45.4 75.6 

Random 
Forest 

Source Code 798 44.4 44.8 44.3 40.9 83.2 
Text 465 55.4 56.2 55.4 53.9 90.1 
Multimodal 692 58.1 58.2 58.2 57.7 91.1 

MLP Source Code 798 46.4 49.4 46.3 46.2 86.8 
Text 465 52.6 55.2 52.1 52.0 89.4 
Multimodal 692 55.8 57.9 56.0 56.0 90.7 

Table 30: Results obtained for unimodal and multimodal stylometry using 45 
documents. 

The results from dataset 8 is particularly interesting as it maintains the number of 

authors from our initial experiments, but the number of documents is set to 45. The 

results show that the difference between multimodality and text modality (which 

outperforms source code modality) remains the same as our main experiment. We 

begin to see that author size may not have an outcome on how multimodality would 

perform against single modality, but it has an influence on the overall performance 

of the classifiers. 
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4.4.9 Dataset Nine 
No of Authors: 17 
No of Documents: 55 
Total Number of Instances: 935 
Feature Fusion % split: Text (42.9%), Code (57.1%) 
Classifier Modality No of 

Features 
CA 
(%) 

P 
(%) 

R 
(%) 

F1 
(%) 

AUC 
(%) 

Naïve Bayes Source Code 684 42.0 44.6 42.0 39.9 76.6 
Text  458 42.4 43.6 42.4 40.7 76.8 
Multimodal 872 51.1 51.4 51.1 49.5 78.1 

Random 
Forest 

Source Code 684 43.8 43.0 43.5 41.4 84.2 
Text 458 56.8 58.5 57.3 56.8 91.2 
Multimodal 872 59.8 59.8 59.3 57.5 92.2 

MLP Source Code 684 46.5 49.6 46.7 46.6 87.2 
Text 458 54.4 57.1 54.3 54.4 90.2 
Multimodal 872 58.3 60.7 58.0 58.5 92.2 

Table 31: Results obtained for unimodal and multimodal stylometry using 55 
documents. 

The results in table 31, again show that multimodality outperforms single mode. 

But we also see that as document size increases multimodality for Naïve Bayes 

and is not hampered by the curse of dimensionality. This again show the 

effectiveness of multimodality where the best features from multiple modalities 

lead to better classification accuracy. 
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4.4.10 Dataset Ten 
No of Authors: 13 
No of Documents: 60 
Total Number of Instances: 780 
Feature Fusion % split: Text (49.5%), Code (50.5%) 
Classifier Modality No of 

Features 
CA 
(%) 

P 
(%) 

R 
(%) 

F1 
(%) 

AUC 
(%) 

Naïve 
Bayes 

Source Code 532 49.7 55.8 49.7 49.2 80.6 
Text 555 52.7 54.3 52.7 51.4 79.4 
Multimodal 662 64.5 65.7 64.5 63.6 83.8 

Random 
Forest 

Source Code 532 57.9 57.3 57.0 55.5 89.1 
Text 555 71.2 72.3 69.8 69.8 95.4 
Multimodal 662 72.2 73.6 72.0 71.6 95.6 

MLP Source Code 532 57.6 61.2 58.3 57.6 90.2 
Text 555 66.8 69.5 67.2 67.1 94.4 
Multimodal 662 72.9 75.0 73.0 72.9 95.2 

Table 32: Results obtained for unimodal and multimodal stylometry using 60 
documents. 

The results in table 32 show that as document size increases, Naïve Bayes and 

MLP performance for Multimodality increases while the performance for Random 

Forest classifier decreases. Though we see that Multimodality outperforms single 

modality, the difference is gradually decreasing when Random Forest classifier is 

used. 
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4.4.11 Dataset Eleven 
No of Authors: 11 
No of Documents: 65 
Total Number of Instances: 715 
Feature Fusion % split: Text (50.4%), Code (49.6%) 
Classifier Modality No of Features CA 

(%) 
P 
(%) 

R 
(%) 

F1 
(%) 

AUC 
(%) 

Naïve 
Bayes 

Source 
Code 

446 48.5 52.0 48.5 45.3 82.5 

Text  436 56.7 59.4 56.7 55.9 82.7 
Multimodal 557 66.0 67.4 66.0 64.8 86.5 

Random 
Forest 

Source 
Code 

446 58.6 59.5 59.0 58.4 91.0 

Text 436 76.3 78.0 75.4 75.2 96.6 
Multimodal 557 75.9 78.1 77.0 75.0 96.7 

MLP Source 
Code 

446 60.2 62.8 60.5 59.9 92.1 

Text 436 73.7 75.6 74.0 74.0 95.9 
Multimodal 557 77.4 79.5 77.1 77.1 96.4 

Table 33: Results obtained for unimodal and multimodal stylometry using 65 
documents. 

The results presented in table 33 evidently show that as document size increases, 

the performance of random forest for modality is decreased compared to single 

mode but is increases for Naive Bayes and MLP compared to single mode. Model 

performance, however, is increased across all classifiers. 
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4.4.12 Dataset Twelve 
No of Authors: 10 
No of Documents: 70 
Total Number of Instances: 700 
Feature Fusion % split: Text (45.5%), Code (54.5%) 
Classifier Modality No of Features CA 

(%) 
P 
(%) 

R 
(%) 

F1 
(%) 

AUC 
(%) 

Naïve Bayes Source 
Code 

619 56.4 59.1 56.4 55.1 82.8 

Text 392 60.1 61.5 60.1 58.5 85.7 
Multimodal 627 67.9 67.9 67.9 66.3 87.0 

Random 
Forest 

Source 
Code 

619 63.8 63.7 64.3 61.9 92.7 

Text 392 80.0 81.4 80.7 79.5 97.5 
Multimodal 627 80.7 81.9 81.6 80.3 97.8 

MLP Source 
Code 

619 69.8 72.0 69.6 69.2 94.4 

Text 392 77.7 79.4 77.3 77.3 96.6 
Multimodal 627 81.9 82.8 81.7 81.7 97.3 

Table 34: Results obtained for unimodal and multimodal stylometry using 70 
documents. 

Finally, we present the results for our dataset with the largest number of 

documents per author. We see from the results that multimodality outperforms 

single modality when Naïve Bayes and MLP are used but Random Forest shows 

little to know improvement with multimodality compared to single modality. 

The figures below show a graphical view of classification accuracy as the number 

of documents increase using our classifiers. 
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Figure 8: Line Chart showing the effect of scalability as document size increases 
for unimodal stylometry and multimodal stylometry using Naïve Bayes classifier. 

 

 
Figure 9: Line Chart showing the effect of scalability as document size increases 

for unimodal stylometry and multimodal stylometry using MLP classifier. 

 

 
Figure 10: Line Chart showing the effect of scalability as document size 

increases for unimodal stylometry and multimodal stylometry using Random 
Forest classifier. 
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The figures 8, 9 & 10 above show that Naïve Bayes and Random Forest perform 

well with modality when document size is small. We also see a steady increase in 

classification accuracy as number of documents increase. As the number of 

documents begins to exceed 55, we see a see that random forest begins 

performing poorly for modality but there’s increased performance with Naïve Bayes 

and MLP.  

4.5 Distinguish between human and machine generated content. 

Distinguishing between human and machine-generated content is a field of 

study that is increasingly growing due to the rise of sophisticated generative AI 

models like Chat GPT. Although this models can potentially revolutionize the 

society, they pose different new challenges. They can be used to produce false 

news and misinformation. Addressing this challenge aligns with the evolving 

landscape of language models and the need for discerning between content 

produced by artificial intelligence (AI) systems and that crafted by human authors. 

In the pursuit of this objective, we introduce a research endeavor aimed at 

distinguishing between human-generated and AI-generated content, 

encompassing both text and source code. Existing literature has explored manual 

linguistic distinctions between AI and human writing [61], while Islam et al. [62] 

have proposed machine learning-based methods for such discrimination using 

textual content. The results of this exploration will contribute valuable insights into 

the evolving landscape of AI-generated content and its distinguishability from 

human-authored material.  
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In this research, ChatGPT 3.5 and ChatGPT 4.0 serve as our primary sources for 

machine-generated content. It is noteworthy that OpenAI, the architects of 

ChatGPT, had previously undertaken efforts to distinguish between human and 

machine-generated text. However, these endeavors were eventually abandoned 

due to suboptimal results, with the highest accuracy achieved being a mere 26%, 

falling below the efficacy of random selection 8. It is important to contextualize that 

OpenAI's earlier work aimed at distinguishing human text from a combination of a 

myriad of AI text generator providers, whereas our research focuses exclusively 

on content generated by ChatGPT using only Chat GPT 3.5 and Chat GPT 4.0. 

This distinction underscores the specificity and scope of our investigation, 

providing a tailored perspective on the capabilities of stylometry to distinguish 

between ChatGPT-generated content and human generated content. 

4.5.1 Experimental Settings 
The experiment involved the extraction of 140 samples each of source code 

and text generated from ChatGPT 3.5 and Chat GPT 4.5, leveraging the OpenAI 

API. This extraction process was facilitated by presenting the programming topics 

we scraped from the programming tutorial websites that we used to build our 

human corpus as questions to the API. We do this to ensure uniformity across 

human and AI generated content, The ensuing outputs underwent a meticulous 

cleaning process, aligning with the procedures delineated in Chapter 3, ensuring 

consistency and comparability with the existing dataset. 

 
8 https://openai.com/blog/new-ai-classifier-for-indicating-ai-written-text 
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In tandem, to enrich the experimental context, a set of 5 text and source code 

documents were randomly selected from the established dataset from 28 human 

authors. This selection served to create a diverse and representative set of human-

authored content for comparative analysis. We followed the same feature 

extraction, feature selection and feature fusion processes that were outlined in 

Chapter 3. It is worth nothing that the text and source code documents extracted 

from ChatGPT 3.5 and 4 were extracted using topics extracted from our human 

corpus to ensure uniformity of topics and context of the corpus. After these 

processes were completed, we had three datasets for source code, text and 

multimodal. Each dataset had 420 observations. The results table show the 

number of features that was selected for each of the modalities. 

The classification task, differentiating between content generated by humans and 

ChatGPT, employed the use random forest, Gaussian Naïve Bayes, SVM and 

Multilayer perceptron classifiers coupled with a 10-fold cross-validation strategy 

with 3 repeats. This methodological choice was made to ensure comprehensive 

evaluation and robustness in handling the classification task. 

As we can see from the table 35, we see that multimodality outperforms unimodal 

stylometry across all the classifiers that we use, across all our metrics. Figures 11, 

12, and 13 show word clouds for text documents from the human, Chat GPT 3.5 

and Chat GPT 4.0 datasets. 
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No of Authors: 3 (Human, Chat GPT 3.5, Chat GPT 4.5) 
No of Documents: 140 
Total Number of Instances: 340 
Feature Fusion % split: Text (%), Code (%) 
Classifier Modality No of 

Features 
CA 
(%) 

P 
(%) 

R 
(%) 

F1 
(%) 

AUC 
(%) 

Gaussian 
Naïve 
Bayes 

Code 274 76.0 77.0 76.0 74.7 87.3 
Text 328 71.1 72.3 71.1 69.5 84.4 
Multimodality 383 79.0 80.5 79.0 78.5 88.7 

Random 
Forest 

Code 274 84.8 84.6 84.5 83.9 95.5 
Text 328 80.7 80.0 80.2 79.9 92.8 
Multimodality 383 88.4 89.4 89.1 88.7 96.9 

SVM Code 274 74.0 75.7 74.0 72.8 86.9 
Text 328 75.7 80.0 75.7 76.0 84.3 
Multimodality 383 81.1 83.6 81.1 80.2 92.0 

MLP Code 274 83.7 84.9 83.8 83.6 94.0 
Text 328 82.5 84.0 83.2 82.4 93.7 
Multimodality 383 88.2 88.8 88.6 88.2 95.6 

Table 35 : Results obtained for distinguishing between AI and Human generated 
content using unimodal stylometry and multimodal stylometry. 

 

 
Figure 11: Word Cloud for Human generated text 
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Figure 12: Word Cloud for Machine Generated text using Chat GPT 3.5 

 

 
Figure 13: Word Cloud for Machine Generated text using Chat GPT 4.0 
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As we can visibly see from the word clouds that the words are similar for all the 

corpora. This shows that our method focuses on style and not on the words used 

by the authors. 

4.6 Chapter Summary 

4.6.1 Multimodal Stylometry 
In this chapter, we were able to show the efficacy of multimodal stylometry 

(text and source code). We used a corpus with 19 authors and 50 documents per 

author for both text and source code. We employed the use of a robust feature 

selection process and use dearly stage fusion to combine the modalities. Table 22 

showed that multimodality outperforms single mode stylometry across all the 

metrics that was used to evaluate the performance of the classifiers. We also 

explore the effects of document size on multimodality. Tables 23 to 34 presents 

results of 12 datasets with document sizes ranging from 10 documents per author 

to 70 authors per authors. Our scalability experiments show that Naïve Bayes and 

Random Forest perform very well for multimodality at the smallest number of 

documents (10) but Multilayer perceptron doesn’t do well. However, we see a 

steady increase in the performances of MLP with multimodality as document size 

increases and, the results obtained from Random Forest and Naïve Bayes 

classifiers with multimodality experiences a steady improvement as document size 

increases. As document size gets to 55, we begin to see a decline in the 

performance of Random Forest with multimodality compared to single modality but 

Naïve Bayes and MLP results show an increase in multimodality performance as 

seen in Figures 8. 9 and 10. We also note that, though Naïve Bayes does not do 
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well with dimensionality, its performance doesn’t seem to be affected when used 

for multimodality compared to when it’s used for single modality. We also note that 

with most of the document sizes, the final fusion of features contained more 

features from the source code feature than they were from text features. 

In conclusion, Random Forest classifiers yield the best results for small document 

size while MLP yielded the best results for larger document sizes with 

multimodality. However, Naïve Bayes maintained a better multimodality 

performance across all the document sizes that the single modalities. 

4.6.2 Distinguishing human generated content from AI Generated Content 
Finally, we explore the ability of our methodology to distinguish between 

human generated and AI generated content using Chat GPT 3.5 and Chat GPT 

4.0 as our source for texts and source code generated from AI. Table 35 shows 

that our methodology performs well at making the distinction between human and 

AI generated texts and source code. Also, table 35 shows that multimodality 

outperforms single mode stylometry with Naïve Bayes classifiers and SVM but 

remains slightly unchanged with Random Forest and MLP classifiers. 

In our pursuit of advancing stylometric analysis, we have undertaken a rigorous 

exploration into the distinctive characteristics that differentiate human-generated 

content from that generated by AI language models, specifically leveraging Chat 

GPT 3.5 and Chat GPT 4.0 as primary sources for data. Our focus extends beyond 

textual content to include source code generated by these AI models, providing a 

comprehensive examination of the capabilities of our methodology. 
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CHAPTER FIVE 

CONCLUSION AND FURTHER WORK 
 

5.1 Introduction 

Stylometry is the study and analysis of the style (writing, painting, speech, 

writing code) of an individual. Multimodal stylometry is a stylometric technique that 

combines features from multiple modalities to improve accuracy. In this Chapter, 

we discuss the conclusions we draw from the experiments and results outlined in 

the previous chapter. The aim of these research was to show that multimodality in 

stylometry leads to better classification accuracy than single mode stylometry. We 

also show that machine generated text and source code (ChatGPT) can be 

distinguished from human generated text and source code.  

5.2 Conclusion 

The concept of modality is not new and has been applied in different fields 

with great success (Multimodal biometrics). In recent research, single mode 

stylometry has yielded good results for authorship identification and authorship 

profiling. 
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However, multimodality leverages on the best features from both modalities to 

improve accuracy. One major component of multimodality is the feature fusion. 

This is the technique of combining the information from both modalities.  

 In this work, our focus was to show that combining the features from the text and 

source code (multimodality) written by the same person improves classification 

accuracy when compared to single mode stylometry (text alone and source code 

alone). A major limitation we experienced was that there was no corpus available 

that had both text and source code written by the same author. To tackle this 

limitation, we identified some tutorial websites and used a python script to scrape 

the text and source code from the websites along with their authors. We also 

identified text stylometry feature set [6] and source code stylometry feature set [25] 

which were extracted from the text files and source code files. We employed the 

use of early fusion which is a technique that involves concatenating the features 

from the multiple modalities before building the model. Using machine learning 

classifiers, we built models using the individual feature sets and a third model using 

a combination of both feature sets (multimodality).  

We evaluate our method by comparing the accuracy of all the models. The 

classification accuracy of multimodal stylometry showed to outperform the 

accuracy of the other models. We also carry out an experiment to distinguish 

between human generated text and source code and machine generated 

(ChatGPT) text and source code. Multimodality was also used. Our results showed 

great success in identifying text and source code generated using AI language 

models (Chat GPT 3.5 and Chat GPT 4.0). Although, unexplored in stylometry, 
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multimodality offers an improvement in authorship identification and can be very 

useful in the field of stylometry especially with ransomware attacker detection and 

academic plagiarism.  

5.3 Future work 

This work (Multimodal stylometry) is novel research that extends its 

influence across various domains, offering a multitude of avenues for expansion 

and application. Our work is not just a singular achievement but a gateway to a 

myriad of possibilities. 

At the forefront of our endeavors lies the field of forensics, where the research 

conducted opens new dimensions in the identification and analysis of digital 

footprints. Unmasking the authors behind malicious software becomes a tangible 

reality as our research opens new methods for the detection of malware authors 

and ransomware attackers.  

In the academic sphere, our work contributes to the field of plagiarism detection. 

By harnessing multimodality in stylometry, we empower educational institutions 

the ability to maintain the integrity of academic work especially in computer 

science/programming classes where students have to projects/assignments that 

comprises of both written text and source code. Multimodal stylometry could be 

useful, ensuring a level playing field and upholding the principles of academic 

honesty. 
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Our work not only addresses immediate applications but also serves as a catalyst 

for a deeper exploration into the unexplored field of multimodal stylometry. Beyond 

the specific applications outlined earlier, our endeavors open the door to an 

exciting array of avenues that beckon further investigation. One compelling avenue 

for extended research is in feature fusion techniques within multimodal stylometry. 

While our current work focuses on early-stage fusion techniques, the landscape of 

possibilities expands exponentially with the exploration of late-stage and hybrid 

feature fusion methodologies. This progression promises to enhance the 

sophistication of our applications, providing a more nuanced understanding of the 

intricate interplay between multiple modalities. 

Also, the source code corpus is a canvas awaiting further exploration. In the pursuit 

of comprehensive understanding, we invite researchers to delve into the 

incorporation of multiple programming languages within the source code corpus. 

This expansion not only broadens the scope of our work but also lays the 

groundwork for a more inclusive and adaptable framework. 

Finally, due to the unavailability of a multimodal dataset for stylometry which led 

us to undertake an extensive effort of text and source code acquisition from diverse 

online sources. This undertaking was instrumental in laying the foundation for our 

research. A larger and more robust corpus, comprising documents generated by 

real human authors across various domains would be very useful for multimodal 

stylometry. This corpus should be a comprehensive multimodal dataset that 

mirrors the complexity of real-world communication. This effort will not only fortify 
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the foundation of multimodality but will also catalyze advancements in the broader 

field of stylometry. 
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Appendix 

1. The link contains files with the authors used and the topics from each of the 

authors. 

https://drive.google.com/file/d/11TRYi1Myx7kbHl59C03URROqQNsxU-

m8/view?usp=sharing  

 

https://drive.google.com/file/d/11TRYi1Myx7kbHl59C03URROqQNsxU-m8/view?usp=sharing
https://drive.google.com/file/d/11TRYi1Myx7kbHl59C03URROqQNsxU-m8/view?usp=sharing
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