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ABSTRACT

IN-TRAINING EXPLAINABILITY FRAMEWORKS TO MAKE BLACK-BOX

MACHINE LEARNING MODELS MORE EXPLAINABLE

Asuman Cagla Acun

April 24, 2024

Despite ongoing efforts to make black-box machine learning models more explain-

able, transparent, and trustworthy, there is growing advocacy for using only inherently

interpretable models for high-stake decision-making. Post-hoc explanations have recently

been criticized for learning surrogate models that may not accurately reflect the actual

mechanisms of the original model and for adding computational burden at prediction time.

We propose two novel explainability approaches to address these limitations: pre-hoc ex-

plainability and co-hoc explainability. These approaches integrate explanations derived from

an inherently interpretable white-box model into the learning stage of the black-box model

without compromising accuracy. Unlike post-hoc methods, our approach does not rely on

random input perturbation or only post-hoc training. We extend our pre-hoc and co-hoc

frameworks to generate instance-specific explanations by incorporating the Jensen-Shannon

divergence as a regularization term while capturing the local behavior of the black-box

model. This extension allows our methods to provide local explanations that are faithful to

the model’s behavior and consistent with the explanations generated by the global explainer

model. We introduce a two-phase approach, where the first phase focuses on training the

models for fidelity, and the second phase generates local explanations by fine-tuning the

explainer model within the neighborhood of the instance being explained.
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Experiments on three benchmark datasets from different domains (credit risk scoring,

movie recommendations, and robotic grasper failure detection) demonstrate the advantages

of our techniques in terms of global and local fidelity without compromising accuracy. Our

methods avoid the pitfalls of surrogate modeling, making them more scalable, robust, and

reliable compared to post-hoc techniques like LIME. Moreover, our co-hoc learning frame-

work enhances the accuracy of white-box models, which are learned to explain the black-box

predictor. The white-box model achieves significantly higher prediction accuracy after the

co-hoc learning process, highlighting the potential of the co-hoc in-training approach to

improve the performance of white-box models, which are essential and required in specific

high-risk and regulated application tasks in healthcare and legal decision-making.

Our approaches provide more faithful and consistent explanations at a lower compu-

tational cost than LIME. Our theoretically derived methods are further shown to balance

accuracy and interpretability through empirically regularized learning. The proposed frame-

works offer a promising direction for making machine learning models more transparent and

trustworthy while maintaining high prediction accuracy.
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CHAPTER 1

INTRODUCTION

Machine learning models are increasingly used to support decision-making in various

fields, from personalized medical diagnosis to credit risk assessment and criminal justice.

However, the increasing reliance on powerful black-box models raises concerns about their

transparency, interpretability, and trustworthiness [2–4]. Understanding why a model made

a particular prediction is crucial to supporting auditing models, detecting potential biases

and errors, and, in turn, supporting model accountability and fairness.

Explainable Artificial Intelligence (XAI) has emerged as a new research area that

focuses on machine learning interpretability. The goal is to build interpretable models that

will generate high-performing machine learning models [5] and thus enable human users to

understand the models and trust them.

In machine learning, the term explainability still lacks a common meaning, and the

capability varies from application to application. Interpretability is often used instead.

However, traditionally, explainability or interpretability refers to the ability of an artificial

intelligence system to be understood by humans [6].

Explainable AI helps build trust in machine learning systems by providing insights

into how models make decisions. This is particularly important in high-stakes domains such

as healthcare, finance, and criminal justice, where the consequences of incorrect or biased

decisions can be severe. When users understand how a model arrives at a particular output,

they are more likely to trust and rely on the system [7, 8]. Explanations can help identify

errors, biases, and unexpected behaviors in machine learning models. Developers can debug

and improve their models by understanding how features influence predictions, leading to

more accurate and reliable systems. [9,10]. In some domains, there are legal and regulatory

requirements to explain algorithmic decisions. For example, the European Union’s General

Data Protection Regulation (GDPR) includes a "right to explanation" for individuals subject

to automated decision-making. Explainable AI techniques can help organizations comply

with these regulations [11,12]. Explainable AI can also help uncover biases and unfairness in
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machine learning models [13, 14]. Furthermore, explainable AI enables effective human-AI

collaboration by providing a common understanding between humans and machines [15,16].

Figure 1.1: XAI Concept [1]

Several approaches have been proposed to explain black-box models, ranging from

local methods that provide explanations for individual predictions to global methods that

aim to capture the model’s overall behavior. Post-hoc explanations, such as LIME (Local In-

terpretable Model-Agnostic Explanations) [17], SHAP (Shapley Additive Explanations) [18],

and Grad-CAM (Gradient Weighted Class Activation Mapping) [19], have gained popularity

in recent years as a way to explain black-box models by perturbing the input data and learn-

ing a surrogate model that approximates the original model’s behavior locally. Although

these methods can effectively generate explanations, they have been criticized for several

reasons. First, the explanations may not reflect the true mechanisms of the original model

but rather a simplified version that is easier to interpret [20]. Second, the surrogate model

may not be faithful to the behavior of the original model in some cases, leading to poten-

tially misleading explanations and being open to adversarial attacks [21]. Third, the input

data’s perturbation can alter the features’ semantics, rendering the explanations invalid or

misleading and unstable explanations that arise with models already trained [22] [23].

To address these limitations, some researchers have proposed using inherently inter-

pretable models, such as decision trees or linear models, instead of black-box models for

high-stakes decision-making [24]. However, this approach may come at the cost of reduced

prediction accuracy, as interpretable models may not be able to capture the complexity of

some datasets and black-box models. Moreover, this approach cannot be applied to the

models that are already deployed and running. Replacing existing black-box models in pro-

duction with interpretable models requires re-training the whole model from scratch, which
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can be resource and time consuming.

We propose two novel approaches to improving the explainability of black-box mod-

els, which we call pre-hoc explainability and co-hoc explainability. Our approach aims to

incorporate explanations derived from an inherently interpretable white-box model into the

original model’s learning stage without compromising its high prediction accuracy. Unlike

post-hoc explanations, our approach does not rely on input perturbation or secondary model

learning, thus avoiding the potential pitfalls of surrogate modeling. Instead, we leverage the

insights provided by a white-box model to guide the training of the black-box model in a way

that preserves its accuracy while enhancing its global interpretability. Our approach outper-

forms traditional black-box and white-box models on several benchmark datasets and offers

a promising direction to make machine learning models more transparent and trustworthy.

1.1 Problem Statement

Let S = {(xi,yi)}Ni=1 ⊂ Z be a sample from a distribution D in a domain Z = X ×Y,

where X is the instance, and Y is the label set. We learn a differentiable predictive function

f ∈ F : X → Y together with a transparent function g ∈ G : X → Y defined over

a functional class G. We refer to functions f and g as the predictor and the explainer,

respectively, throughout the paper. G is strictly constrained to be an inherently explainable

functional set, such as a set of linear functions or decision trees. We assume that we have

a distance function d : X × Y → R≥0 such that d(y, ŷ) = 0←→ y = ŷ, which measures the

point-wise similarity between two probability distributions in Y and can be used to optimize

f and g.

Instead of learning a post-hoc white-box model, our idea is to learn a white-box

model that is explainable from the start and then let this explainer model guide the learning

of the black-box predictor model. This approach aims to address the limitations of post-

hoc explanations, such as potential discrepancies between the explainer and the black-box

model [25], and the computational overhead associated with generating explanations after

model training [21].

To accomplish this goal, we design two different frameworks: (1) A Pre-Hoc Explain-

able Predictive Framework, where the white-box model regularizes the black-box model for

optimized fidelity, and (2) A Co-hoc Explainable Predictive Framework, where the white-

box and black-box models are optimized simultaneously with a shared loss function that
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enforces fidelity.

In the Pre-Hoc Explainable Predictive Framework, we first train the explainer model

g and then use it to guide the learning of the predictor model f . The objective function for

training the predictor model includes a fidelity term that minimizes the distance between

the predictor’s and explainer’s outputs, encouraging the predictor to mimic the explainer’s

behavior. This approach ensures that the predictor model is regularized by the explainer

model, leading to improved interpretability.

In the Co-hoc Explainablity Framework, we jointly optimize the predictor model

f and the explainer model g during training. The shared loss function consists of both

models’ standard supervised learning objective (e.g., cross-entropy loss) and a fidelity term

that minimizes the distance between their outputs. By simultaneously training both models,

we encourage the predictor to learn from the explainer and the explainer to adapt to the

predictor, resulting in a more coherent and interpretable system.

Our proposed frameworks differ from existing approaches in several aspects. First, we

integrate interpretability directly into the model training process rather than relying on post-

hoc explanations. Second, we use a transparent white-box model to guide the learning of

the black-box model, ensuring that the explanations are faithful to the predictor’s behavior.

Finally, our frameworks are model-agnostic and can be applied to any differentiable predictor

and explainer models.

In the following chapters, we will formally define the objectives and algorithms for

both the Pre-Hoc and Co-hoc Explainablity Frameworks and demonstrate their effectiveness

through empirical studies on various datasets and model architectures.

1.2 Research Contributions

We propose two novel approaches to improve the explainability of black-box models:

pre-hoc explainability for global interpretability and co-hoc explainability for local inter-

pretability. These approaches integrate explainability directly into the training process,

ensuring faithful and consistent explanations without requiring additional post-hoc compu-

tations. We then extend our pre-hoc framework to generate instance-specific explanations

by incorporating the Jensen-Shannon (JS) divergence as a regularization term, capturing

the local behavior of the black-box model. Our methods avoid the pitfalls of surrogate

modeling, such as instability and unfaithfulness, making them more scalable, robust, and
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reliable compared to post-hoc techniques like LIME. We demonstrate the effectiveness of

our approaches on real-world datasets, showing improved fidelity and comparable accuracy

to traditional black-box models, while providing more faithful and consistent explanations

at a lower computational cost than LIME. Finally, we provide a theoretical analysis, proving

that our methods balance accuracy and interpretability through regularized learning, and

derive bounds on their generalization error.

To summarize, we list the main contributions of our dissertation, below:

1. We propose two novel approaches to improving the explainability of black-box mod-

els, called pre-hoc explainability and co-hoc explainability, which leverage the insights

provided by an inherently interpretable white-box model to guide the training of the

black-box model in a way that preserves its accuracy while enhancing its global in-

terpretability. These approaches integrate explainability directly into the training

process, ensuring that the explanations are faithful to the model’s behavior and do

not require additional post-hoc computations.

2. We extend our pre-hoc explainability framework to provide local explanations by in-

corporating the Jensen-Shannon (JS) divergence [26] as a regularization term in the

loss function. This allows our method to generate instance-specific explanations that

capture the local behavior of the black-box model, similar to post-hoc methods such

as LIME [17]. However, unlike LIME, our approach integrates local explainability

directly into the training process, ensuring that the explanations are faithful to the

model’s behavior and consistent with the model’s predictions for similar instances.

3. Unlike post-hoc explanations, our approaches do not rely on random input perturba-

tion and post-secondary model learning, thus avoiding the potential pitfalls of surro-

gate modeling, such as instability and unfaithfulness [21, 27]. This makes them more

scalable, robust, and reliable in practice. By incorporating global and local explain-

ability through an interpretable white-box model and the JS divergence, our methods

can generate more accurate and stable explanations compared to LIME.

4. Enhancing the accuracy of white-box models through the co-hoc learning framework.

The white-box model, which is learned for the purpose of explaining the black-box

predictor, achieves significantly higher prediction accuracy after the co-hoc learning

5



process. This finding highlights the potential of the co-hoc in-training approach to im-

prove the performance of white-box models, which are essential and required in certain

high-risk and regulated application tasks in healthcare and legal decision-making.

5. We demonstrate the effectiveness of our approaches on three benchmark datasets from

diverse domains (credit risk scoring, movie recommendations, and robotic grasper fail-

ure detection), showing that they outperform traditional black-box models in terms of

fidelity while maintaining comparable accuracy. We also compare our methods with

the LIME post-hoc explainability technique [17] in terms of the quality and stability

of the generated explanations, as well as the computational cost associated with gen-

erating explanations. Our results indicate that our approaches provide more faithful

and consistent explanations across different instances, as measured by the proposed

metrics of global fidelity, local fidelity, and stability. Furthermore, our methods ex-

hibit significantly lower computational costs compared to LIME, as they do not require

additional extensive post-hoc computations for training to generate explanations.

6. We provide a theoretical analysis of our approaches, showing that they can be seen

as a form of regularized learning that balances the trade-off between accuracy and

interpretability. The incorporation of the interpretable white-box model and the JS

divergence as regularization terms in the loss function encourages the black-box model

to learn a decision boundary that is more aligned with the interpretable model, leading

to improved global and local explainability.

1.3 Document Organization

The remainder of this dissertation is organized as follows.

Chapter 2 reviews the explainable artificial intelligence (XAI) literature, covering

inherently interpretable models, post-hoc explainability techniques, model-specific explain-

ability, and existing in-training explainability approaches. The chapter also discusses the

various types of explanations and their implications for interpretability and user trust.

Chapter 3 introduces our proposed explainable machine learning frameworks, pre-hoc

and co-hoc explainability, which integrate interpretability directly into the training process

of black-box models. We define the problem formulation, present the fidelity objective

function, and describe the details of the implementation of our frameworks. We also present
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experimental results on real-world datasets, by doing an ablation study, we compare our

methods with traditional black-box models and the post-hoc explainability technique LIME

in terms of accuracy and fidelity.

Chapter 4 extends our pre-hoc and co-hoc explainability frameworks to incorporate

local interpretability by integrating the Jensen-Shannon (JS) divergence as a regularization

term. We compare our approach with LIME in terms of the quality and stability of the

generated local explanations, as well as the computational costs of both methods.

Finally, Chapter 5 concludes the dissertation by summarizing our contributions, dis-

cussing the limitations of our work, and outlining potential future research directions.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, we review the landscape of explainable artificial intelligence (XAI).

Our exploration begins with inherently interpretable models, where we discuss founda-

tional models such as linear regressions and decision trees, known for their transparency

and straightforwardness. This leads us next to Post hoc Explainability, a domain where

explanations are generated after model training, to explain the decision-making of more

complex, often opaque models. We further examine Model-Specific Explainability (Explain-

ability by Design), which involves designing models with built-in explainability features,

ensuring clarity from the outset. Our attention then shifts to Existing In-Training Explain-

ability Techniques, exploring innovative methods that integrate explainability directly into

the model training process. Finally, in Explanation Types, we examine the various forms

explanations can take, from visual to textual, and their impact on interpretability and user

trust. This chapter aims to provide a comprehensive overview of the current state, chal-

lenges, and advances in the field of XAI, establishing a solid foundation for understanding

the nuances and significance of explainability in machine learning.

2.1 Inherently Interpretable Models

2.1.1 Linear Models

Linear models are a cornerstone of statistical modeling and machine learning, prized

for their simplicity, interpretability, and foundational role in various predictive tasks. This

category encompasses Linear Regression, Logistic Regression, and Generalized Linear Mod-

els (GLMs).

Linear Regression is one of the most basic and widely used statistical techniques

[28]. It models the relationship between a dependent variable and one or more independent

variables using a linear equation. Its simplicity in interpretation and robustness in prediction

makes it a preferred choice for many regression tasks.
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Logistic regression, on the other hand, is used for binary classification problems [29].

It models the probability of a binary response based on one or more predictor variables.

The outputs are transformed using the logistic function, ensuring that the predictions fall

between 0 and 1, making it suitable for estimating the probabilities.

Figure 2.1: The image illustrates a white-box model, represented by a semi-transparent box
with visible gears inside on the left, and a black-box model, depicted as a label-free opaque
black box on the right. Source: generated using DALL-E.

Generalized Linear Models (GLMs) extend the concept of linear regression by al-

lowing response variables that have error distribution models other than a normal distribu-

tion [30]. They unify various other statistical models, including logistic and Poisson regres-

sion [31], under a single framework, making them extremely flexible for modeling different

types of data.

Linear models are extensively used in fields ranging from economics to biology for

their ease of implementation and interpretation. They are particularly valuable when it is

important to understand the role and significance of individual predictor features in the

model. However, linear models have limitations, especially in handling non-linear relation-

ships, interactions between features, and complex data structures [32]. They are also prone

to overfitting with high-dimensional data and may require regularization techniques like

Ridge [33] or Lasso [34] to mitigate this issue. Recent advances in linear models focus

on improving their interpretability and robustness, especially in high-dimensional settings.

Methods such as Elastic-Net regularization combine Lasso and Ridge to improve model
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performance and interpretability [35]. Despite the advent of more complex models, linear

models continue to be a fundamental tool in statistical modeling and machine learning,

offering a blend of simplicity, interpretability, and effectiveness.

2.1.2 Decision Trees

Decision Trees [36] constitute one of the most fundamental and easily interpretable

family of machine learning algorithms. They are used extensively for both classification

and regression tasks. The core principle behind decision trees is to model the decision-

making process through a tree-like structure of rules and conditions, visually and logically

representing how input features lead to a decision or prediction.

A decision tree consists of nodes, branches, and leaves. Each internal node represents

a test on an attribute, each branch corresponds to the outcome of the test, and each leaf node

represents a class label or a decision. The paths from root to leaf represent the classification

rules. The most common algorithms to build decision trees include ID3 [36], C4.5 [37], and

CART [38]. These algorithms differ in how they select which attribute to split on at each

step (e.g., using measures like information gain).

Decision trees are widely used because of their simplicity and interpretability. They

are particularly useful in domains where it is essential to understand the reasoning behind a

model’s decision, such as in finance for credit scoring or in medicine for diagnostic purposes

[39]. The ability to visually represent the decision-making process allows users to easily grasp

how the model comes to a conclusion, fostering trust and transparency. However, decision

trees are not without limitations. One major issue is their tendency to overfit the training

data, especially when dealing with complex trees. This overfitting can be mitigated through

techniques such as pruning (reducing the size of the tree), setting a minimum number of

samples per leaf, or limiting the depth of the tree. Another challenge is that small changes

in the data can lead to significantly different trees, which can affect the stability of the

model [40]. Ensemble methods like Random Forests [41] and Gradient Boosting Trees [42]

have been developed to address some of these challenges. These methods combine multiple

decision trees to improve performance and robustness [43]. "Random Forests," for example,

creates a ’forest’ of decision trees trained on random subsets of the data and features and

then aggregates their predictions. This approach not only improves the accuracy of the

prediction but also helps to reduce overfitting.
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Decision trees remain a popular choice for many applications due to their intuitive

nature and ease of interpretation. While they may not always be the most powerful or

accurate models, their transparency and simplicity make them an essential tool in the domain

of interpretable machine learning.

2.2 Post-hoc Explainability

Post-hoc explainability approaches are widely used to generate explanations for the

predictions made by a trained black-box model. However, because the training and explana-

tion generation phases are decoupled (e.g. LIME), they create the risk of having explanations

that are a result of some artifacts learned by the model instead of actual knowledge from the

data [44]. Post-hoc explanation techniques that rely on input perturbations, such as LIME

and SHAP, are not reliable [21].

Model-agnostic classifiers produce explanations without changing the model either

locally in a few instances or globally across all instances. Explanations can be local or global

and textual and/or visual. One of the state-of-the-art methods is LIME [17]. LIME is an

algorithm that, in a faithful manner, approximates a regressor or classifier; it is used to

discover interpretable models. Another commonly used library is SHAP (SHapley Additive

exPlanations) [18] is a system integration framework for interpreting predictions. It rates

each function according to its value for the prediction. Its innovative components include

discovering a new class of additive function importance measurements and theoretical studies

suggesting a notable solution with a range of attractive properties in this class.

Model-agnostic methods can validate and analyze a model through various machine

learning algorithms (post hoc). These automated processes are usually performed by evalu-

ating the features and their subsequent output. They cannot access the internal model state

for these approaches to operate, including weights or structural details.

2.2.1 LIME (Local Interpretable Model-Agnostic Explanations)

Local Interpretable Model-Agnostic Explanations (LIME) emerged as a significant

development in the field of machine learning explainability. Introduced by Ribeiro et al. in

their landmark paper [17], LIME addresses the challenge of interpreting complex black-box

models. It operates on a simple yet profound premise: While it may be challenging to
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explain an entire model, it is possible to approximate and explain individual predictions.

In particular, LIME, one of the most popular post-hoc explanation systems, solves

the following optimization problem:

e(x, f) := arg minF (f, g,Nx) + Ω(g) (2.1)

where Ω(g) stands for an additive regularizer that encourages certain desirable properties of

the explanations (e.g., sparsity).

LIME generates explanations by perturbing the input data and observing the changes

in the model’s predictions. This process involves creating a new dataset consisting of per-

turbed samples and the corresponding predictions from the black-box model. LIME then

trains an interpretable surrogate model, such as a linear model, on this new data set; see

Algorithm 0. The interpretable model is designed to be locally faithful, meaning it accu-

rately represents the black-box model behavior in the approximation of the instance being

explained.

Algorithm 2.1 Sparse Linear Explanations using LIME
Require: Classifier f , Number of samples N
Require: Instance x, and its interpretable version x′

Require: Similarity kernel πx, Length of explanation K
Z ← {}
for i← 1 to N do

z′i ← sample_around(x′)
Z ← Z ∪ {(z′i, f(zi), πx(z′i))}

end for
w ← K-Lasso(Z,K) . with z′i as features, f(z) as target
return w

LIME has been widely adopted because of its flexibility and model-agnostic nature,

allowing it to be used with any machine learning model. It has been particularly impactful in

fields where understanding model predictions is crucial, such as healthcare and finance [45].

For example, in medical diagnostics, LIME can help clinicians understand why a model

recommends a particular treatment, thus improving trust in AI-driven decision-making pro-

cesses.

Despite its popularity, LIME is not without criticism. Researchers have pointed out

that LIME’s explanations can sometimes be unstable, meaning that slight changes in the

input can lead to significantly different explanations [27]. Furthermore, LIME’s reliance

on local linear approximations may not always capture the complexities of certain models,
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especially in regions of the input space where the model’s behavior is highly non-linear

[21]. In response to these critiques, there have been efforts to improve the stability and

reliability of LIME. For example, some researchers have proposed enhancements to the

sampling methodology to ensure more robust and consistent explanations [46]. Furthermore,

there is ongoing research on the development of methodologies that can provide more global

insight while maintaining the local fidelity that LIME offers [47].

2.2.2 SHAP (SHapley Additive exPlanations)

SHapley Additive exPlanations (SHAP) is an important approach in the field of

explainable artificial intelligence, introduced by Lundberg and Lee in 2017 [48]. SHAP is

based on the concept of Shapley values from cooperative game theory, providing a unified

measure of feature importance.

The theoretical basis of SHAP lies in the Shapley value, a method of game theory

that fairly allocates the payout of a game to its players [49]. In the context of machine

learning, SHAP treats each feature value of an instance as a ’player’ in a game where the

’payout’ is the prediction made by the model. SHAP calculates the contribution of each

feature to the difference between the actual prediction and the average prediction over the

dataset. SHAP’s model-agnostic nature allows it to be used with any machine learning

model, making it highly versatile. It has been particularly influential in sectors such as

healthcare and finance, where understanding the impact of individual variables is crucial to

decision making [50]. SHAP values provide a detailed and interpretable overview of feature

contributions, offering local and global explanations. For individual predictions, SHAP can

highlight which features were most influential, and at the global level, it can indicate how

much each feature generally impacts the model’s output.

Although SHAP offers deep insight, it can be computationally expensive, especially

for models with a large number of features or complex architectures [51]. There are also

concerns about the interpretability of SHAP values in highly interactive or correlated fea-

ture spaces, as contributions may not be entirely intuitive. In response to computational

challenges, various optimizations, and approximations have been proposed to make SHAP

more scalable [52]. Researchers continue to explore ways to enhance SHAP’s efficiency and

interpretability, making it more applicable to a broader range of models and datasets.
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2.3 Model-Specific Explainability (Explainability by Design)

Model-specific interpretation tools are restricted to narrow model classes. One of

the ways to achieve explainability is through architectural adjustments. They make the

model layout more comprehensible by modifying the model architecture. Regularization

approaches are not only used to maximize predictive precision; they can also be used to

improve the explainability of AI models [53] [54] [55] [56].

Abdollahi and Nasraoui [53] proposed an explainable matrix factorization approach

for collaborative filtering. They introduced a constrained matrix factorization model that

incorporates user and item biases, as well as user and item factors. The model architec-

ture is designed to provide interpretable recommendations by learning latent factors that

correspond to explicit user preferences and item characteristics. The regularization term in

the objective function encourages the model to learn sparse and meaningful latent factors,

enhancing the explainability of the recommendations.

Ras et al. [54] developed an explainable 3D convolutional neural network (CNN) to

analyze time series data. They modified the architecture of a 3D CNN by incorporating a

temporal attention mechanism and a feature attention mechanism. The temporal attention

mechanism allows the model to focus on the most relevant time steps, while the feature

attention mechanism helps identify the most informative features. By designing the model

architecture to include these attention mechanisms, the authors improved the explainability

of the 3D CNN, enabling users to understand which time steps and features contribute most

to the model’s predictions.

Fauvel et al. [55] introduced XCM, an explainable convolutional neural network for

multivariate time series classification. They designed the model architecture to include

a temporal convolution block, which learns temporal patterns, and a feature convolution

block, which learns feature dependencies. The model also incorporates a temporal attention

mechanism and a feature attention mechanism, similar to the approach by Ras et al. [54].

The XCM architecture enhances the explainability of the model by providing insights into

the temporal patterns and feature dependencies that drive the model’s predictions.

Miao et al. [56] proposed an interpretable and generalizable graph learning framework

based on a stochastic attention mechanism. They designed a graph neural network archi-

tecture that incorporates a stochastic attention mechanism, which learns to assign attention
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weights to different nodes and edges in the graph. The stochastic nature of the attention

mechanism allows the model to explore different subgraphs and capture the uncertainty in

the attention weights. The authors also introduced a regularization term in the objective

function to encourage the model to learn sparse and interpretable attention weights. By

designing the model architecture and the objective function to promote interpretability, the

framework provides insights into the graph structures and node relationships that influence

the model’s predictions.

In addition to architectural modifications, regularization techniques can also be used

to improve the explainability of AI models. L1 regularization, also known as Lasso regular-

ization, is a commonly used technique that encourages sparsity in the model parameters [57].

By inducing sparsity, L1 regularization helps identify the most relevant features of the model,

making it more interpretable. L2 regularization, also known as Ridge regularization, is an-

other technique that can improve the stability and generalization of model performance [58].

Although L2 regularization does not directly promote sparsity, it can help prevent overfitting

and improve the model’s robustness, which can indirectly contribute to its explainability.

Other regularization techniques, such as dropout [59] and early stopping [60], can also

be used to improve the interpretability of neural AI models. Dropout is a regularization tech-

nique that randomly drops out neurons during training, preventing the model from relying

too heavily on specific features or neurons. By encouraging the model to learn more robust

and generalizable representations, dropout can improve the model’s interpretability. Early

stopping is a technique that halts the training process when the model’s performance on a

validation set starts to degrade. Early stopping can help the model learn more meaningful

and interpretable patterns in the data by preventing overfitting.

In summary, model-specific explainability can be achieved through architectural ad-

justments and regularization techniques. Researchers can improve the explainability of AI

models by designing the model architecture to incorporate interpretable components, such as

attention mechanisms and sparsity-inducing regularizers. Regularization techniques, such

as L1 and L2 regularization, dropout, and early stopping, can further enhance the inter-

pretability of the model by promoting sparsity, robustness, and generalization. As the field

of explainable AI continues to evolve, model-specific approaches will likely play a crucial

role in developing transparent and interpretable AI systems tailored to specific domains and

applications.
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2.4 Existing In-Training Explainability Techniques

The majority of the existing work on explainable AI has focused on either developing

post hoc explanation methods for black-box models or building models that are explainable

by design. Post-hoc techniques analyze trained models to provide explanations for individual

predictions [18] [17] [61], either with model-specific methods based on input perturbations

or model-agnostic explainer models. However, post hoc approaches have been criticized for

potential discrepancies between the explainer and the black-box model [21] [44]. On the

other hand, model-specific explainability has its own limitations as it requires individual

methods and implementations for each different black-box model.

On the contrary, research on improving explainability through model training is more

limited. Only a few methods have explored the use of interpretable models to directly guide

black-box training for higher explainability, starting with methods such as [53] for recom-

mendation models. Using tree regularization [62] to train deep time-series models, with the

aim of human-simulability [63]. Other works proposed training models with latent explain-

ability, but they still rely on post hoc explanations [64] [65]. An alternative approach is

to use a game-theoretic approach between predictor and explainer [66], [67]. Using a coop-

erative game, they optimize the explainer for locality, specifically for sequential data. [68]

used a regularization approach to push black-box models toward relying more on inter-

pretable features, but their explanations remain post-hoc, specifically optimized for LIME’s

neighborhood-based fidelity, which has to be computed at prediction time. In fact, their goal

is to improve the quality of post-hoc explanations of the model, thus they do not attempt to

solve the same problem as ours, as we do not rely on post-hoc explanations. Another line

of work was designed to learn the latent concept-based explanations implicitly during train-

ing, which eliminates the requirement of post-hoc explanation generation techniques [69].

Because the concepts must be learned using either external annotation or self-supervision,

e.g. using auto-encoders from the input features, this approach is limited to special input

types like images or domains with available external supervision.

In general, research on improving model explainability highlights the need for fur-

ther work on optimization during training, and model-agnostic methods to improve global

explainability. Our approach addresses this need by directly injecting global interpretability

into black-box learning, at training time, through an interpretable explainer model that does
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not require additional post hoc computation at prediction time.

2.5 Explanation Types

In the domain of XAI, explanations can be categorized into various types, each of-

fering a unique lens to interpret machine learning models. Understanding these types is

crucial for selecting appropriate explanation methods depending on the context and require-

ments [70].

The explanation types in XAI offer diverse perspectives on interpreting machine

learning models, catering to different contexts and requirements. Rule-based explanations

provide human-readable rules [71], while feature-based explanations quantify the impact

of individual features [17]. Concept-based explanations align model behavior with human-

understandable concepts [72], and instance-based explanations highlight influential data

instances [9]. Local explanations offer insights into individual predictions [48], whereas

global explanations describe the model’s overall behavior [47]. Multi-model explanations

compare explanations across different models, providing a comparative view [73].

Choosing the appropriate explanation type depends on various factors, such as the

target audience, the complexity of the model, and the specific application domain. For

example, in healthcare, concept-based explanations may be more suitable for communica-

tion with medical professionals, while rule-based explanations may be more appropriate for

patient-facing applications [74]. In finance, feature-based explanations can help identify key

risk factors, while instance-based explanations can assist in detecting anomalous transac-

tions [75]. Moreover, the different explanation types can be combined to provide a more

comprehensive understanding of the model behavior. For instance, local explanations can

be aggregated to generate global insights, while multi-model explanations can incorporate

both feature-based and concept-based explanations to offer a holistic view of the models’

decision-making processes [76].

As the field of XAI continues to evolve, new types of explanation and techniques are

likely to emerge, addressing the limitations of existing approaches and catering to the ever-

growing complexity of machine learning models. Researchers and practitioners should stay

abreast of these developments and adopt a multifaceted approach to explainability, leverag-

ing the strengths of different explanation types to ensure transparency, accountability, and

trust in AI systems [77]. Understanding the various explanation types in XAI is crucial for
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developing effective and meaningful explanations of machine learning models. By carefully

considering the strengths and limitations of each type of explanation and adapting them to

the specific context and requirements, we can create more transparent, interpretable, and

trustworthy AI systems that benefit both developers and end-users alike [78].

2.5.1 Rule-based Explanations

Rule-based explanations provide information by simplifying model decisions into

human-readable rules. Decision trees are a classic example where decisions can be bro-

ken down into a series of if-then rules [36]. This type of explanation is highly intuitive,

making it easier for users to grasp the logic behind predictions. Rule-based explanations

are particularly useful in domains where transparency and interpretability are crucial, such

as healthcare, finance, and legal systems [79,80]. One of the main advantages of rule-based

explanations is their simplicity and comprehensibility. They allow users to understand the

decision-making process of a model without requiring deep technical knowledge. This is es-

pecially important in scenarios where the model’s predictions have significant consequences,

and users need to trust and justify the model’s decisions [17]. However, rule-based explana-

tions also have some limitations. As the complexity of the model increases, the number of

rules required to explain its behavior may become large and unwieldy, making it difficult for

users to understand the entire decision-making process [71]. Additionally, rule-based expla-

nations may not capture the full nuance and complexity of the model’s behavior, especially

in cases where the model relies on non-linear or high-dimensional relationships between fea-

tures [81]. Despite these limitations, rule-based explanations can be combined with other

explanation types, such as feature-based or local explanations, to provide a more compre-

hensive understanding of the model’s behavior. Furthermore, recent advances in rule-based

explanations, such as hierarchical rule-based explanations [82] and rule extraction tech-

niques [83], have aimed to address some of the limitations and improve the scalability and

fidelity of rule-based explanations.

2.5.2 Feature-based Explanations

Feature-based explanations focus on the contribution of individual features to the

model’s prediction. Techniques like SHAP (SHapley Additive exPlanations) [48] and LIME

(Local Interpretable Model-agnostic Explanations) [17] fall into this category, quantifying
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the impact of each feature on the model’s output. These explanations help in understanding

the relative importance of features and how they influence the model’s decisions.

SHAP is a game-theoretic approach that assigns each feature an importance value,

known as the Shapley value, which represents the feature’s contribution to the model’s

prediction [48]. The Shapley values are computed by considering all possible feature com-

binations and measuring each feature’s impact on the model output. SHAP provides both

local and global explanations, allowing users to understand the importance of features for

individual predictions as well as the overall model behavior.

LIME, on the other hand, is a local explanation technique that approximates the

model behavior around a specific instance by training a simple, interpretable model (e.g., a

linear model) on perturbed samples in the surroundings of the instance [17]. The coefficients

of the interpretable model serve as a measure of the importance of each feature for the

particular instance. LIME is model-agnostic, meaning it can be applied to any black-box

model, making it a versatile tool for generating feature-based explanations.

Feature-based explanations have several advantages. They provide a quantitative

measure of the importance of each feature, allowing users to identify the most influential

factors in the model’s decision-making process. This information can be valuable for feature

selection, model debugging, and identifying potential biases or errors in the model [76].

Furthermore, feature-based explanations can be easily visualized using techniques such as

feature importance plots or heatmaps, making them accessible to a wide range of users [84].

However, feature-based explanations also have some limitations. They may not capture

complex interactions between features or non-linear relationships, as they often assume

feature independence and additive contributions [85]. Furthermore, the interpretation of

feature importance scores can be challenging, especially when dealing with high-dimensional

or correlated features [81].

Despite these limitations, feature-based explanations remain a popular and effective

approach to interpreting machine learning models. Recent advances, such as SHAP interac-

tion values [52] and anchors [47], have aimed to address some of the limitations and provide

more comprehensive and robust feature-based explanations.

In summary, feature-based explanations offer a quantitative approach to understand-

ing the importance of individual features in a model’s decision-making process. Techniques

such as SHAP and LIME have become widely adopted in the XAI community, providing valu-
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able insights into model behavior and helping to promote transparency and interpretability

in AI systems.

2.5.3 Concept-based Explanations

Concept-based explanations aim to express model decisions using high-level concepts

that are more understandable to humans. This approach is particularly useful in complex

domains such as image recognition, where explanations are provided in terms of visual or

semantic concepts [72]. Concept-based explanations bridge the gap between the model’s

internal representation and the user’s domain knowledge by aligning model behavior with

human-understandable concepts. One of the techniques to generate concept-based explana-

tions is Concept Activation Vectors (CAVs) [72]. CAVs are linear classifiers that are trained

to distinguish between instances that contain a specific concept and those that do not. The

concept can be defined by a set of examples or by a user-provided label. Once trained,

CAVs can be used to measure the sensitivity of a model’s predictions to the presence or

absence of the concept, providing a quantitative measure of the concept’s importance. An-

other approach to concept-based explanations is Automatic Concept-based Explanations

(ACE) [86]. ACE automatically extracts concepts from the model’s internal representation

using unsupervised learning techniques, such as clustering or principal component analysis.

The extracted concepts are then used to generate explanations by identifying the concepts

that are most relevant to a particular instance or decision.

Concept-based explanations provide explanations in terms that are more easily un-

derstandable to users because they relate to high-level concepts rather than low-level fea-

tures. This can help users build trust in model decisions and identify potential errors or

biases [72]. In addition, concept-based explanations can be used to assess model alignment

with human values and expectations, which is crucial in domains such as healthcare and

criminal justice [87]. However, concept-based explanations also have some limitations. The

quality of the explanations depends on the choice of concepts and the ability to accurately

extract them from the model’s internal representation. If the concepts are not well aligned

with the model behavior or the user domain knowledge, the explanations may be mislead-

ing or incomplete [88]. Furthermore, concept-based explanations may not capture the full

complexity of the model decision-making process, as they focus on a limited set of high-level

concepts [81].
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Concept-based explanations are particularly used in domains where human-understandable

concepts are readily available. Recent advances such as Concept Bottleneck Models [89] and

Concept Whitening [90], have aimed to improve the quality and robustness of concept-based

explanations by incorporating concept information directly into the model’s architecture.

Concept-based explanations offer a way to interpret machine learning models using high-

level concepts that are more easily understandable by humans. By bridging the gap between

the model internal representation and user domain knowledge, concept-based explanations

can help to promote trust, transparency, and accountability in AI systems.

2.5.4 Instance-based Explanations

Instance-based explanations provide insights by highlighting specific data instances

that are influential in the model’s learning process. For example, influential instances used

in training can be identified to explain model behavior [9]. These explanations help users

understand how the model has learned from specific examples and how those examples have

shaped its decision-making process. One major technique for generating instance-based

explanations is influence functions [9]. Influence functions measure the effect of removing

or perturbing individual training instances on the model’s predictions. By identifying the

most influential instances, influence functions can provide insights into the model’s behavior

and help users understand why the model makes certain predictions. Another approach to

instance-based explanations is prototype selection [91]. Prototype selection involves iden-

tifying a subset of the training data that is most representative of the model’s decision

boundary. These prototypes serve as a condensed version of the training data, providing a

more interpretable representation of the model’s behavior. Users can examine the prototypes

to understand the key patterns and features that the model has learned.

Instance-based explanations provide a concrete and tangible way to understand the

model behavior, as users can directly examine the instances that have influenced the model’s

predictions. This can be particularly useful in applications such as natural language process-

ing or image classification [9, 92]. In addition, instance-based explanations can help users

identify potential biases or errors in the training data, as they highlight the instances that

have had the greatest impact on model behavior. However, instance-based explanations also

have some limitations. Interpreting influential instances can be challenging, as they may

not always provide a clear or complete picture of the model behavior [81]. Additionally,
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the selection of influential instances or prototypes can be sensitive to the choice of metrics

or algorithms used, which can lead to different explanations depending on the approach

taken [93]. Despite these limitations, instance-based explanations remain a valuable tool in

the XAI toolkit. Recent advancements, such as counterfactual explanations [94] and adver-

sarial examples [95], have aimed to provide more robust and comprehensive instance-based

explanations by exploring the model’s behavior in the vicinity of specific instances. Instance-

based explanations offer a way to understand machine learning models by highlighting the

specific data instances that have influenced the model’s behavior. By examining influential

instances or prototypes, users can gain insight into the patterns and features that the model

has learned, helping to promote transparency and interpretability in AI systems.

2.5.5 Local Explanations

Local explanations offer insights into the model’s behavior for individual predictions.

They explain why a model made a specific decision for a particular instance, which is crucial

in applications where individual decisions need to be justified [17]. Local explanations

provide a fine-grained understanding of the model’s decision-making process, allowing users

to examine the factors that contributed to a particular prediction.

One of the most widely used techniques for generating local explanations is LIME

(Local Interpretable Model-agnostic Explanations) [17]. LIME works by approximating the

model’s behavior locally for a specific instance using a simple, interpretable model (e.g., a

linear model). The interpretable model is trained on perturbed samples around the instance,

and the coefficients of the model serve as a measure of the importance of each feature for

the particular prediction. LIME is model-agnostic, which can be applied to any black-box

model, making it a versatile tool for generating local explanations. Another approach to local

explanations is Shapley Additive Explanations (SHAP) [48]. SHAP is based on the concept

of Shapley values from cooperative game theory, which assigns each feature an importance

value based on its contribution to the model’s prediction. SHAP provides local explanations

by computing the Shapley values for each feature for a specific instance, allowing users to

understand the impact of each feature on the particular prediction.

Local explanations have several advantages. They provide a detailed understanding

of the model behavior for individual instances, which is crucial in domains where the conse-

quences of individual decisions are significant, such as healthcare and criminal justice [87].
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Moreover, local explanations can help users identify potential biases or errors in the model

predictions, as they highlight the factors that contributed to a particular decision. However,

local explanations also have some limitations. They may not provide a complete picture

of the model’s overall behavior, as they focus on individual instances rather than global

patterns [81]. Furthermore, the interpretation of local explanations can be challenging,

as they may be sensitive to the choice of perturbation strategies or interpretable models

used [27]. Despite these limitations, local explanations remain an essential tool in the XAI

toolkit. Recent advancements, such as anchors [47] and counterfactual explanations [94],

have aimed to provide more robust and comprehensive local explanations by exploring the

model’s behavior in the surroundings of specific instances.

In summary, local explanations offer a way to understand the model’s behavior for

individual predictions, providing a fine-grained understanding of the factors that contributed

to a particular decision. Techniques such as LIME and SHAP have become widely adopted

in the XAI community, helping to promote transparency and interpretability in AI systems.

2.5.6 Global Explanations

Global explanations provide an overview of the model’s general behavior across all

instances. They aim to describe the general logic and patterns learned by the model, which

is essential for understanding the behavior of the model on a larger scale [71]. Global ex-

planations offer a high-level understanding of the model’s decision-making process, allowing

users to grasp the key factors and relationships that drive the model’s predictions.

One approach to generating global explanations is through the use of interpretable

models, such as decision trees [36] or rule-based systems [79]. These models are inherently

interpretable, as they provide a transparent representation of the decision-making process

in the form of a tree or a set of rules. By training an interpretable model on the same

data as the black-box model, users can understand the model’s behavior globally. Another

approach to global explanations is through the use of feature importance methods, such

as permutation importance [43] or global surrogate models [17]. Permutation importance

measures the impact of each feature on the model’s performance by randomly shuffling the

values of the feature and observing the resulting change in the model’s accuracy. Global

surrogate models, on the other hand, involve training a simple, interpretable model (e.g., a

linear model) on the predictions of the black-box model, providing a global approximation
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of the model’s behavior.

Global explanations provide a comprehensive understanding of the model’s behavior,

allowing users to identify the key factors and relationships that drive the model’s predic-

tions. This can be particularly useful in domains where the overall behavior of the model

is of interest, such as in policy making or strategic decision making [87]. Moreover, global

explanations can help users identify potential biases or limitations in the model’s behav-

ior, as they provide a broad overview of the model’s decision-making process. However,

global explanations also have some limitations. They may not capture the full complexity

of the model’s behavior, as they provide a simplified representation of the decision-making

process [81]. Additionally, global explanations may not be sufficient for understanding the

model’s behavior in specific instances, as they focus on overall patterns rather than indi-

vidual predictions. Despite these limitations, global explanations remain an essential tool

in the XAI toolkit. Recent advances, such as concept-based explanations [72] and global

feature importance methods [96], have aimed to provide more comprehensive and inter-

pretable global explanations by incorporating domain knowledge and local explanations.

Global explanations offer a way to understand the overall behavior of machine learning

models, providing a high-level understanding of the key factors and relationships that drive

the model’s predictions. By offering a comprehensive view of the model’s decision-making

process, global explanations can help to promote transparency and interpretability in AI

systems.

2.5.7 Multi-Model Explanations

Multi-model explanations involve generating explanations across different models.

This approach provides a comparative view, helping users understand how different mod-

els process information and make decisions [97]. By examining similarities and differences

between the explanations generated by multiple models, users can gain insight into the

robustness and generalizability of the model behavior. One approach to multi-model expla-

nations is through the use of model comparison techniques, such as model distillation [98]

or model compression [99]. These techniques involve training a simpler, more interpretable

model to mimic the behavior of a complex, black-box model. By comparing the explana-

tions generated by the simpler model with those of the black-box model, users can gain

insight into the key factors and relationship captured by both models. Another approach
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to multi-model explanations is through the use of ensemble methods, such as bagging [100]

or boosting [101]. Ensemble methods involve combining the predictions of multiple models

to improve overall performance and robustness of the system. By generating explanations

for each model in the ensemble and comparing them, users can gain insight into the diverse

perspectives and strategies employed by the different models.

Multi-model explanations have several advantages. They provide a more comprehen-

sive understanding of the model behavior, as they allow users to examine the similarities and

differences between the explanations generated by multiple models. This can be particularly

useful in domains where the robustness and generalizability of the model’s behavior are of

concern, such as in healthcare or finance [102]. Moreover, multi-model explanations can

help users identify potential biases or limitations in the individual models, as they provide

a comparative view of the models’ decision-making processes. Generating and comparing

explanations in multiple models can be computationally expensive, particularly when deal-

ing with large-scale or complex models [81]. Additionally, the interpretation of multi-model

explanations can be challenging, as users may need to reconcile the potentially diverse or

conflicting explanations generated by the different models. Multi-model feature importance

methods [96] aimed to providing more comprehensive and interpretable multi-model expla-

nations by incorporating local and global explanations in multiple models. Multi-model

explanations offer a way to understand the behavior of machine learning models by com-

paring the explanations generated by multiple models. By providing a comparative view of

the model decision-making processes, multi-model explanations can help to promote trans-

parency, robustness, and generalizability in AI systems.

2.6 Explanation Evaluation Metrics

Post-hoc explainability, such as LIME,can be evaluated using three metrics: point

fidelity, neighborhood fidelity [68] and stability [27]. Point fidelity measures the agreement

between the explainer and predictor for individual instances, while neighborhood fidelity

extends this concept to consider the agreement within local neighborhoods around each

instance. The stability metric quantifies the variability or change in fidelity scores within

the same neighborhood of instance.
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2.6.0.1 Point Fidelity

Let D = {(xi, yi)}Ni=1 be a dataset with N instances, where xi ∈ Rd is a feature vector

and yi ∈ {0, 1} is the corresponding binary label. Let f be a black-box model predictor and

g be a white-box model explainer (e.g., LIME) that generates explanations.

The point fidelity metric [17,68] for instance xi is defined as:

PointFidelity(xi) = 1(ŷf,i = ŷlime,i), (2.2)

where ŷf,i is the predicted label of model f for instance xi, ŷlime,i is the predicted

label of model g explainer for example xi and 1(·) is the indicator function.

The average point fidelity score across all instances is given by:

AvgPointFidelity =
1

N

N∑
i=1

PointFidelity(xi) (2.3)

Point Fidelity evaluates the agreement between the explanations and predictions of

different models for individual instances in a dataset. It measures how well the explanations

generated by an interpretable model, such as LIME, align with the predictions made by a

black-box model, a white-box model, and the proposed explainable model. Local fidelity

scores quantify the consistency between the explanations and predictions for each instance,

assessing the point-wise agreement between the explanations and predictions by averaging

the local fidelity scores across all instances. In contrast, loint fidelity helps to evaluate

the quality of explanations at the individual instance level without considering the local

neighborhood around each instance.

2.6.0.2 Neighborhood Fidelity

Let Nk(xi) denote the set of k-nearest neighbors of instance xi in the feature space.

The neighborhood fidelity metric for instance xi is defined as [68]:

NeighborhoodFidelity(xi) =
1

k

∑
xj∈Nk(xi)

1(ŷf,j = ŷlime,j), (2.4)

where ŷj,m is the predicted label of model f for instance xj in the neighborhood of

xi.

The average neighborhood fidelity score across all instances is given by:

AvgNeighborhoodFidelity =
1

N

N∑
i=1

NeighborhoodFidelity(xi) (2.5)
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The Neighborhood Fidelity extends the concept of point fidelity by considering the

local neighborhood around each instance when evaluating the agreement between explana-

tions and predictions. It measures how well the explanations generated by an interpretable

model, such as LIME, align with the predictions made by different models within the lo-

cal surroundings of each instance, typically the k-nearest neighbors of each instance in the

dataset. Neighborhood fidelity scores quantify the consistency of explanations and predic-

tions in the local region surrounding each instance. By averaging the neighborhood fidelity

scores across all instances, the algorithm assesses the agreement between explanations and

predictions in the local neighborhoods. Neighborhood fidelity complements point fidelity by

considering the coherence and stability of explanations and predictions in the local context

of each instance.

In summary, point fidelity and neighborhood fidelity algorithms provide valuable

insights into the quality and consistency of explanations generated by interpretable models

about the predictions made by different models. Point fidelity focuses on the agreement at

the individual instance level, while neighborhood fidelity considers the local context around

each instance. By evaluating these metrics, researchers can assess the effectiveness of their

proposed explainable models and compare them with existing interpretable techniques, such

as LIME. The algorithms help quantify the alignment between explanations and predictions,

contributing to developing and validating reliable and trustworthy explainable AI systems.

2.6.0.3 Stability

Stability metric [27] is defined as follows:

Let F = {f1, f2, . . . , fN} be a set of fidelity scores, where fi represents the fidelity

score for the i-th instance or neighborhood. The total variation (TV) of the fidelity scores

is defined as:

TV(F) =
1

N − 1

N−1∑
i=1

|fi+1 − fi| (2.6)

where | · | denotes the absolute value function, and N is the total number of fidelity

scores.

The stability metric quantifies the variability or change in neighborhood fidelity

scores in different instances. It measures the sum of absolute differences between consecutive

fidelity scores, normalized by the number of instances minus one. A lower total variation
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indicates higher stability, suggesting that explanations are more consistent and less prone to

sudden changes in neighborhood instances. The intuition behind using the total variation

as a stability metric is that stable explanations should exhibit smooth transitions between

fidelity scores without drastic fluctuations. Suppose the fidelity scores vary significantly

from one instance to another. In that case, it implies that the explanations are sensitive to

small changes in the input and may not be reliable or consistent. Incorporating the total

variation metric alongside other metrics such as average fidelity scores and standard devi-

ations helps to gain a more comprehensive understanding of the stability and robustness

of the explanations generated by different models. A model with high average fidelity

scores and low total variation is desirable, indicating that the descriptions are accurate

and stable in different instances.

To summarize, stability complements other fidelity metrics and provides insight into

the robustness and consistency of the explanations across different instances or neighbor-

hoods.

2.7 Factorization Machine Model

Factorization machines (FMs) [103] are a medium to train supervised learning models

that can be applied to a wide range of prediction tasks, including regression, classification,

and ranking. FMs can reliably estimate model parameters under large amounts of sparse

data, allowing the model to be trained with very few data points.

Model Equation: The model equation for a factorization machine of degree d = 2 is

defined as:

ŷ = w0 +
n∑
1

wixi +
n∑
i=1

n∑
j=i+1

wi,jxixj (2.7)

The factorization machine with pairwise interactions is defines as:

ŷ(x) = w0 +

n∑
i=1

wixi +

n∑
i=1

n∑
j=i+1

〈vi,vj〉xixj (2.8)

where the model parameters that have to be estimated are:

w0 ∈ R, wi ∈ Rn, vi ∈ Rn×k, (2.9)
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And 〈· , ·〉 is the dot product of two vectors of size k:

〈vi,vj〉 =

k∑
f=1

vi,fvj,f (2.10)

A row vi within V describes the ith variable with k factors.

k ∈ N+
0 is a hyperparameter that defines the dimensionality of the factorization.

A 2-way FM (degree d = 2) captures all single and pairwise interactions between

variables:

• w0 is the global bias.

• wi models the strength of the ith variable.

• ŵi,j := 〈vi,vj〉 models the interaction between the i-th and j-th variable. Instead

of using its own model parameter ŵi,j ∈ R for each interaction, the FM models the

interaction by factorizing it. We will see later on that this is the key point that allows

high-quality parameter estimates of higher-order interactions (d ≥ 2) under sparsity.

When using the naive method of constructing factorization machine results, the com-

plexity is O(kn2), but by using a more effective method, it can be made to run in O(kn).

n∑
i=1

n∑
j=i+1

〈vi,vj〉xixj =
1

2

n∑
i=1

n∑
j=1

〈vi,vj〉xixj −
1

2

n∑
i=1

〈vi,vi〉xixi (2.11)

=
1

2

 n∑
i=1

n∑
j=1

k∑
f=1

vi,fvj,fxixj

 1

2

 n∑
i=1

k∑
f=1

vi,fvi,fxixi

 (2.12)

=
1

2

 n∑
i=1

n∑
j=1

k∑
f=1

vi,fvj,fxixj −
n∑
i=1

k∑
f=1

vi,fvi,fxixi

 (2.13)

=
1

2

k∑
f=1

( n∑
i=1

vi,fxi

) n∑
j=1

vj,fxj

− n∑
i=1

v2i,fx
2
i

 (2.14)

=
1

2

k∑
f=1

( n∑
i

vi,fxi

)2

−
n∑
i=1

v2i,fx
2
i

 (2.15)

Notice the summing over the possible combinations is the same as summing over the different

interactions, minus the self-interactions (divided by two). This is why the value 1/2 is the

root of the infinite sequence.
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k and n have linear complexity and its complexity is O(kn), substituting this new

equation into the existing factorization machine formula, it becomes the following:

ŷ(x) = w0 +
n∑
i=1

wixi +
1

2

k∑
f=1

( n∑
i

vi,fxi

)2

−
n∑
i=1

v2i,fx
2
i

 (2.16)

Factorization machines can perform the following prediction tasks:

• Regression: ŷ(x) can be used directly by minimizing the mean squared error between

the model prediction and target value, e.g. 1
N

∑N (y − ŷ(x)
)2

• Classification: for a binary classification, we could minimize the log loss, ln
(
e−y·ŷ(x) +

1
)
, where σ is the sigmoid or logistic function and y ∈ -1, 1.

• Ranking: the vectors x are ordered by the score of ŷ(x) and optimization is done over

pairs of instance vectors (x(a), x(b)) ∈ D with a pairwise classification loss (e.g.like

in [104]).

To train the factorization machine, we can use a gradient descent-based optimization tech-

niques, and the parameters to be learned are (w0,w,V). The derivation of FM (eq. 2.17)

is for the classification loss.

∂

∂θ
ŷ(x) =


1, if θ is w0

xi, if θ is wi

xi
∑n

j=1 vj,fxj − vi,fx2i if θ is vi,f

(2.17)

Notice that
∑n

j=1 vj,fxj does not depend on i, thus it can be computed independently. The

last formula above can also be written as xi(
∑n

j=1 vj,fxj − vi,fxi). The predicted value ŷ(x)

is replaced with x for making the notation cleaner.
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d

dx

[
ln
(
e−yx + 1

)]
=

1

e−yx + 1
· d
dx

[
e−yx + 1

]
(2.18)

=
d
dx [e−yx] + d

dx [1]

e−yx + 1
(2.19)

=
e−yx · ddx [−yx] + 0

e−yx + 1
(2.20)

=
e−yx · −y
e−yx + 1

(2.21)

= − ye−yx

e−yx + 1
(2.22)

= − y

eyx + 1
(2.23)

2.8 Transparency in Factorization Machine Model

Factorization Machines (FMs), a general prediction method that can model high-

order function interactions effectively, have been used for various prediction problems. De-

spite many effective implementations of the algorithm, one of the key drawbacks is trans-

parency. Unfortunately, machine learning models are unable to provide justification for their

predictions. Hence, while Factorization Machines predictions might be accurate, it might

not be clear to the user why a prediction was generated. Existing FMs do not provide inter-

pretable predictions to users. In FMs, the function interactions are modeled by polynomial

expansion, which is difficult to explain to users of the application.

ŷ(x) = w0︸︷︷︸
Term 1

+

n∑
i=1

wixi︸ ︷︷ ︸
Term 2

+

n∑
i=1

n∑
j=i+1

〈vi,vj〉xixj︸ ︷︷ ︸
Term 3

(2.24)

In the model equation 2.24, Term 1 and Term 2 are classical regression terms that are

explainable. Term 3 adds opacity (vi, vj) thus reducing transparency of the predictions.

In recent years, there are several efforts have been proposed for FMs to increase the

transparency:
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Subspace Encoding Factorization Machines (SEFM)

SEFM can apply nonlinear feature mapping to both individual features and features that are

affected by other features. They first used a nonlinear cut to divide the feature space into

bins and then grid cells. Each bin (or grid cell) is given a contribution score for prediction.

They obtain the new feature mapping by encoding the feature values into a one-hot vector.

The nonzero entries in the new feature representation show the contributions a particular

bin or grid cell makes to the model’s feature space. The final score of a sample is calculated

by combining the scores of the bins and grid cells that the sample is in. Because of this, the

SEFM model operates like a scoring system and does not require data binning and score

addition (FCB) [105]). It naturally gives interpretable predictions [106], which they present

as heat maps of the decision boundaries of classifiers.

Knowledge-aware Hybrid Factorization Machine (kaHFM)

The kaHFM is an interpretable model for recommendation systems that relies on factoriza-

tion machines which are updated to include semantic information encoded in the knowledge

graph. The algorithm is trained using semantically valid features from an information graph

in order to interpret the machine learning model. With the proposed model, a framework is

injected to make the most of the knowledge inherent in the objects. The model’s effective-

ness and accuracy were checked using two real-life recommendation system datasets. [107].

Attentional Factorization Machines (AFM)

AFM strengthens FM by teaching the value of feature interactions within an attention

network, which improves the representation of an FM model and allows the model to be

more explainable. [108]. The proposed model improves FM by discriminating the importance

of feature interactions, which utilizes the recent advance in neural network modeling — the

attention mechanism [109] [110] —to enable feature interactions contribute differently to the

prediction.

2.9 Summary

In this chapter, we reviewed the fundamentals of explainability in machine learning.

The next chapter presents a new methodology to make black-box machine learning models

more explainable.
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CHAPTER 3

A NEW EXPLAINABLE MACHINE LEARNING FRAMEWORK BASED ON

PRE-HOC AND CO-HOC EXPLAINABILITY

3.1 Introduction

We propose two novel approaches to enhancing the explainability of black-box mod-

els, which we call pre-hoc explainability and co-hoc explainability. Our approach aims to

incorporate explanations derived from an inherently interpretable white-box model into the

original model’s learning stage without compromising its high prediction accuracy. Unlike

post-hoc explanations, our approach does not rely on input perturbation or secondary model

learning, and thus avoids the potential pitfalls of surrogate modeling. Instead, we leverage

the insights provided by a white-box model to guide the training of the black-box model in

a way that preserves its accuracy while enhancing its global interpretability. We show that

our approach outperforms traditional black-box and white-box models on several bench-

mark datasets and offers a promising direction for making machine learning models more

transparent and trustworthy.

3.2 Problem Statement

Let S = {(xi,yi)}Ni=1 ⊂ Z be a sample from a distribution D in a domain Z = X ×Y,

where X is the instance and Y is the label set. We learn a differentiable predictive function

f ∈ F : X → Y together with an explainer function g ∈ G : X → Y defined over a functional

class G. We refer to functions f and g as the predictor and the explainer, respectively,

throughout the chapter. G is strictly constrained to be an inherently explainable functional

set, such as a set of linear functions or decision trees. We assume that we have a distance

function d : X × Y → R≥0 such that d(y, ŷ) = 0←→ y = ŷ, which measures the point-wise

similarity between two probability distributions in Y and can be used to optimize f and g.

Our idea is, instead of learning a post hoc white-box model, to learn a model that

is explainable from the start and then let this explainer model guide the predictor model.
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To accomplish this goal, we design two different frameworks; (1) A Pre-Hoc Explainable

Predictive Framework, where the white box model regularizes the black box model for

optimized fidelity and (2) A Co-hoc Explainable Predictive Framework, where white-box

and black-box models are optimized simultaneously with a shared loss function that enforces

fidelity. See Figure 3.1.

We use the explainer function g ∈ G to guide the predictor f by means of distance

measures globally. We define global interpretability by measuring how close f is to a family

G over N number of batches in point-wise fashion, see Figure 3.1.

Figure 3.1: Proposed Explainability Frameworks

3.3 Enforcing Fidelity

Definition 3.3.1 (Fidelity Objective Function). Given an inherently interpretable white-box

model g with parameters φ, let its predictions result in a probability distribution pφ. Given

the black-box, f with parameters θ, let its predictions result in probability distribution pθ over

K classes y ∈ Y = {1, 2, ..,K}. We propose a fidelity objective function, which measures

the point-wise probability distance between pφ and pθ, which are respectively the outputs of g

and f for all given input data X . The optimization problem is formulated as:
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min
f∈F

1

N

N∑
i=1

D (f (xi) , g (xi)) , (3.1)

where function D is a divergence distance measurement, such as the Jensen-Shannon

divergence [111]. We aim to use DJS, Jensen-Shannon divergence, to measure the point-wise

deviation of the predictive distributions fθ and gφ.

Denote by P the set of probability distributions. The Kullback-Leibler divergence

(KL). KL : P × P → [0,∞] is a fundamental distance between probability distributions in

D [112], defined by:

DKL(p||q) :=

∫
p log

p

q
dµ, (3.2)

where p and q denote probability measures P and Q with respect to µ.

Let p, q ∈ ∆K−1 have the corresponding weights π = [π1, π2]
T ∈ ∆. Then, the

Jensen-Shannon divergence between p and q is given by

DJS (p, q) := H(m)− π1H (p)− π2H (q)

= π1DKL (p‖m) + π2DKL (q‖m) ,
(3.3)

with H the Shannon entropy, and m = π1p + π2q. Unlike the Kullback-Leibler

divergence (DKL (p‖q)), JS is symmetric, bounded, and does not require absolute continuity.

We propose a fidelity objective function, LJSD, that is calculated using the Jensen-

Shannon divergence (JS), as follows:

LJS (x1:N , fθ, gφ) := DJS(ŷφ, ŷθ) (3.4)

LJS (x1:N , fθ, gφ) :=
1

2
(DKL(ŷφ ‖ (ŷφ + ŷθ)

2
)

+DKL(ŷθ ‖ (ŷφ + ŷθ)

2
))

(3.5)

Our goal is to learn the black-box predictive model fθ to optimize fidelity to an

inherently explainable gφ.

35



Substituting Eq. 3.2 into LJS (Eq. 3.5), we obtain:

LJS(ŷφ ‖ ŷθ) =
1

2
(
N∑
i=1

ln

(
ŷφ

ŷθ

)
ŷφ

+
N∑
i=1

ln

(
ŷθ

ŷφ

)
ŷθ)

(3.6)

Our proposed fidelity objective function has three distinct regularization properties

that we explain below.

Bounded Regularizer The Jensen–Shannon divergence distance is always bounded, i.e.,

0 ≤ JS(p : q) ≤ log 2, (3.7)

Since the square root of the JS yields a metric distance satisfying the triangular inequality

[113]. Thus, lower and upper bounds become

0 ≤ DJS(p : q) ≤
√

log 2. (3.8)

Symmetry Preserving Regularizer The Jensen Shannon divergence is symmetric with

respect to two input variables if swapping them does not change the distance. For instance,

DJS is symmetric with respect to p and q if and only if DJS(p; q) = DJS(q; p) for all values

of p and q. JS is symmetry preserving if the corresponding weights π = [π1, π2] are selected

as π =
[
1
2 ,

1
2

]
.

Differentiable Regularizer Our fidelity loss implements a differentiable regularizer to

enforce fidelity between the predictor model and the explainer model, which is used to derive

explanations for the predictor model. The regularizer is based on the Jensen-Shannon diver-

gence (JS) between the probability distributions of the explainer model and the predictor

model outputs.

Thus, the regularizer is differentiable, which means that it can be easily incorporated

into the training process of the predictor model using standard gradient descent update

rules and backpropagation techniques. By minimizing the JS between the two distributions,

the regularizer encourages the predictor to produce similar probability distributions to the
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explainer model, thereby ensuring that the explanations derived from the explainer model

are more accurate and trustworthy. We now present two frameworks for training explainable

models to optimize accuracy and fidelity.

Figure 3.2: Training Phase of Pre-hoc Explainability Framework

3.4 Pre-hoc Explainability Framework

We formulate the pre-hoc framework, illustrated in Figure 3.2 (a) and the Algorithm

in 3.1, to use a modified learning objective to obtain the Pre-hoc explainability loss as follows

LPre−hoc = LBCE + λ1DJS + λ2L2, (3.9)

where LBCE is the binary cross-entropy loss that ensure accurate predictions, λ1 is

an explainability regularization coefficient that controls the smoothness of the new repre-

sentation and the trade-off between explainability and accuracy, while λ2 is the coefficient

for standard L2 regularization of model parameters θ that aims to avoid overfitting and

exploding gradients. Given input data X and true outputs y, explained by the explainer g

with parameters φ.

LPre−hoc(θ, φ,X, y, ) =
1

N

N∑
i=1

−yθ log (ŷθ) + (1− yθ) log (1− ŷθ)︸ ︷︷ ︸
Predictor Accuracy

+ λ1
1

2
(

N∑
i=1

ln

(
ŷφ
ŷθ

)
ŷφ +

N∑
i=1

ln

(
ŷθ
ŷφ

)
ŷθ)︸ ︷︷ ︸

Fidelity

+ λ2
∑
i

θ2i︸ ︷︷ ︸
L2 Regularization

,

(3.10)
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Hence L consists of the cross-entropy loss and a fidelity regularization term along

with an L2 regularization term.

Since the explanation e is provided by the white box model gφ that is inherently

interpretable, the transparency is considered high when the explanatory white box model

outputs ŷφ are similar to the regularized model fθ outputs ŷθ. This is captured by DJS,

which is term 2, Fidelity, in the proposed objective function, LPre-hoc (eq. 3.9). While the

objective function is to learn the model that will make accurate predictions, we give greater

importance to the model’s predictions that are similar to the white-box predictions and

penalize those that are not similar.

Algorithm 3.1 Pre-hoc Explainability Framework
Require: Black-box model fθ, white-box model gφ, input instance x, true label y, and
parameter λ1 for weighting the divergence term.
procedure PreHocExplainability(fθ, gφ, x, y, λ1)

for each xi in Xtrain do
Compute pφ = gφ(xi) . Predictions from white-box model
Compute pθ = fθ(xi) . Predictions from black-box model
Compute LGJS = GJS(pθ,pφ) . Using GJS divergence
Compute LBCE = BinaryCrossEntropy(pθ,y)
Ltotal = LBCE + λ1 · LGJS
Update fθ using gradient descent: θ ← θ − α∇θLtotal

end for
end procedure

ℒjs 𝑥!:#, 𝑓$, 𝑔%
Jointly learn black-box predictive model 𝑓$ and
an inherently explainable 𝑔% to enforce fidelity

𝑓$ 𝑥!; 𝑦%!

𝑔% 𝑥!; 𝑦$!

Input			𝑥1:N

𝑦$!

𝑦%!

𝑓$ 𝑥&; 𝑦%&

𝑔% 𝑥&; 𝑦$&

𝑦$&

𝑦%&

𝑓$ 𝑥'; 𝑦%' 𝑓$ 𝑥#; 𝑦%# Prediction

Explanation𝑔% 𝑥&; 𝑦$' 𝑔% 𝑥#; 𝑦$#

Figure 3.3: Training Phase of Co-hoc Explainability Framework
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3.5 Co-hoc Explainability Framework

We formulate the Co-hoc explainability framework illustrated in Figure 3.3 and the

Algorithm in 3.2, to use a modified learning objective to obtain the Co-hoc explainability

loss as follows

Definition 3.5.1 (Co-hoc Fidelity Objective Function). Given an inherently interpretable

white-box model g with parameters φ, let its predictions result in a probability distribution

pφ and given the black-box model f with parameters θ, let its predictions result in probability

distribution pθ over K classes y ∈ Y = {1, 2, ..,K}. We propose a Co-Learning Explainability

Framework, where fθ and gφ are jointly learned, given pφ and pθ, respectively, as inputs. We

use an added distance function (eq. 4.1) as a regularization for the objective function to

guide the co-learning process. Our global distance metric is the same as the Definition 4.3.1,

and the combined Co-hoc loss function is given by

LCo−hoc(θ, φ,X, y, ) =
1

N

N∑
i=1

−yn log (ŷθn) + (1− yn) log (1− ˆyθn)︸ ︷︷ ︸
Predictor Accuracy

+
1

N

N∑
i=1

−yn log (ŷφn) + (1− yn) log (1− ˆyφn)︸ ︷︷ ︸
Explainer Accuracy

+ λ1
1

2
(
N∑
i=1

ln

(
ŷφ
ˆyθn

)
ŷφn +

N∑
i=1

ln

(
ˆyθn
ŷn

)
ˆyθn)︸ ︷︷ ︸

Fidelity

+ λ2
∑
i

θ2i︸ ︷︷ ︸
Regularization 1

+ λ3
∑
i

φ2i︸ ︷︷ ︸
Regularization 2

,

(3.11)

which contains binary cross-entropy and fidelity regularization terms, along with other

regularization terms; Regularization 1 discourages exploding gradients, and Regularization 2

encourages the sparsity of the explainer model.

The primary distinction between Co-hoc and Pre-hoc lies in the joint optimization of

predictor fθ and explainer gφ through simultaneous stochastic gradient descent with mini-

batches, see Figure 3.3.

The gradient can be calculated as:
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d

dŷWB

[
1

2
(

N∑
i=1

ln

(
ŷWB

ŷBB

)
ŷWB +

N∑
i=1

ln

(
ŷBB

ŷWB

)
ŷBB)

]
(3.12)

=
1

2
N

[
d

dŷWB
(ŷWB log

(
ŷWB

ŷBB

)
) +

d

dŷWB
(ŷBB log

(
ŷBB

ŷWB

)
)

]
(3.13)

=
1

2
N

[[
log

(
ŷWB

ŷBB

)
(

d

dŷWB
(ŷWB)) + ŷWB d

dŷWB
(log

(
ŷWB

ŷBB

)
)

]
+ ŷBB

d

dŷWB
(log

(
ŷBB

ŷWB

)
)

]
(3.14)

=
1

2
N

[[
log

(
ŷWB

ŷBB

)
(1) + ŷWB(

1

ŷWB
)

]
+ ŷBB(− 1

ŷWB
))

]
(3.15)

=
1

2
N

[[
log

(
ŷWB

ŷBB

)
+ (1)

]
− (

ŷBB

ŷWB
)

]
(3.16)

=
1

2
N

[
log

(
ŷWB

ŷBB

)
− ŷBB

ŷWB
+ 1

]
(3.17)

Algorithm 3.2 Co-hoc Explainability Framework
Require: Black-box model fθ, white-box model gφ, input instance x, true label y, and
parameter λ1 for weighting the divergence term.
procedure CoHocExplainability(fθ, gφ, x, y, λ1)

for each xi in Xtrain do
Compute pφ = gφ(xi) . Predictions from white-box model
Compute pθ = fθ(xi) . Predictions from black-box model
Compute LGJS = GJS(pθ, pφ) . Using GJS divergence
Compute LBCEθ = BinaryCrossEntropy(pθ,y)
Compute LBCEφ = BinaryCrossEntropy(pφ,y)
Ltotal = LBCEθ + LBCEφ + λ1 · LGJS
Update fθ using gradient descent: θ ← θ − α∇θLtotal
Update gφ using gradient descent: φ← φ− α∇φLtotal

end for
end procedure

3.6 Generating Explanations

In our proposed explainable machine learning frameworks, we generate global expla-

nations using a sparse linear model, considered an inherently explainable white-box model.

The sparse linear model allows us to provide interpretable feature importance scores, en-

abling users to understand the contribution of each feature to the model’s predictions. The

feature importance scores provide a quantitative measure of the relative importance of each

feature in the model’s decision-making process. Algorithm 3.3 outlines the process of cal-
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culating feature importance scores based on the trained white-box model and the input

dataset.

The algorithm for calculating the importance score of the features takes two inputs:

the trained white-box model g and the dataset Z containing the features. The output of

the algorithm is a vector of feature importance scores, where each score corresponds to a

specific feature in the dataset.

Algorithm 3.3 Feature Importance Score Calculation
Require: Trained explainer model g, dataset with features Z
1: featureImportances← {} . Initialized as an empty list
2: Calculate the mean absolute deviation MADA for each attribute A in the feature set

set Z using Eq. 3.18
3: for each attribute A in the feature set Z do
4: Extract the coefficient parameters or weights φA associated with feature A from

model g
5: Compute importance-score = φA ∗MADA

6: Append importance-score to featureImportances
7: end for
8: TopKfeatureImportances = TopK(Sortdescending(featureImportances))
9: return TopKfeatureImportances . return list of feature importance scores

The algorithm calculates the mean absolute deviation (MAD) for each feature in the

dataset Z. The MAD is a robust measure of the distribution that quantifies the average

absolute deviation of each data point from the mean. The MAD of Attribute A is calculated

as follows:

MADA =
1

N

N∑
i=1

|Ai − Ā| (3.18)

where N is the number of data points, Ai is Attribute A of the i-th data point, and

Ā is the mean of attribute A in the dataset.

MAD is used as a scaling factor to normalize feature importance scores, ensuring

that the scores are comparable across different features and datasets. By incorporating the

MAD in the importance score calculation, we account for the variability and scale of the

features, providing a more reliable and interpretable measure of feature importance. After

calculating the MAD, the algorithm iterates over each feature g in the model’s parameters θ

and extracts the corresponding weights from the trained white-box model for each feature.

These weights represent the learned coefficients that determine the impact of each feature

on the model’s predictions. To compute the importance score for a specific feature, the
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algorithm multiplies the mean weight of the feature by its corresponding MAD value. The

mean weight is obtained by averaging the weights associated with the feature across all

instances in the dataset. This step ensures that the importance score considers the feature’s

overall contribution to the model’s predictions.

3.7 Experimental Results

In this section, we first give a brief description of the data and metrics used to

evaluate our model. Then, we present the results and analyze the experimental results for

the methods proposed in Section 3.

3.7.1 Research Questions

We conduct experiments aimed at answering the following research questions:

RQ1: Can we maintain an accuracy that is higher than the explainer model even if it is

lower than the baseline BB predictor model; while having explanations from gφ (since gφ

was used to guide fθ?)

RQ2: How good is our regularized predictor model fθ at mimicking the explainer model

gφ?

RQ3: How does λ1 affect the fidelity and accuracy trade-off?

RQ4: What are the differences between the pre-hoc and co-hoc frameworks?

3.7.2 Datasets

We experimented with three publicly accessible real-world datasets. All three datasets

used in a binary classification setting. Movielens 100k movie ratings, has 100,000 ratings

based on 1000 users on 1700 movies. MovieLens 1M movie ratings, has 1 million ratings

based on 6000 users on 4000 movies. For Movielens datasets [114], the classification target

is the movie rating. Our goal is to learn like or dislike a movie. The target is discretized into

liked and disliked; 1 is the class label for a rating of 3 and above; 0 is the class label for a

rating of less than 3. FICO HELOC dataset [115] contains 10,459 anonymized information

about home equity line of credit (HELOC) applications made by real homeowners. The

target variable is risk performance, which predicts whether the homeowner qualifies for a

line of credit or not.
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3.7.3 Evaluation Protocols

To assess the classification accuracy, we use the Area under the ROC Curve, AUC(fθ,

ŷ). Each dataset is split randomly into training, validation, and test sets in the ratio

80:10:10. After training on every batches with a learning rate of 0.001, AUC is calculated

on the validation and test datasets. We measure all the metrics on a held-out test set. All

models are trained with L2 regularization until validation accuracy is stabilized for at least

ten epochs.

Fidelity, also known as descriptive accuracy [116], measures how accurately an expla-

nation method can mimic the behavior of a black-box classifier in terms of assigning class

labels to data records. We use AUC(fθ, gφ) to evaluate the fidelity. Our baseline for fidelity

is the AUC of the original black-box predictor model and the explainer model, which can

also be considered as a post-hoc explainability score without any optimization.

3.7.4 Baselines

We compared our Pre-hoc and Co-hoc predictor models with their original black-

box (BB) version. The black-box model is Factorization Machines [117] as it is a widely

used state of the art for classification, regression, and recommendation tasks. The explainer

white-box model (WB) is a sparse logistic regression model, which is inherently explainable,

and thus provides the explanation.

3.7.5 Parameter Settings

We implemented our proposed methods based on PyTorch. All models are learned

by optimizing the binary cross entropy with Adam [118], which is an extension to stochastic

gradient descent. Batch size is selected as 64,2056,64 respectively, for ML-100K, ML-1M,

and HELOC datasets, which are the optimal batch size for each dataset. We tested for λ1 in

{0.01, 0.1, 0.25, 0.5, 0.75, 1}. The regularization weight of the loss function is estimated using

a mini-batch. We pick the best regularization weight for each dataset using the validation

set and use that for the final evaluation. The final evaluation is done by retraining the

models using their chosen configurations and evaluating them on the test set.

43



TABLE 3.1: Proposed Explainability Frameworks, λ1 comparison in prediction accuracy
(AUC) and explainability (Fidelity) on the three datasets that were described in experimen-
tal settings. Higher AUC and Fidelity is better.

Framework Dataset Metric λ1 = 0.01 λ1 = 0.1 λ1 = 0.25 λ1 = 0.5 λ1 = 0.75 λ1 = 1

Pre-hoc

ml-100k
AUC 0.7840 0.7845 0.7849 0.7841 0.7801 0.7740

Fidelity 0.8207 0.8283 0.8430 0.8755 0.9094 0.9410

ml-1M
AUC 0.8075 0.8079 0.8076 0.8033 0.7954 0.7896

Fidelity 0.8769 0.8871 0.9058 0.9404 0.9696 0.9856

HELOC
AUC 0.7591 0.7611 0.7648 0.7699 0.7720 0.7719

Fidelity 0.7482 0.7541 0.7664 0.7903 0.8137 0.8454

Co-hoc

ml-100k
AUC 0.7840 0.7845 0.7852 0.7849 0.7816 0.7766

Fidelity 0.8215 0.8326 0.8507 0.8869 0.9194 0.9492

ml-1M
AUC 0.8075 0.8079 0.8077 0.8036 0.7968 0.7924

Fidelity 0.8771 0.8901 0.9122 0.9484 0.9749 0.9868

HELOC
AUC 0.7591 0.7612 0.7651 0.7707 0.7736 0.7743

Fidelity 0.7482 0.7563 0.7705 0.7767 0.8277 0.8572

3.7.6 Results and Discussion

RQ1: For the predictor model fθ, can we maintain an accuracy that is

higher than the explainer model gφ if lower than the original f ; while having

explanations from gφ (since gφ was used to guide the fθ)?

The experimental results in Table 3.2, Figure 3.4, Figure 3.5 provide insights into this

question. Comparing the accuracy scores between the predictor model and the explainer

model, we observe that the predictor model for both Pre-hoc predictor and Co-hoc predictor

consistently achieves significantly higher accuracy scores than the explainer model gφ (p-

value < .05), even with the λ1 = 1, which is the highest coefficient for optimizing fidelity,

for each dataset and the both proposed models.

These results clearly demonstrate that the proposed Pre-hoc and Co-hoc predictors

maintain higher accuracy compared to the explainer model gφ baseline while achieving im-

proved fidelity in mimicking the behavior of the explainer model gφ.

RQ2: How good is our regularized predictor model fθ in mimicking the

explainer model gφ?

On the ml-100k dataset, Pre-hoc predictor and Co-hoc predictor achieve fidelity
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TABLE 3.2

Model comparison in terms of prediction accuracy and fidelity of explainability on the three
real-world datasets, two interaction datasets, ML100k and ML1M, and one tabular, HELOC
dataset. All evaluation metrics are computed with, respectively, for datasets λ1 = 0.75, 0.5, 1
and batch size n = 64, 2056, 64. The explainer is the white-box model, BB is the predictor
black-box model. The best results are in bold. Higher AUC and Fidelity is better.

Dataset ml-100k ml-1M HELOC

Model AUC Fidelity AUC Fidelity AUC Fidelity

Explainer WB 0.7655 - 0.7882 - 0.7616 -

Original BB 0.7784 0.8287 0.8078 0.8875 0.7703 0.7728

Pre-hoc BB 0.7801 0.9094 0.8033 0.9404 0.7698 0.8454

Co-hoc BB 0.7816 0.9194 0.8036 0.9484 0.7743 0.8572

scores of 0.9094 and 0.9194, respectively, 9.7% and 10.9% increase by outperforming the

original black-box predictor fidelity score of 0.8287. This indicates that the proposed models

better capture the behavior of the explainer model compared to the baseline predictor model.

Similarly, on the ml-1M dataset, Pre-hoc predictor and Co-hoc predictor achieve a fidelity

score of 0.9404 and 0.9484, outperforming the original fidelity score of 0.8875 by improving

5.9% and 6.8%. Moreover, in the HELOC dataset, improvement in the fidelity score is

respectively, 9.3% and 10.9% for Pre-hoc predictor and Co-hoc predictor.

In summary, the experimental findings support the notion that the proposed mod-

els, Pre-hoc and Co-hoc predictors, are more successful in mimicking the behavior of the

explainer model compared to the baseline black-box model. This demonstrates the effec-

tiveness of the proposed techniques in enhancing the fidelity of the predictor model while

maintaining high accuracy.

Importantly, these improvements in fidelity are achieved without any decrease in the

accuracy score. The proposed predictor models maintain a similar level of accuracy com-

pared to the original black-box predictor. The trade-off between fidelity and accuracy will

be explored and discussed further in the next research question.

RQ3: How does lambda affect the fidelity and accuracy trade-off?

As we can see in Table 3.1, the regularization hyperparameter λ1 plays a crucial
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Figure 3.4: Pre-hoc Explainability Framework Comparison in Accuracy AUC for different
λ1 on the ml-100k (a), ml-1M (b), HELOC (c) datasets. Pre-hoc Predictor is our proposed
model, BB is the original black-box predictor model, WB is the explainer model.
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Figure 3.5: Co-hoc Explainability Framework Comparison in Accuracy AUC for different
λ1 on the ml-100k (a), ml-1M (b), HELOC (c) datasets. Co-hoc Predictor is our proposed
model, BB is the original black-box predictor model, and WB is the explainer model.

role in balancing the fidelity and accuracy trade-off in our models. A value of λ1 = 0

indicates that there is no regularization of the fidelity, while λ1 = 1 signifies an equal weight

of the fidelity and accuracy in the objective function. The impact of λ on the results is

noteworthy. When λ1 is set to 0.01 and 0.1, there is no noticeable difference in the Fidelity

AUC metric across all datasets. However, as we increase the value of λ1, we observe a

consistent improvement in the fidelity results. In particular, when λ1 is set to 1, we achieve

almost perfect fidelity scores, indicating a high level of agreement between the explainer

model gφ and the regularized predictor model fθ. This demonstrates the effectiveness of the

regularization approach in mimicking the behavior of the explainer model.

In the Pre-hoc Explainability Framework, for the ml-100k dataset, the accuracy

values remain relatively stable across different λ1 values, ranging from 0.7840 to 0.7740. On

the other hand, the fidelity values gradually increase as λ1 increases, starting from 0.8207

and reaching a peak at λ=1.0 with a fidelity value of 0.9410, which is a 14.6% increase. This
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suggests that higher λ1 values in the Pre-hoc framework result in more faithful explanations

without significantly sacrificing accuracy.

Similarly, for the ml-1M dataset, the accuracy values are relatively consistent, with

the highest accuracy, 0.8076, observed at λ1= 0.25. On the other hand, the fidelity values

show an increase of at most 12. 3% when the value of λ1 increases, ranging from 0.8769 to

0.9856. λ1=1.0 achieves the highest fidelity, indicating that the Pre-hoc framework with a

higher λ1 value captures more accurate and informative explanations.

In the HELOC dataset, the accuracy values range from 0.7591 to 0.7719 across dif-

ferent λ1 values. As λ1 increases, the fidelity values also exhibit an upward trend, starting

from 0.7482 and reaching a peak at λ=1.0 with a fidelity value of 0.8454. This suggests that

the Pre-hoc framework with higher λ values enhances the fidelity of the explanations while

maintaining comparable accuracy.

Similarly, in the Co-hoc Explainability Framework; for the ml-100k dataset, the

accuracy values remain relatively stable, ranging from 0.7840 to 0.7766. The fidelity values

show a gradual increase with increasing λ1, starting from 0.8215 and reaching the highest

fidelity of 0.9492 at λ1=1. This suggests that the Co-hoc framework with a moderate λ

value achieves better fidelity without compromising accuracy significantly.

In the ml-1M dataset, the accuracy values are consistent across different λ1 values,

ranging from 0.8075 to 0.7924. On the other hand, the fidelity values show an increase of 12.

5%, starting at 0.8771 and reaching the highest fidelity of 0.9868 at λ1=1. This indicates

that the Co-hoc framework with higher λ values captures more faithful explanations while

maintaining comparable accuracy.

In the HELOC dataset, the accuracy values range from 0.7591 to 0.7743 across dif-

ferent λ1 values. As λ1 increases, the fidelity values also exhibit an upward trend with a

14.5% increase, starting from 0.7482 and reaching the highest fidelity of 0.8572 at λ1=1.

This suggests that the Co-hoc framework with higher λ1 values improves the fidelity of the

explanations while maintaining similar accuracy levels.

Overall, the analysis of the experimental results shows that increasing λ1 values lead

to improvements in fidelity, indicating more accurate and faithful explanations with accuracy

values remaining relatively stable or showing marginal variations across different λ1 values.

The optimal balance between accuracy and fidelity may vary depending on the dataset and

the specific requirements of the explainability framework.
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RQ4: What are the differences between the pre-hoc and co-hoc frame-

works?

For comparing the two proposed frameworks, we consider accuracy, fidelity, and lambda

sensitivity properties aspects.

Accuracy: In terms of prediction accuracy, both frameworks generally perform sim-

ilarly across the evaluated datasets. In most cases, the accuracy values are comparable,

with only slight variations observed. For example, in the ml-100k dataset, both frameworks

achieve accuracy values around 0.78. Similarly, in the ml-1M and HELOC datasets, both

frameworks achieve similar accuracy values with slight differences.

Fidelity: The fidelity of the Co-hoc framework tends to be consistently higher com-

pared to the Pre-hoc framework. Across all datasets, the Co-hoc framework achieves higher

fidelity scores, indicating that it better approximates the behavior of the explainer model.

For instance, in the ml-100k dataset, the fidelity of Co-hoc ranges from 0.8215 to 0.9492,

whereas Pre-hoc ranges from 0.8207 to 0.9410. The same trend applies to other datasets as

well, see Table 3.1.

Sensitivity to Regularization Coefficient λ: Both frameworks exhibit sensitivity

to the choice of λ1. The performance in terms of accuracy and fidelity can vary depending on

the specific value of λ1 used. The optimal value of λ1 that maximizes the trade-off between

fidelity and accuracy may differ between the two frameworks and across different datasets.

Overall, the Co-hoc Explainability Framework consistently demonstrates higher fi-

delity than the Pre-hoc Framework, while the differences in prediction accuracy between the

two frameworks are relatively minor. This suggests that the Co-hoc approach, which jointly

optimizes both the predictor model and explainer model, has the potential to approximate

the mechanisms of the original model better and provide more accurate explanations. An-

other advantage of the co-hoc framework over the pre-hoc framework is that it learns a more

accurate white-box expaliner model due to the joint training phase.
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3.8 Summary

We proposed two novel explainability frameworks based on pre-hoc and co-hoc ex-

plainability. The Pre-hoc explainability and Co-hoc explainability frameworks guide the

black-box predictor model’s training with an interpretable white-box model to align the

black-box predictor’s global logic with the white-box explainer’s transparent reasoning rather

than extracting post-hoc approximations of the white-box’s logic. The proposed models in-

corporate the fidelity for any differentiable machine learning model without modifying the

model architecture. Our work addresses the lack of explainability optimization during train-

ing and model-agnostic methods to enhance global explainability.

Our experimental results evaluated the methods in comparison with the WB and BB

LR and FM baselines, respectively, showing improvements in terms of accuracy, in addition

to providing an explanation that contributes to making the predictions explainable.

One limitation of the proposed methods in this chapter is that they only provide a

single global explanation model for the entire data set. In the the next chapter, we propose

new algorithms to extend our framework to produce local explanations that can better

explain the predictions for different instances of the data set.
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CHAPTER 4

OPTIMIZING IN-TRAINING EXPLAINABLE MACHINE LEARNING FOR

LOCAL EXPLAINABILITY

4.1 Introduction

One limitation of the methods proposed in the previous chapter is that they only

provide a single global explanation model for the entire data set. While global explana-

tions, as we have shown in the previous chapter, can provide an overall interpretation of a

model’s behavior, local explanations offer insights into the model’s decision-making process

for individual instances. Local explainability is thus particularly important in domains such

as healthcare, finance, and criminal justice, where the different consequences of individ-

ual predictions can be significant, and knowing the factors that affect a specific decision is

crucial.

In this chapter, we extend our in-training explainable machine learning framework

to incorporate local explainability, enabling the generation of instance-specific explanations.

We present the problem formulation, introduce the concept of local explainability, and pro-

pose an algorithm to enforce local fidelity by leveraging the Jensen-Shannon divergence

between the predictor and the explainer models using neighborhood information.

4.2 Problem Statement

Let S = {(xi,yi)}Ni=1 ⊂ Z be a sample from a distribution D in a domain Z = X ×Y,

where X is the instance space and Y is the label space. We learn a differentiable predictive

function f ∈ F : X → Y together with a transparent explainer function g ∈ G : X → Y

defined over a functional class G. We refer to functions f , gglobal, and glocal as the predictor,

global explainer and local explainer, respectively. G is strictly constrained to be an inherently

explainable functional set, such as a set of linear functions.

Our goal is to optimize the predictor f to provide global explanations that are faith-

ful to the model’s behavior and consistent with the explanations generated by the global
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TABLE 4.1

Notation

Symbol Description

fθ Predictor: black-box machine learning model with parameters θ

gglobalφ Global Explainer: white-box machine learning model with parameters φ

glocalφi
Local white-box Explainer model for testing instance xi, with parameters φi

pφ Probability distribution of the outputs of fθ
pθ Probability distribution of the outputs of gφ
L2 Regularization for sparsity

D Divergence measurement

JS Jensen-Shannon divergence

λ Explainability regularization coefficient

BB Black-box machine learning model

WB White-box machine learning model

x Input instance

y True label or target

ŷ Predicted target

ŷθ Predicted target label from the predictor

ŷφ Predicted target label from the explainer

N training
xi Local in-training neighborhood instances of data point xi

N testing
xi Local in-testing neighborhood instances of data point xi

getNeighbors Neighborhood function

Z Dataset

PF Point Fidelity

NF Neighborhood Fidelity

TV Total Variation

explainer gglobal. Then, fine-tune the global explainer gglobal within the local neighborhood,

N (xtestingi ), of a new testing instance xi to obtain local explainer glocali . We aim to achieve

this by minimizing the divergence between the outputs of the predictor and global explainer

in the local neighborhood while maintaining the predictor’s accuracy and generating local

explanations from the local explainer model, glocali .
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Figure 4.1: Pre-hoc Local Explainable Machine Learning Framework consists of two phases.
Phase 1: Training for Fidelity is the training phase that optimizes the agreement between
the white-box explainer and black-box predictor models, quantified by fidelity. Phase 2:
Generating a local explanation for a new test instance by fine-tuning the white-box explainer
model within its neighboring training instances.
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Figure 4.2: Co-hoc Local Explainable Machine Learning Framework consists of 2 phases.
Phase 1: Training for Fidelity is the training phase of the framework that co-optimizes the
agreement between the white-box explainer and black-box predictor models, quantified by
fidelity. Phase 2: Generating a local explanation for a new test instance by fine-tuning the
white-box explainer model within its neighboring training instances.
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4.3 Optimizing Local Explainability Using the Neighbors of an Instance

Local explainability refers to understanding and interpreting a model’s predictions at

an individual instance level, whereas global explanations provide an overall understanding of

the model’s behavior. Thus, local explanations can offer insights into the factors influencing

a specific prediction. In the following, we present the definitions that will be used to build

the proposed methodology.

Definition 4.3.1 (Neighborhood Fidelity Objective Function). Given a global explainer

model gglobalφ with parameters φ, let its predictions result in a probability distribution pφ.

Given the predictor, fθ with parameters θ, let its predictions result in probability distribution

pθ over K classes y ∈ Y = {1, 2, ..,K}. We propose a neighborhood fidelity objective function,

which measures the probability distances of local in-training neighborhoods N training(xi) of

instance i, between pφ and pθ, which are respectively the outputs of gglobalφ and fθ for all

given input training data X . The optimization problem is formulated as follows:

min
fθ∈F

1

N

N∑
i=1

Dlocal

(
fθ
(
N training(xi)

)
, gglobalφ

(
N training(xi)

))
, (4.1)

Where function Dlocal is a divergence distance measurement, such as the Jensen-

Shannon divergence [111], DJSlocal, to measure the within-neighborhood deviation between

the predictive distributions of fθ and gglobalφ .

Denote the set of probability distributions by P. The Kullback-Leibler divergence

(KL) KL : P × P → [0,∞] is a fundamental distance between probability distributions in

D [112], defined on a neighborhood N by:

DKL,N (p||q) :=

∫
N
p log

p

q
dµ, (4.2)

where p and q denote probability measures P and Q with respect to µ.

Let p, q ∈ ∆K−1 have the corresponding weights π = [π1, π2]
T ∈ ∆. Then, the

Jensen-Shannon divergence between p and q is given by

DKL,N (p, q) := π1DKL,N (p‖m) + π2DKL,N (q‖m) , (4.3)

Finally, DJSlocal is obtained as follows:
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DJSlocal(ŷφ, ŷθ) =
1

2
(

∑
xj∈N trainingxi

ln

(
ŷjφ
ŷjθ

)
ŷjφ

+
∑

xj∈N trainingxi

ln

(
ŷjθ
ŷjφ

)
ŷjθ)

(4.4)

We propose a neighborhood fidelity objective function, LJSlocal , that is calculated

using the Jensen-Shannon divergence (JS) as follows:

LJSlocal
(
N training
x1:N

, fθ, g
global
φ

)
:= DJSlocal(ŷφ, ŷθ) (4.5)

Here, xi represents an instance andN training
xi its neighbors, f() denotes the predictor’s

output, and gglobalφ () denotes the global explainer’s prediction. The difference between these

two terms measures the variability in the predictions within a local neighborhood.

We propose two Locally Explainable Machine Learning Frameworks, (1) a Pre-hoc

Local Explainability Framework, see Figure 4.1; and (2) a Co-hoc Local Explainabil-

ity Framework, see Figure 4.2. Both frameworks consist of 2 phases by integrating local

neighborhoods to achieve local explainability. Phase 1 (Training for Fidelity) is the training

phase that optimizes the agreement between the white-box explainer and black-box models,

quantified by fidelity within the neighboring training instances. Phase 2 (Generating Local

Explanations) performs fine-tuning of the white-box explainer model within the neighboring

training instances closest to a new test instance.

We use the nearest neighborhood algorithm to identify a set of neighboring instances

for each local instance in the dataset, such as k-nearest neighbors (k-NN). The intuition

behind considering local neighborhoods is that similar inputs are expected to have similar

outputs while capturing the model’s behavior near each instance by focusing on the local

neighborhood.

We compute the predicted probability distributions for each instance and its cor-

responding neighbors using the predictor model fθ and the explainer model gglobalφ . This

step results in multiple probability distributions for each training instance, representing the

predictions of the black-box and white-box explainer models within the local neighborhood.

Then, we use the Jensen-Shannon divergence, computed between the predictions of the

black-box predictor model and the explainer model for the local in-training neighborhoods
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surrounding an instance. This divergence measure quantitatively assesses the consistency

between the predictor and explainer models on a local level.

4.3.1 PHASE 1: Integrating Local Explainability with Neighbors in Training

In the following, we will modify the loss functions of the Pre-hoc and Co-hoc frame-

works proposed in Chapter 3 to incorporate local explainability as follows:

1. Pre-hoc local explainability loss during Training Phase 1: The loss function

LLocal-Pre-hoc-JS consists of three components: the binary cross-entropy loss LBCE for

prediction accuracy, the JS-local divergence DJS-local for local explainability, and an

L2 regularization term L2 for model complexity, as follows:

LLocal-Pre-hoc = LBCE + λ1DJSlocal + λ2L2 (4.6)

Where LBCE is the binary cross-entropy loss captures prediction errors, λ1 is an ex-

plainability regularization coefficient that controls the smoothness of the new represen-

tation and the trade-off between explainability and accuracy, while λ2 is the coefficient

for standard L2 regularization of model parameters θ that aims to avoid overfitting

and exploding gradients.

2. Co-hoc local explainability loss during Training Phase 1: The loss function

LLocal-Co-hoc-JS consists of three components: the binary cross-entropy loss Lf-BCE for

prediction accuracy, LgglobalBCE for global explainer accuracy, the JS-local divergence

DJS-local for local explainability, and an L2 regularization term L2 for model complex-

ity, as follows:

LLocal-Co-hoc = Lf-BCE + LgglobalBCE + λ1DJSlocal + λ2L2(f) + λ2L2(gglobal) (4.7)

Where given input data X and true outputs y, to be explained by an explainer model

family gglobal with parameters φ, LBCE is the binary cross-entropy loss that ensures

accurate predictions, λ1 is an explainability regularization coefficient that controls the

smoothness of the new representation and the trade-off between explainability and

accuracy. At the same time, λ2 is the coefficient for standard L2 regularization of

model parameters θ that aims to avoid overfitting and exploding gradients.

56



Algorithm 4.1 Training PHASE 1 for Pre-hoc: Integrating Local Explainability with
Neighbors in Training
Require: input training instances Xtrain, true label y, nearest neighborhood function
GetNeighbors(), number of neighborhood instances k, and parameter λ, the coefficient
for the explainability regularization term.

for each xi in Xtrain do
N training(xi)← GetNeighbors(xi, k,Xtrain) . Get k-NN to training instance xi from

Training set
end for
Initialize φ and θ
for each xi in Xtrain do

Compute pθ = fθ(xi) . Predictions from predictor model
Compute pφ = gglobalφ (xi) . Predictions from explainer model
Compute LJSlocal = ComputeLocalLossJS(fθ(xi), g

global
φ (xi),N training(xi))

Compute LgglobalBCE . White-box model loss
LLocal−Pre−hoc = Lf−BCE + λ · LJSlocal . Black-box model loss
Update fθ using gradient descent on θ: θ ← θ − α∇θLLocal−Pre−hoc
Update gglobalφ using gradient descent on φ: φ← φ− α∇φLgglobalBCE

end for
Return fθ and gglobalφ

procedure ComputeLocalLossJS(fθ, g
global
φ , D) . Compute average JS divergence for

input subset D
LJS ← 0
for All xi ∈ D do

ŷ
(i)
φ ← gglobalφ (xi)

ŷ
(i)
θ ← fθ(xi)

L(i)JSlocal ← DJSlocal(ŷ
(i)
θ , ŷ

(i)
φ )

LJSlocal ← LJSlocal + L(i)JSlocal
end for
LJSlocal ← 1

|D|LJSlocal
return LJSlocal

end procedure

Algorithm 4.2 presents the method for integrating the Jensen-Shannon divergence for

local explainability within neighborhoods during the training of the black-box model. The

algorithm takes as input the black-box model fθ, the white-box model gglobalφ , the training

dataset Xtrain with their true labels y, and the hyperparameter λ1. It also requires the

nearest neighborhood function GetNeighbors and the number of neighborhood instances k.

The ComputeLocalJS procedure calculates the local JS divergence between the pre-

dictions of the black-box model fθ and the white-box model gglobalφ for each training instance

in the input data X and its corresponding neighbors. It retrieves the neighbors N training(xi)
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Algorithm 4.2 Training PHASE 1 for Co-hoc: Integrating Local Explainability with Neigh-
bors in Training
Require: input training instances Xtrain with their true labels y, nearest neighborhood
function GetNeighbors(), number of neighborhood instances k, and explainability regu-
larization coefficient λ.

for each xi in Xtrain do
N training(xi)← GetNeighbors(xi, k,Xtrain) . Get k-NN of training instance xi from

Training set
end for
Initialize φ and θ
for each xi in Xtrain do

Compute pθ = fθ(xi) . Predictions from predictor model
Compute pφ = gglobalφ (xi) . Predictions from explainer model
Compute LJSlocal = ComputeLocalLossJS(fθ(xi), g

global
φ (xi),N training(xi))

LLocal−Co−hoc = Lf−BCE + LgglobalBCE + λ · LJSlocal
Update fθ and gglobalφ using gradient descent on θ: θ ← θ − α∇θLLocal−Co−hoc

end for
Return fθ and gglobalφ

procedure ComputeLocalLossJS(fθ, g
global
φ , D) . Compute average JS divergence for

input subset D
LJS ← 0
for All xi ∈ D do

ŷ
(i)
φ ← gglobalφ (xi)

ŷ
(i)
θ ← fθ(xi)

L(i)JSlocal ← DJSlocal(ŷ
(i)
θ , ŷ

(i)
φ )

LJSlocal ← LJSlocal + L(i)JSlocal
end for
LJSlocal ← 1

|D|LJSlocal
return LJSlocal

end procedure

of each instance xi using the GetNeighbors function, computes the predictions of both pre-

dictor and explainer models for the neighbors, and calculates the average JS divergence,

LJS , between these predictions.

The training phase iterates over each training instance xi from dataset Xtrain. For

each instance, it computes the black-box model’s prediction pθ and the local JS divergence

LJS using the ComputeLocalJS procedure. The binary cross-entropy loss LBCE is also

calculated between the black-box model’s prediction and the true label y. The total loss

Ltotal is then computed as a weighted sum of LBCE and LJS , where the weight λ1 controls

the importance of local explainability. Finally, the black-box model’s parameters θ are
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updated using gradient descent based on the total loss.

By incorporating explainability within neighborhoods during the training process,

the proposed framework aims to generate an explainer model that is faithful to the model’s

behavior and consistent with the explanations provided by the interpretable white-box model

in the local neighborhood of each instance. Up to this point, although the training strives

to learn a predictor model close to the explainer model within local neighborhoods, the

explainer model is still considered global. In the next phase, a distinct local explainer model

will be computed after the prediction has been computed for a new (test) instance. However,

unlike traditional post-hoc surrogate explainer models, which are trained from scratch on

a neighborhood, the proposed explainer model will be obtained by fine-tuning the global

model that had already been pre-trained in Phase 1 during training,to cut on the explainer

training cost after prediction.

4.3.2 PHASE 2: Generating Local Explanations

Algorithm 4.3 Testing PHASE 2: Computing Local Explanations

Require: White-box model gglobalφ , input training instances Xtrain with their true labels
y, nearest neighborhood function GetNeighbors(), number of neighborhood instances k,
testing instance xi

N testing(xi)← GetNeighbors(xi, k,Xtrain) . Get k-NN to training instance xi from
Training set
Compute pφ = gglobalφ (N testing(xi)) . Predictions from explainer model
for All xj ∈ N testing(xi) do . Get predictor outputs for the local training neighbors

ŷlocalφi,j
← gglobalφ (xj)

end for
φi ← φ . initialize local model to the global model
for t=1 to Tfinetune do

for All xj ∈ N testing(xi) do
ŷlocalφi,j

← glocalφi
(xj) . Get local explainer outputs for the local training neighbors

end for
Update Local Explainer Loss LLocal-Explainer using Eq. 4.8
φi ← φi − α∇φiLLocal-Explainer . Update glocalφi

using gradient descent
end for
Extract feature importances feature_importances from glocalφi

using Algorithm 3.3 and the
set of features in the data
return feature_importances

In Phase 2 of our locally explainable machine learning framework, we focus on gen-

erating local explanations by fine-tuning the global white-box explainer model gglobalφ , pre-
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viously trained (pre-trained) in Phase 1, for each new individual testing instance xi to be

predicted and explained. The fine-tuned white-box model glocalφi
is a sparse linear regression

model.

To fine-tune the global white-box explainer model previously learned in Phase 1,

we first identify the nearest training set neighbors relative to the test instance we want to

explain using the GetNeighbors function. These neighboring instances are called in-training

neighborhood instances.

N testing(xi) = GetNeighbors(xi, k,Xtrain)

These neighboring testing instances can provide a local context to transfer our previously

constructed global explanations of the black box model’s behavior to be focused on the

specific test instance. Hence, we use the in-testing neighborhood instances to fine-tune the

pre-trained global white-box explainer model gglobalφ . The fine-tuning process involves per-

forming a few iterations of optimizing the global explainer model’s gglobalφ parameters to

minimize the white-box model loss function, regularized using the Jensen-Shannon diver-

gence loss between the fine-tuned explainer’s prediction ŷlocalφi
= glocalφi

(xi) and the black box

predictions ŷ=θ fθ(xi) over the in-testing neighborhood. Specifically, the loss function is given

by

LLocal-Explainer = Dexpl
JSlocal

(ŷlocalφi
, ŷθ) (4.8)

where

Dexpl
JSlocal

(ŷlocalφi
, ŷθ) =

1

2
(

∑
xj∈N training(xi)

ln

(
ŷlocalφi

ŷjθ

)
ŷlocalφi

+
∑

xj∈N testing(xi)

ln

(
ŷjθ
ŷlocalφi

)
ŷjθ)

(4.9)

Once fine-tuning is finished, the sparse linear model glocalφi
will finally be used to

calculate feature importance scores using Algorithm 3.3 in Chapter 3, which will quantify

the contribution of each feature to the model’s predictions. The feature importance scores

quantify the relative importance of each feature to the model decision-making process for a

given test instance, hence serving as a local explanation to help users understand the factors

influencing the model’s predictions for a specific test instance.
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4.4 Comparison to Classical Post-hoc Explainability Methods such as LIME

Our proposed in-training explainability framework ingrains the explainability within

the model training phase by using the Jensen-Shannon (JS) divergence for local fidelity. In

contrast, traditional post-hoc methods are generally model-agnostic techniques that seek to

interpret already trained black box models. These methods usually generate explanations

by either approximating the behavior of complex black box models using interpretable and

simple surrogate models as in the case of LIME [17] or by computing the contribution of

the data features to the predictions without learning a surrogate model, as in the case

of SHAP [18]. Although these methods can be applied to any trained model, they often

involve additional computational overhead at explanation time after prediction. They may

also generate explanations inconsistent with the model because, by their definition and

nature (being model-agnostic), they function entirely outside the scope of the model and its

training. Our in-training framework addresses this limitation by learning explainer models

tightly coupled with the black model model during training. The black model is influenced

by the explainer, and in addition, in the case of the Co-hoc method, the explainer model is

directly influenced by the black box model.

Although both post hoc methods and our proposed in-training explainability frame-

work target local explainability, they adopt different principles. For example, LIME tries

to approximate the black-box model using an interpretable surrogate in a post-hoc manner.

In contrast, our proposed in-training explainability framework aims to align the black-box

model’s decisions with an interpretable explainer model during training. TTherefore, thein-

training explainability framework can,be seen as a proactive machine learning method to

ensure local explainability. At the same time, LIME is considered instead as a reactive

method that attempts to interpret decisions after the fact.

Furthermore, our local in-training explainability framework works by learning a pre-

dictive model that is tightly coupled with the explainer during training, followed by fine-

tuning the explainers to the local neighborhood of a new instance after prediction in a

post-hoc manner however this is designed using a pre-training of the explainers alongside

the predictor model during the training phase, followed by a lighter fine-tuning of the ex-

plainer in the post-hoc phase, hence alleviating the costly task of learning explainers from

scratch for each new instance. Depending on the given real-time demands and budgets re-
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garding computational resources, desired robustness of explanations, or flexibility in model

training, one approach might be favored.

4.5 Experimental Results

4.5.1 Research Questions

We compare the proposed local explainability methods with a post-hoc method,

LIME [17], by answering the following research questions.

• RQ 4.1 - Explanatory Power: How well does the explainer model mimic the pre-

dictor model in Phase 1?

• RQ 4.2 - Trade-off : How does the λ value affect the accuracy and fidelity score in

Phase 1? RQ 4.3 - Framework Comparison: What are the differences between

the Pre-hoc and Co-hoc frameworks in Phase 1?

• RQ 4.4 - Locality and Stability: How well do the explanations capture the local

behavior of the model compared to LIME in Phase 2?

• RQ 4.5 - Neighborhood Size: How does neighborhood size affect neighborhood

fidelity, stability, and computational cost in Phase 2?

• RQ 4.6 - Computational Efficiency: What is the computational cost of generating

explanations for our proposed frameworks and the LIME post hoc method in Phase

2?

4.5.2 Datasets

We experimented with three publicly accessible real-world datasets. All three datasets

were used in a binary classification setting.

• HELLOC

FICO HELOC data set [115] contains 10,459 anonymized information on the home

equity line of credit (HELOC) applications made by real homeowners. The target

variable is the risk performance, which predicts whether the homeowner qualifies for

a line of credit.
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• Movielens 100k

Movielens has 100k movie ratings and 100,000 ratings based on 1000 users on 1700

movies. MovieLens has 1M movie ratings and 1 million ratings based on 6000 users

of 4000 movies. For Movielens datasets [114], the classification target is the movie

rating. We aim to learn whether a user will like or dislike a movie. Hence, the target

is discretized into liked and disliked, with 1 being the class label for a rating of 3 and

above and 0 being the class label for a rating of less than 3.

• Grasping Dataset

We evaluate the performance of our approach on the grasping dataset obtained by

simulation using the Smart Grasping Sandbox [119]. The public dataset was created

to investigate the effectiveness of using machine learning to predict whether a robot’s

grasp is stable while grasping a ball. The data set has been annotated with an objective

grasp of consistency. It contains data obtained from the three joints on each of the

grasper’s three fingers’ (position, velocity, and effort), amounting to about 54,000

unique data points and 29 measurements for each experiment.

The classification target is the predicted grasp robustness. Moreover, the output is

discretized as 1 for a stable grasp and 0 for an unstable grasp. A grasp is considered

stable if the robustness value is more than 100.

4.5.3 Evaluation Protocols

To assess the classification accuracy, we use the Area under the ROC Curve, AUC(fθ,

ŷ). Each dataset is split randomly into training, validation, and test sets in the ratio

80:10:10. After training on every batch with a learning rate of 0.001, AUC is calculated

on the validation and test datasets. We measure all the metrics on a held-out test set. All

measurements are repeated five times, and the results are averaged across runs and tabulated

along with the standard deviation. All models are trained with L2 regularization until

validation accuracy is stabilized for at least ten epochs. For local explainabilty neighborhood

generation, we set the number of neighbors k = 10 during Training Phase 1 and k = 100

during Testing Phase 2 (after trial and error). All the models were implemented using the

PyTorch framework [120] and executed on an NVIDIA Tesla V100 GPU, 16 GB RAM and

CPU Intel(R) Xeon(R) CPU, 2.20GHz, 13 GB RAM.
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We use fidelity, also known as descriptive accuracy [116], to measure how accurately

an explanation method can mimic the behavior of a black-box classifier in terms of assign-

ing class labels to data records. Specifically, we use AUC(fθ, gφ) to estimate the fidelity.

Our baseline for fidelity is the AUC of the original black-box predictor model and the ex-

plainer model, which can also be considered a post-hoc explainability score without any

optimization. To evaluate our suggested models against the LIME post-hoc method [17], we

employ the metrics comprehensively described in Chapter 2 in Sections 2.6, namely point

fidelity [17], neighborhood fidelity [68], and stability [27].

Another crucial factor to consider when evaluating the practicality and scalability

of explanation methods is the computational cost of generating explanations using our

proposed explainable frameworks (EF) compared to the LIME state-of-the-art post-hoc

method. More specifically, we evaluated the efficiency of both methods in terms of both (1)

the training time and (2) the time required to generate local explanations for individual

test instances.

The difference between the total training time of the regularized explainable model

in the Explainable Framework (EF) and the original black-box model (BB) gives us the ad-

ditional computation time introduced by the explainability regularization. This additional

computation time quantifies the computational overhead of incorporating explainability reg-

ularization into the training process of the EF compared to the unregularized black-box

model (BB). This additional computation time helps us assess the trade-off between the im-

proved explainability provided by our proposed framework and the increased computational

cost associated with the explainability regularization. This information can be valuable for

assessing the practical implications of using EF in real-world scenarios, where computational

resources may be limited, and the balance between explainability and efficiency is crucial.

We also measure the time required to explain individual instances using EF and LIME

to assess the added cost of generating explanations. The computational cost is calculated

by measuring the average time to generate explanations for individual instances using EF

or LIME. By comparing the average explanation times and standard deviations, we can

assess the computational efficiency of our explainable framework in generating explanations

for individual instances. Finally, the total computational cost, which includes training and

explanation times, comprehensively compares the overall efficiency of all methods.
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4.5.4 Baselines

We compared our Pre-hoc and Co-hoc locally explainable predictor models with their

original non-regularized black-box (BB) version, Factorization Machines [117], sstate-of-the-

artmodel for classification, regression, and recommendation tasks. The explainer white-box

model (WB) is a sparse logistic regression model, which is inherently explainable,and thus

provides the explanation.

4.5.5 Parameter Settings

We implemented our proposed methods based on PyTorch. All models are learned

by optimizing binary cross-entropy with Adam [118], an extension of stochastic gradient

descent. The batch size is selected as 64, 2056, and 64, respectively, for the ML-100K,

Grasping, and HELOC datasets, all obtained by validation as the optimal batch size for

accuracy for their respective datasets. We tested for λ1 in {0.01, 0.05, 0.25, 0.5, 1}. The

regularization weight of the loss function is estimated using a mini-batch. We pick the

best regularization weight for each dataset using the validation set and use that for the

final evaluation. The final evaluation is done by retraining the models using their chosen

configurations and evaluating them on the test set.

4.5.6 Results and Discussion

RQ 4.1 - Explanatory Power: How well does the explainer model mimic

the predictor model in Phase 1?

To assess the global explanatory power of the Pre-hoc and Co-hoc frameworks, we

examine how well the explanations generated by these frameworks capture the nuances of

the black-box model’s decision-making process by analyzing the fidelity AUC scores,since

they measure the agreement between the predictions of the predictor model and the global

explainer model, for different values of the explainability regularization parameter λ.

Figure 4.6b (b) presents the fidelity AUC scores for the Pre-hoc framework on the

Grasping dataset for different values of λ. As λ increases, the fidelity AUC shows a notable

improvement, increasing from around 0.80 at λ = 0.01 to approximately 0.95 at λ = 1.

This indicates that higher values of λ strengthen the regularization effect, encouraging the

Pre-hoc Predictor to align more closely with the WB Explainer. Since the WB Explainer
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is used to guide the learning of the Pre-hoc Predictor, the high fidelity scores suggest that

the explanations generated by the Pre-hoc framework effectively capture the nuances of the

black-box model’s decision-making process.

Similarly, Figure 4.4b (b) presents the fidelity AUC scores for the Co-hoc framework

in the HELOC data set for different values of λ. As λ increases, the fidelity AUC ssignif-

icantly improves increasing from around 0.78 at λ = 0.01 to approximately 0.96 at λ = 1.

This suggests that the Co-hoc framework also effectively captures the nuances of the black-

box model decision-making process, with higher values of λ leading to better alignment

between the Co-hoc Predictor and the WB Explainer.

Comparing the fidelity AUC scores of the Pre-hoc and Co-hoc frameworks, we observe

that both frameworks achieve high fidelity scores, indicating their ability to generate expla-

nations that closely capture the decision-making process of the black-box model. The high

fidelity scores result from the regularization term in the objective function, which encourages

the black-box predictor to align with the WB Explainer. By minimizing the divergence be-

tween the predictor’s and explainer’s outputs, the generated explanations effectively capture

the nuances of the black-box model’s decisions. Furthermore, the Co-hoc framework exhibits

slightly higher fidelity scores than the Pre-hoc framework for the same values of λ. This can

be attributed to the joint optimization process in the Co-hoc framework, where the black-

box predictor and the WB Explainer are trained simultaneously. Joint optimization allows

for a stronger alignment between the predictor and the explainer, resulting in explanations

that better capture the nuances of the black-box model decision-making process.

To summarize, tanalyzingthe fidelity AUC scores for the Pre-hoc and Co-hoc frame-

works on the Grasping, HELOC, and ML-100k datasets highlights their ability to generate

explanations that effectively capture the nuances of the black-box model’s decision-making

process. The high fidelity scores achieved by both frameworks demonstrate the effectiveness

of using the WB Explainer to guide the learning of the black-box predictor and generate

explanations that align closely with the model’s decisions. The Co-hoc framework’s joint

optimization approach leads to slightly higher fidelity scores than the Pre-hoc framework,

indicating a stronger alignment between the predictor and the explainer in capturing the

model’s decision-making process.

RQ 4.2 - Trade-off between Accuracy and Explanation Fidelity: How does

explainability regularization λ affect the accuracy and fidelity score in Phase 1?
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To analyze the effect of the explainability regularization parameter λ on the accuracy

and fidelity scores, we examine Figures 4.3, 4.4, 4.5, 4.6, 4.8, 4.7.

Figure 4.3a shows the accuracy AUC scores for the Pre-hoc Predictor, BB Predictor,

and WB Explainer models in the HELOC dataset for different values of λ. As λ increases

from 0.01 to 1, the accuracy AUC of the Pre-hoc Predictor remains relatively stable, with

a slight increase from around 0.744 to 0.746. The accuracy of the Pre-hoc Predictor is

consistently higher than that of the WB Explainer, indicating that the Pre-hoc framework

maintains a good balance between accuracy and explainability. The BB Predictor, which is

the unregularized black-box model, has a slightly higher accuracy than the Pre-hoc Predic-

tor, but the difference is marginal.

Figure 4.3b (b) presents the fidelity AUC scores for the Pre-hoc framework on the

HELOC dataset for different values of λ. The fidelity AUC measures the agreement between

the predictions of the Pre-hoc Predictor and the WB Explainer. As λ increases, the fidelity

AUC ssignificantly improves rising from around 0.78 at λ = 0.01 to approximately 0.95 at

λ = 1. This confirms that higher values of λ strengthen the regularization effect, encouraging

the Pre-hoc Predictor to align more closely with the WB Explainer, thereby enhancing the

explainability of the model.

The results demonstrate that the explainability regularization parameter λ plays a

crucial role in controlling the trade-off between accuracy and explainability in the Pre-hoc

framework. Lower values of λ prioritize precision, whereas higher values emphasize explain-

ability. The choice of λ depends on the specific requirements of the application and the

desired balance between accuracy and interpretability. Even with high values of λ, the ac-

curacy of the Pre-hoc Predictor remains competitive with the BB Predictor, indicating that

the Pre-hoc framework effectively incorporates explainability without significantly sacrificing

predictive performance.

Analyzing the accuracy AUC scores for the Co-hoc framework on the HELOC dataset,

in Figure 4.4a, we observe an interesting behavior when the explainability regularization pa-

rameter λ is set to 1. At this high regularization level the accuracy of both the Co-hoc

Predictor and the WB Explainer decreases and falls below their previous results. This phe-

nomenon is not observed in the Pre-hoc framework, where accuracy remains relatively stable

for the WB explainer even at high values of λ. Furthermore, the regularized Co-hoc BB

accuracy exceeds that of the BB baseline only within a narrower range of λ compared to
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Figure 4.3: HELOC Dataset. Pre-hoc Explainability Framework Comparison in Accuracy
AUC and Fidelity AUC for different explainability regularization λ1=0.01, 0.05, 0.25, 0.5,
1. Pre-hoc Predictor is our proposed model, BB is the original black-box predictor model,
and WB is the explainer model.
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Figure 4.4: HELOC Dataset. Co-hoc Explainability Framework (a) Accuracy AUC (b)
Fidelity AUC for different λ1=0.01, 0.05, 0.25, 0.5, 1. Co-hoc Predictor is our proposed
model, BB is the original black-box predictor model, and WB is the explainer model.

the Pre-Hoc case. This behavior can be attributed to the joint optimization process in the

Co-hoc framework. In the Co-hoc setting, the black-box model and the white-box explainer

are trained simultaneously, with the objective of minimizing the combined loss function

that includes the explainability regularization term. When λ = 1, the regularization term

dominates the loss function, leading to a strong emphasis on aligning the predictions of the

Co-hoc Predictor with those of the WB Explainer. As a result, the Co-hoc Predictor may

overfit the WB Explainer, sacrificing its predictive performance.

Moreover, due to the joint optimization in the Co-hoc framework, the accuracy of the
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WB Explainer and the Co-hoc Predictor also decreases. This is because the WB Explainer

is actively involved in the training process and is influenced by the regularization term. The

strong regularization at λ = 1 forces the WB Explainer to adapt its predictions to align

with the Co-hoc Predictor, potentially decreasing its accuracy.

In contrast, in the Pre-hoc framework, the WB Explainer is not regularized or mod-

ified during the training process. Instead, it is used as a fixed reference model to regularize

the black-box model. As a result, the accuracy of the WB Explainer remains constant across

different values of λ in the Pre-hoc setting. The Pre-hoc framework focuses on aligning the

predictions of the black-box model with those of the fixed WB Explainer without affecting

the explainer’s performance.
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Figure 4.5: Grasping Dataset. Pre-hoc Local Explainability Framework (a) Accuracy Fi-
delity (b) Fidelity AUC for different λ1=0.01, 0.05, 0.25, 0.5, 1. Pre-hoc Local Predictor is
our proposed model, BB is the original black-box predictor model, and WB is the explainer
model.

Figure 4.6a displays the accuracy AUC scores for the Pre-hoc Local Predictor, BB

Predictor, and WB Explainer models on the Grasping dataset for different values of λ. As

λ increases from 0.01 to 1, the accuracy AUC of the Pre-hoc Predictor remains relatively

stable, with a slight decrease from around 0.83 to 0.81. The accuracy of the Pre-hoc Predic-

tor is consistently higher than that of the WB Explainer, demonstrating that the Pre-hoc

framework maintains a good balance between accuracy and explainability. The BB Predic-

tor, which is the unregularized black-box model, has a slightly higher accuracy than the

Pre-hoc Predictor, but the difference is minimal.

Figure 4.6b (b) presents the fidelity AUC scores for the Pre-hoc framework in the
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Figure 4.6: Grasping Dataset. Co-hoc Local Explainability Framework (a) Accuracy Fidelity
(b) Fidelity AUC for different λ1=0.01, 0.05, 0.25, 0.5, 1. Co-hoc Local Predictor is our
proposed model, BB is the original black-box predictor model, and WB is the explainer
model.

Grasping dataset for different values of λ. The fidelity AUC measures the agreement be-

tween the predictions of the Pre-hoc Predictor and the WB Explainer. As λ increases, the

fidelity AUC shows a notable improvement, increasing from around 0.80 at λ = 0.01 to

approximately 0.95 at λ = 1. This indicates that higher values of λ strengthen the reg-

ularization effect, encouraging the Pre-hoc Predictor to align more closely with the WB

Explainer, thereby enhancing the explainability of the model.

The results for the Grasping dataset are consistent with the findings of the HELOC

dataset, demonstrating the effectiveness of the explainability regularization parameter λ

in controlling the trade-off between accuracy and explainability in the Pre-hoc framework.

Lower values of λ prioritize precision, whereas higher values emphasize explainability. The

choice of λ depends on the specific requirements of the application and the desired balance

between accuracy and interpretability. With high values of λ, the accuracy of the Pre-

hoc Predictor remains competitive with that of the BB Predictor on the Grasping dataset,

indicating that the Pre-hoc framework effectively incorporates explainability without signif-

icantly compromising predictive performance.

The analysis of the Grasping and ML-100k datasets reinforces the findings from the

HELOC dataset, highlighting the effectiveness of the explainability regularization parameter

λ in controlling the trade-off between accuracy and explainability in the proposed frame-

works. Higher values of λ lead to improved fidelity between the BB predictor and the WB
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Explainer, enhancing the interpretability of the model while maintaining a good level of

accuracy. The results demonstrate the versatility of the proposed frameworks in achieving a

balance between accuracy and explainability across different datasets, providing users with

the flexibility to adjust the model based on their specific needs and requirements.

In summary, the explainability regularization parameter λ allows users to control the

trade-off between accuracy and explainability in the Pre-hoc framework. Higher values of λ

lead to improved fidelity between the Pre-hoc Predictor and the WB Explainer, enhancing

the interpretability of the model while maintaining good accuracy. The results highlight

the effectiveness of the proposed frameworks in achieving a balance between accuracy and

explainability, providing users with the flexibility to adjust the model based on their specific

needs and requirements.

RQ 4.3 - Framework Comparison: What are the differences between the

Pre-hoc and Co-hoc frameworks in Phase 1?

The observations in RQ 4.1 and RQ 4.2 highlight the differences between the Co-

hoc and Pre-hoc frameworks in terms of their optimization processes and the impact of

regularization on the models involved. Joint optimization of the Co-hoc framework allows

for a stronger alignment between the Co-hoc Predictor and the WB Explainer. Still, it may

lead to over-regularization and decreased accuracy when λ is set too high. On the other hand,

the Pre-hoc framework provides a more stable performance across different regularization

strengths, as it only regularizes the black-box model while keeping the WB Explainer fixed.
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Figure 4.7: ML-100k Dataset. Pre-hoc Explainability Framework Comparison in Accuracy
AUC for different λ1=0.01, 0.05, 0.25, 0.5, 1. Pre-hoc Predictor is our proposed model, BB
is the original black-box predictor model, and WB is the explainer model.
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(a) (b)

Figure 4.8: ML-100k Dataset. Co-hoc Explainability Framework Comparison in Accuracy
AUC for different λ1=0.01, 0.05, 0.25, 0.5, 1. Co-hoc Predictor is our proposed model, BB
is the original black-box predictor model, and WB is the explainer model.

Another advantage of our Co-hoc framework is that even the white-box model that is

learned to explain the black-box predictor achieves a significantly higher prediction accuracy

after the Co-hoc learning. This means that the proposed Co-hoc in-training approach can

also improve white-box models, which are essential and required in certain high-risk and

regulated application tasks in health care and legal decision-making.

When choosing between the Co-hoc and Pre-hoc frameworks, it is essential to consider

the specific requirements and priorities of the application. If a very high level of alignment

between the predictor and the explainer is desired, and a slight decrease in accuracy is

acceptable, the Co-hoc framework may be preferred. However, if maintaining the predictor’s

accuracy is critical and the explainer’s performance is less important, the Pre-hoc framework

may be a more suitable choice.

The analysis of the over-regularization behavior in the Co-hoc framework and the

comparison with the Pre-hoc framework highlight the trade-offs and considerations involved

in selecting the appropriate framework for a given application. The Co-hoc framework’s

joint optimization allows for a stronger alignment between the models. Still, it may lead

to over-regularization, while the Pre-hoc framework provides a more stable performance by

keeping the explainer fixed during the regularization process.

RQ 4.4 - Locality: How well do the explanations capture the local behavior

of the model compared to LIME in Phase 2?

To assess the local explainability of our proposed frameworks, we compare their
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Figure 4.9: Grasping and HELOC Datasets results. Comparison with LIME based on
neighborhood fidelity and stability results. λ = 0.25, k = 10. One hundred test instances in
the neighborhood, an average of 5 runs.

performance with the LIME post-hoc explainability method [17] in terms of point fidelity,

neighborhood fidelity, and stability. Point fidelity measures the agreement between the

explanations and predictions for individual instances, while neighborhood fidelity extends

this concept to consider the agreement within local neighborhoods around each instance.

Stability measures the consistency of explanations across different runs.

Table 4.2 and Figure 4.9 present the HELOC dataset’s explanation metrics of our

framework and LIME on the held-out test. Regarding Average Neighborhood Fidelity, LIME

explanations to the black-box model, the average neighborhood fidelity is 0.6600 with a

standard deviation of 0.1939. This result suggests that LIME explanations moderately

agree with the black-box model’s predictions in the local neighborhoods. White-box (WB)

explanations to Pre-hoc explainability framework, the average neighborhood fidelity is 0.9587

with a standard deviation of 0.0766. This indicates a high level of agreement between the

white-box explanations and our framework’s predictions in the local neighborhoods.

TABLE 4.2

HELOC Dataset results. Comparison with LIME based on neighborhood fidelity and sta-
bility results. λ = 0.25, k = 10.

Explanation Method Point Fidelity ↑ Neighborhood Fidelity ↑ Stability ↓
LIME 0.6083 ± 0.0050 0.6600 ± 0.1939 0.2152 ± 0.0175

Pre-hoc Framework 0.8270 ± 0.0260 0.9587 ± 0.0766 0.0623 ± 0.0110

Co-hoc Framework 0.8300 ± 0.0240 0.9647 ± 0.0575 0.0502 ± 0.0087
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Table 4.3 and Figure 4.9 show the Grasping dataset’s comparison results. Similar

to the HELOC dataset, our Pre-hoc and Co-hoc frameworks outperform LIME in terms of

point fidelity, neighborhood fidelity, and stability. The Pre-hoc framework achieves a point

fidelity of 0.8270 and a neighborhood fidelity of 0.9597, while the Co-hoc framework achieves

scores of 0.8300 and 0.9647, respectively.

TABLE 4.3

Grasping Dataset results. Comparison with LIME based on neighborhood fidelity and sta-
bility results. λ = 0.25, k = 10. One hundred test instances in the neighborhood, an average
of 5 runs.

Explanation Method Point Fidelity ↑ Neighborhood Fidelity ↑ Stability ↓
LIME 0.7000 ± 0.0150 0.7410 ± 0.1345 0.2152 ± 0.1667

Pre-hoc Framework 0.9170 ± 0.0454 0.9597 ± 0.0493 0.0219 ± 0.0110

Co-hoc Framework 0.9200 ± 0.0240 0.9647 ± 0.0575 0.0502 ± 0.0101

Table 4.4 and Figure 4.10 presents the results of our Pre-hoc framework with differ-

ent values of the explainability regularization parameter λ on the ML-100k dataset. As λ

increases, we observe a consistent improvement in point fidelity, neighborhood fidelity, and

stability. Without regularization (λ = 0), the point fidelity is 0.8183, and the neighborhood

fidelity is 0.8050. As λ increases to 1, the point fidelity reaches 0.9951, and the neighbor-

hood fidelity improves to 0.9953. This indicates that stronger regularization enhances the

local explainability of the Pre-hoc framework. Moreover, the stability of the explanations

improves with increasing λ, as evidenced by the decreasing values in the stability column.

The results in all three data sets consistently demonstrate significantly higher scores

in all three metrics than LIME (p-value < .05), thus showing our proposed frameworks’

effectiveness in capturing the model’s local behavior. The high point fidelity and neigh-

borhood fidelity scores indicate that our frameworks generate explanations consistent with

the model’s predictions for individual instances and within local neighborhoods. Improved

stability scores suggest that our frameworks produce more consistent explanations across

different runs than LIME.

It is worth noting that the Co-hoc framework consistently achieves slightly higher

neighborhood fidelity scores than the Pre-hoc framework. This can be attributed to the

joint optimization process in the Co-hoc framework, where the black-box model and the
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Figure 4.10: ML-100k Dataset results. Comparison of the Pre-hoc Framework with k = 10,
for λ = {0.01, 0.05, 0.1, 0.25, 0.5, 1} in point fidelity, neighborhood fidelity, and stability
results. "Reg" means that regularization was used.

TABLE 4.4

ML-100k Dataset results. Comparison of the Pre-hoc Framework with k = 10, for
λ = {0.01, 0.05, 0.1, 0.25, 0.5, 1} in point fidelity, neighborhood fidelity, and stability results.
“Reg" means that regularization was used.

Explanation Method Point Fidelity ↑ Neighborhood Fidelity ↑ Stability ↓
No-regularization 0.8183 ± 0.3524 0.8050 ± 0.1268 0.3524 ± 0.0175

Reg λ = 0.01 0.8473 ± 0.0351 0.8553 ± 0.1158 0.1290 ± 0.0010

Reg λ = 0.05 0.8781 ± 0.0195 0.8923 ± 0.1043 0.1128 ± 0.0009

Reg λ = 0.1 0.9370 ± 0.0230 0.9353 ± 0.0737 0.0815 ± 0.0019

Reg λ = 0.25 0.9740 ± 0.0237 0.9903 ± 0.0329 0.0189 ± 0.0041

Reg λ = 0.5 0.9824 ± 0.0234 0.9953 ± 0.0215 0.0078 ± 0.0010

Reg λ = 1 0.9951 ± 0.0117 0.9953 ± 0.0215 0.0078 ± 0.0010

white-box explainer are trained simultaneously. The joint optimization allows for a stronger

alignment between the model’s predictions and the explanations, leading to better local

explainability.

In summary, the analysis of point fidelity, neighborhood fidelity, and stability metrics

on the HELOC, Grasping, and ML-100k datasets highlights our proposed frameworks’ more

faithful local explainability compared to LIME. The explanations from our framework have

the highest average neighborhood fidelity and the lowest total variation, indicating a high
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level of agreement with our model’s predictions and good stability across different neigh-

borhoods. However, LIME explanations have moderate neighborhood fidelity with higher

total variation, suggesting more variability in fidelity scores across different neighborhoods.

Overall, the results indicate that the white-box explanations, especially those aligned with

ours, provide more faithful and stable explanations in the local neighborhoods than LIME

explanations.

RQ 4.5 - Neighborhood Size: How does neighborhood size affect neigh-

borhood fidelity, stability, and computational cost in Phase 2?

As the neighborhood size (k) increases from 3 to 100 in Table 4.5 and Figure 4.11, the

neighborhood fidelity increases. This suggests that larger neighborhoods better capture local

patterns and provide more accurate explanations. The stability measure decreases as the

neighborhood size increases. A lower stability value indicates more consistent explanations

across different instances within the neighborhood. Larger neighborhoods provide more

stable explanations. Finally, the computation time slightly increases with the neighborhood

size, but the difference is insignificant. This implies that the computational cost is not

impacted by the choice of neighborhood size, at least within the range of values considered.

Figure 4.11: HELOC Dataset results on Pre-hoc for varying neighborhood size based on
neighborhood fidelity, stability, and computation cost results. λ = 0.25.

RQ 4.6 - Computational Efficiency: What is the computational cost of generat-

ing explanations for our proposed frameworks compared to the LIME post-hoc method in

Phase 2?
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TABLE 4.5

HELOC Dataset results on Pre-hoc for varying neighborhood size based on neighborhood
fidelity, stability, and computation cost results. λ = 0.25.

Neighborhood Size Neighborhood Fidelity ↑ Stability ↓ Computation Time

k = 3 0.8833 ± 0.1939 0.2152 ± 0.0175 0.0121 ± 0.0014

k = 10 0.9350 ± 0.0381 0.0505 ± 0.0098 0.0127 ± 0.0009

k = 100 0.9670 ± 0.0013 0.0015 ± 0.00006 0.0144 ± 0.0061

Computational efficiency is an essential factor to consider when evaluating the prac-

ticality and scalability of explanation methods. This research question compares the com-

putational cost of generating explanations using our proposed frameworks and the state-

of-the-art post-hoc method, LIME. All experiments were executed on an Intel(R) Xeon(R)

CPU, 2.20GHz, and 13 GB RAM. An NVIDIA Tesla V100 GPU of 16 GB for CPU and

GPU comparison is used. The results aim to provide insights into the computational trade-

offs between Pre-hoc and post-hoc approaches and highlight the efficiency advantages of

our proposed method. We assess the efficiency of both methods in terms of training time,

the average time to explain a single instance, the total time to explain a single instance,

and the total time for explaining the entire test set. Table 4.6 presents the calculation time

comparison to generate explanations on the HELOC dataset, which consists of 988 instances

in the test set. Our proposed Pre-hoc and Co-hoc methods include an additional training

phase due to the local explainability regularization that takes 5.10 and 5.40 seconds for 7896

instances. This training time is a one-time cost incurred before generating explanations for

individual instances. LIME, being a post-hoc method, does not have an additional phase

during the training of the black-box model.

TABLE 4.6

HELOC Dataset. Computation time comparison for generating explanations on a test
dataset of 100 instances. The average time is the computation time to explain a single
instance.

Method Additional Training Time (s) Avg Explanation Time (s) Total Time for Single Instance (s) Total Time for Test Set(s)

LIME - 0.3812 ± 0.0828 0.3812 ± 0.0828 376.625

Pre-hoc 5.1020 ± 0.0315 0.0110 ± 0.0015 5.1130 ± 0.0330 15.9700

Co-hoc 5.3960 ± 0.0330 0.0135 ± 0.0030 5.4095 ± 0.0360 18.7340
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LIME takes an average of 0.38 seconds with a standard deviation of 0.082 seconds to

generate an explanation for a single instance. On the other hand, our proposed Pre-hoc and

Co-hoc frameworks take, respectively, an average of 0.011 and 0.013 seconds with a standard

deviation of 0.0015 and 0.0030 seconds to generate an explanation for a single instance. This

highlights the efficiency of our method, which is significantly faster than LIME in explaining

individual instances. For our frameworks, the total time to explain a single instance includes

both the training and the average explanation times. Therefore, the total time is 10.868 and

13.338 seconds.

LIME, being a post-hoc method, does not have a separate training phase, so the total

time for explaining a single instance is the same as the average explanation time, which is

0.3812 seconds. When considering the total computation time for generating explanations

for all 988 instances in the test dataset, LIME takes 376.625 seconds (approximately 6

minutes). The total computation time is calculated by multiplying the average explanation

time by the number of instances (0.3812 seconds × 988 instances). Our proposed frameworks

take approximately 11 and 13 seconds, respectively, to generate explanations for the entire

test dataset. This total time includes the training time.

Overall, Table 4.6 highlights the trade-off between the one-time training cost of our

proposed method and the efficiency gained in explaining individual instances. Although our

method has a mandatory initial training time, it significantly outperforms LIME regarding

the average time required to explain a single instance. This efficiency advantage becomes

more apparent when generating explanations for many instances, as is the total time required

to explain the entire test dataset. The results demonstrate that our proposed method has

a balance between the initial training cost and the ability to generate explanations more

efficiently compared to LIME. The faster explanation time per instance and the lower total

time for the test set make our method more scalable and suitable, especially for scenarios

where real-time or large-scale explanations are required.

Table 4.7 compares computation times for generating explanations on a test dataset

of 100 instances using different methods on the Grasping dataset. The table provides insights

into the computational efficiency of LIME and our proposed Pre-hoc and Co-hoc frameworks.

LIME does not require a separate training phase, as it generates explanations for

each instance independently. The average time for LIME to explain a single instance

is 0.3979 seconds, with a standard deviation of 0.0894 seconds. The total time to generate
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TABLE 4.7

Grasping Dataset. Computation time comparison for generating explanations on a test
dataset of 100 instances. The average (Avg) time is the computation time to explain a
single instance. Results are based on five runs.

Method Additional Training Time (s) Average Time (s) Total Time for Single Instance (s) Total Time for Test Set(s)
LIME - 0.3979 ± 0.0894 0.6114 ± 0.0752 56.9913
Pre-hoc 18.2300 0.1489 ± 0.0340 18.3789 ± 0.0340 33.1200
Co-hoc 16.7030 0.1580 ± 0.0445 16.8610 ± 0.0445 32.5030

explanations for the entire test set of 100 instances using LIME is 56.9913 seconds. On the

other hand, our proposed Pre-hoc framework includes a training phase, which takes 18.230

seconds. The average time for generating an explanation for a single instance using the

Pre-hoc framework is 0.1489 seconds, with a standard deviation of 0.0340 seconds. The

total time for generating explanations for the 100 instances in the test set using the Pre-hoc

framework is 33.1200 seconds, which includes the training time. The Co-hoc framework also

consists of a training phase, which takes 16.7030 seconds. The average time for generating

an explanation for a single instance using the Co-hoc framework is 0.1580 seconds, with a

standard deviation of 0.0445 seconds. The total time for generating explanations for the

100 instances in the test set using the Co-hoc framework is 32.5030 seconds, including the

training time.

Comparing the total time for generating explanations for the 100 instances in the test

set, the Pre-hoc framework is the most efficient. Despite not requiring a separate training

phase, LIME takes significantly longer, with a total time of 56.9913 seconds for the test set.

These results demonstrate statistically significant computational efficiency (p-value < 0.05)

of our proposed frameworks compared to LIME in both single instances and in total time.

Although LIME generates explanations independently for each instance, our frameworks

incorporate the explanation generation process into the training phase, resulting in faster

explanation times during inference.

Table 4.8 shows a comparison of computation times for generating explanations on a

test dataset of 100 instances using different hardware configurations (GPU and CPU) and

datasets (ML100k and HELOC). In Single Epoch Training Time for the ML100k dataset,

the GPU version takes an average of 0.9126 seconds per epoch, while the CPU version takes

0.9989 seconds. The difference in training time per epoch between the GPU and CPU is

relatively small, with the GPU being slightly faster. For the HELOC dataset, the GPU
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version takes an average of 0.3873 seconds per epoch, while the CPU version takes 0.1476

seconds. In this case, the CPU version is faster than the GPU version for training.

TABLE 4.8: Computation Cost comparison using CPU and GPU in Pre-hoc Explainability
Framework.

Dataset Device Single Epoch Training Time (s) Avg Single Explaination Time (s)

ML-100k
CPU 0.9989 ± 0.0661 0.0186 ± 0.0013
GPU 0.9126 ± 0.4788 0.0146 ± 0.0014

HELOC
CPU 0.1476 ± 0.0021 0.0120 ± 0.0011
GPU 0.3873 ± 0.4914 0.0149 ± 0.0034

In Average Single Explanation Time, for the ML100k dataset, the GPU version takes

an average of 0.0146 seconds to generate a single explanation, while the CPU version takes

0.0186 seconds. The GPU version generates individual explanations slightly faster. For the

HELOC dataset, the GPU version takes an average of 0.0149 seconds to generate a single

explanation, while the CPU version takes 0.0120 seconds. In this case, the CPU version

generates individual explanations faster.

For the ML100k and HELOC datasets, the total time for generating an explanation

for a single instance is 30.1989 seconds on the GPU and 19.6094 seconds on the CPU. The

CPU version appears to be faster regarding the total time for a single instance. For the

ML100k and HELOC datasets, the total time for generating explanations for 100 instances

is 6.2745 seconds on the GPU and 18.8441 seconds on the CPU. In this case, the GPU

version is significantly faster than the CPU version.

GPUs are designed for parallel processing and are well-suited for tasks that can be

parallelized, such as matrix operations and deep learning. They have many cores that can

perform computations simultaneously, making them faster than CPUs for specific workloads.

CPUs, on the other hand, are designed for general-purpose computing and sequential pro-

cessing. They have fewer cores than GPUs but are more versatile and can handle a wide

range of tasks efficiently.

It is important to note that comparing CPU and GPU performance may not be

entirely meaningful when the code is not optimized for parallelization. Because explanations

are generated sequentially without leveraging the GPU’s parallel processing capabilities, the

GPU does not provide significant speed improvements over the CPU.
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The results in Table 4.8 show mixed performance between the GPU and CPU ver-

sions, with the CPU being faster in some cases (e.g., single epoch training time for HELOC,

average single explanation time for HELOC) and the GPU being faster in others (e.g., total

time for 100 instances). However, without parallelization in the code, the comparison does

not reflect the true potential of GPU acceleration.

The implementation must be optimized for parallelization to fully utilize the GPU’s

capabilities and achieve significant speed improvements. This would involve identifying

portions of the code that can be executed in parallel and leveraging GPU-specific libraries

and frameworks to efficiently distribute the workload across the GPU cores. By parallelizing

the explanation generation process and effectively utilizing the GPU, the computation cost

could decrease significantly compared to running on the CPU.

Additionally, LIME, a popular post-hoc explainability method, does not support

GPU usage due to it’s dependency on scikit-learn library and only runs on the CPU. This

limitation of LIME highlights the advantage of our proposed framework, which can leverage

the power of GPUs to accelerate the explanation generation process, provided that the code

is appropriately parallelized. Although the table compares computation times between GPU

and CPU versions, without parallelization in the implementation, the comparison may not

be expressive, and the actual benefits of GPU acceleration may not be realized. To fully

take advantage of the power of GPUs, the code would need to be optimized for parallel

processing. Additionally, the fact that LIME only supports CPU usage emphasizes the

potential advantage of our proposed framework in terms of computational efficiency when

properly utilizing GPUs.

4.5.7 Examples of Explanations

In this section, we present explanation examples of our explainer model, which pro-

vides both local and global explanations for the predictions made by the logistic regression

model. Local explanations focus on understanding the importance of each feature for a

specific test instance, allowing us to interpret how the model arrived at its prediction for

that particular case. On the other hand, global explanations offer insights into the overall

behavior of the model across all instances, revealing the features that generally have the

most significant impact on the model’s predictions. By examining both local and global

feature importance scores, we gain a comprehensive understanding of the factors driving the
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model’s decisions at both the individual instance level and the broader pattern level.

Figure 4.12: Grasping Data Set Explanation Example: Top 10 Feature Importance scores
from the global explanation of the Pre-hoc framework, showing that increased effort exerted
in Joint 2 of Finger 3 contributes tremendously to producing grasp failure, which is in
contrast to increased efforts exerted at joint 2 of Fingers 1 and 2 and joint 1 of Finger 3,
that lead to reducing grasp failure.

Global explainability addresses the need to broadly understand a machine learning

model’s decision-making, containing the entire model rather than individual predictions.

The top 10 features of the Pre-hoc framework, as shown in Figure 4.12, indicate the relative

importance of each feature and its contribution to predicting grasp robustness. Figure 4.12

shows that the most influential feature is H1F3J2eff, joint two effort on finger 3, which in-

creases the model score by 0.5. It shows a strong positive correlation, suggesting a significant

impact on grasp stability. In contrast, H1F2J2eff joint two effort in finger two negatively

influences robustness by decreasing the model score by 0.25. Also, effort (e.g., torque) con-

sistently has more effect on grasping results than the grasping velocity. This disparity in

feature impact highlights the complex interaction between joint effort and velocity in de-

termining the successful execution of a grasp. The analysis of these top features provides

insights into the decision of the grasping process and reinforces the value of explainable AI

in enhancing our understanding of machine learning models.

Local explainability focuses on understanding the reasoning behind a machine learn-

ing model’s prediction for a single instance. Figure 4.13 illustrates the local feature impor-

tance scores for the Grasping dataset, providing insights into the instance-specific impact of

each feature on the model’s predictions.

In comparison to the global explanation, where effort (eff) features had a more pro-
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Figure 4.13: Grasping Dataset Local Explanation Example for Test Instance 143. The
true label is predicted correctly by the predictor model in the Pre-hoc Framework, and the
plotted Top10 feature importance scores are generated by the explainer model in the Pre-hoc
Framework.

nounced effect than velocity (vel) features, the local explanation shows a more mixed impact

from both types of features while effort may generally indicate grasp success in the broader

model, velocity features can also be crucial in specific instances.

The differences between the local and global explanations underscore the variability in

a model’s decision-making process from one prediction to another. While global explanations

provide an overview of the model’s general behavior, local explanations reveal the nuances

that can occur on a case-by-case basis, essential for understanding and trusting AI decisions

in specific contexts.

Figure 4.14 illustrates the global feature importance scores for the HELOC dataset,

providing insights into the overall impact of each feature on the model’s predictions. The

most influential feature is MaxDelq2PublicRecLast12M, which measures the maximum delin-

quency on public records in the last 12 months. This feature negatively impacts credit

scores, suggesting that higher delinquency values significantly decrease the likelihood of get-

ting a loan. Similarly, NumTrades90Ever2DerogPubRec, which represents the number of

trades with derogatory public records, shows a substantial negative influence on the model’s

predictions. This implies that having more trades with derogatory records decreases the

probability of the target variable. The global explanation also reveals that features related

to credit inquiries and satisfactory trades play a notable role in the model’s decision-making
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Figure 4.14: HELOC Dataset Global Explanation Example

process. MSinceMostRecentInqexcl7days, indicating the time since the most recent credit

inquiry, has a positive impact on the predictions, while NumSatisfactoryTrades, which rep-

resents the number of satisfactory trades, exhibits a negative influence. This suggests that

recent credit inquiries and fewer satisfactory trades are associated with a higher likelihood

of the target outcome. Analyzing these top features provides valuable insights into the key

drivers of the model’s predictions. It enhances our understanding of the factors influencing

the target outcome in the HELOC dataset.

Figure 4.15: HELOC Dataset Local Explanation Example for Test Instance 1. The true
label is predicted correctly by the predictor model in the Pre-hoc Framework, and the
plotted Top10 feature importance scores are generated by the explainer model in the Pre-
hoc Framework.

Figure 4.15 presents the local feature importance scores for test instance 1 in the
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HELOC dataset, allowing us to understand the specific factors that influenced the model’s

prediction for this particular case. The most influential feature for this instance is MSince-

MostRecentInqexcl7days, which has a strong positive impact, indicating that a more ex-

tended time since the most recent credit inquiry increases the likelihood of the target outcome

for this instance. PercentInstallTrades and MaxDelq2PublicRecLast12M also show notable

positive influences. However, NetFractionRevolvingBurden and NetFractionInstallBurden

have negative impacts, suggesting that higher revolving and installment credit burdens de-

crease the probability of the target for this case.

Comparing the local explanation for test instance 1, Figure 4.15 to the global expla-

nation Figure 4.14, we observe some similarities and differences. Both explanations highlight

the importance of MaxDelq2PublicRecLast12M, although its directionality differs between

the global and local views. MSinceMostRecentInqexcl7days also appears as a top feature

in both explanations, with a consistent positive influence. However, the local explanation

for test instance one emphasizes features like PercentInstallTrades and NetFractionRevolv-

ingBurden, which are not as prominent in the global explanation. This suggests that while

the global explanation provides an overall view of feature importance, the local explanation

captures the unique characteristics and specific factors that influence the prediction for this

particular instance.

Figure 4.16: HELOC Dataset Local Explanation Example for Test Instance 50. The true
label is not predicted correctly by predictor model in Pre-hoc Framework and the plotted
Top10 feature importance scores generated by explainer model in Pre-hoc Framework.

Figure 4.16 presents the local feature importance scores for test instance 50 in the

HELOC dataset. This allows us to understand the factors that influenced the model’s pre-
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diction for this case. The most influential feature for this instance is MSinceMostRecentIn-

qexcl7days, exhibiting a strong positive impact. PercentInstallTrades and MaxDelq2PublicRecLast12M

also show positive influences, although to a lesser extent than test instance 1. NetFrac-

tionRevolvingBurden and PercentTradesWBalance have negative impacts, indicating that a

higher revolving credit burden and a higher percentage of trades with balance decrease the

likelihood of the target outcome for this instance.

Comparing the local explanation for test instance 50, Figure 4.16 to the global ex-

planation Figure 4.14 reveals some similarities, particularly in the importance of MSince-

MostRecentInqexcl7days and MaxDelq2PublicRecLast12M. However, the local explanation

for this instance emphasizes NetFractionRevolvingBurden and PercentTradesWBalance, which

are not as prominent in the global explanation. Additionally, the directionality of some fea-

tures, such as NetFractionInstallBurden, differs between the local and global views. These

differences highlight the unique factors influencing the prediction for test instance 50 and

underscore the importance of examining local explanations to better understand the model’s

decision-making process for specific cases.

Overall, the analysis of these local explanations compared to the global explanation

demonstrates the value of considering both global and local perspectives when interpreting

black-box models. While the global explanation provides an overall understanding of feature

importance, the local explanations offer insights into the specific factors driving the model’s

predictions for individual instances, allowing for a more comprehensive and personalized

interpretation of the model’s behavior.

4.5.8 Summary

This chapter focused on optimizing our explainable machine learning frameworks

for local explainability. We introduced the concept of local explainability, which aims to

provide explanations that capture the model’s behavior in the local neighborhood of a specific

instance. We proposed a novel approach that leverages the Jensen-Shannon (JS) divergence

and neighborhood information to generate instance-specific explanations.

We presented the problem formulation and discussed the optimization of local ex-

plainability using neighboring instances. We modified the objective and loss functions to

incorporate the JS divergence and capture local variations in the predictions. We conducted

a comparative analysis of our proposed frameworks with LIME, a popular post-hoc explain-
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ability method. We evaluated the methods using metrics, including point fidelity, neighbor-

hood fidelity, stability, and computational efficiency. The experimental results demonstrated

the better performance of our Pre-hoc and Co-hoc frameworks in terms of local explainabil-

ity, stability, and computational efficiency compared to LIME. We also investigated the

impact of the explainability regularization parameter λ on the local explainability of our

frameworks. The results showed that increasing the value of λ leads to improved point fi-

delity, neighborhood fidelity, and stability, highlighting the effectiveness of our regularization

approach. Furthermore, we analyzed the computational efficiency of our frameworks and

compared them with LIME. The results demonstrated that our frameworks, particularly the

Pre-hoc framework, exhibit faster explanation generation times than LIME.
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CHAPTER 5

CONCLUSION

In this dissertation, we contributed to the field of explainable artificial intelligence

(XAI) by proposing novel approaches to enhance the explainability of black-box machine

learning models. Chapter 1 introduced the motivation behind our research, highlighting the

importance of explainability in AI systems and the challenges associated with interpreting

complex models. In Chapter 2, we provided a comprehensive literature review covering

various aspects of XAI, including inherently interpretable models, post-hoc explainability

techniques, model-specific explainability approaches, and the different types of explana-

tions. Chapter 3 presented our proposed frameworks, pre-hoc explainability, and co-hoc

explainability, which integrate interpretability directly into the training process of black-

box models. In Chapter 4, we further extended our pre-hoc framework to provide local

explanations. Then we compared our approaches with the post-hoc explainability technique

LIME regarding explanation quality, stability, and computational cost. In the following,

we summarize our contributions, discuss the limitations of our work, and outline potential

future research directions.

5.1 Summary of Contributions

We presented novel approaches to enhance the explainability of black-box machine

learning models. Our main contributions are as follows:

1. We proposed two novel frameworks, pre-hoc explainability, and co-hoc explainability,

which integrate interpretability directly into the training process of black-box mod-

els. These frameworks leverage the insights provided by an inherently interpretable

white-box model to guide the learning of the black-box model, ensuring faithful and

consistent explanations without requiring additional post-hoc computations. Our ex-

periments confirmed the role of the explainability regularization coefficient λ which

allows users to control the trade-off between accuracy and explainability. Higher val-
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ues of λ lead to improved fidelity between the predictor and the explainer, enhancing

the interpretability of the model, while maintaining a good level of accuracy. Hence

the proposed frameworks provide users with the flexibility to adjust the model based

on their specific needs and requirements.

2. We extended our pre-hoc explainability framework to provide local explanations by

incorporating the Jensen-Shannon divergence as a regularization term. This extension

allows our method to generate instance-specific explanations that capture the local

behavior of the black-box model, similar to post-hoc methods like LIME. However, our

approach integrates local explainability directly into the training process, ensuring that

the explanations are faithful to the model’s behavior and consistent with the model’s

predictions for similar instances.

3. Enhancing the accuracy of white-box models through the co-hoc learning framework.

The white-box model, which is learned for the purpose of explaining the black-box

predictor, achieves significantly higher prediction accuracy after the co-hoc learning

process. This finding highlights the potential of the co-hoc in-training approach to im-

prove the performance of white-box models, which are essential and required in certain

high-risk and regulated application tasks in healthcare and legal decision-making.

4. We demonstrated the effectiveness of our approaches on two real-world benchmark

datasets (one for credit risk assessment and the other for movie recommendation) and

one simulated data set from the field of robotics, showing that our methods outperform

traditional black-box models in terms of fidelity, while maintaining comparable accu-

racy. We also compared our methods with the LIME post-hoc explainability technique

in terms of the quality and stability of the generated explanations and the computa-

tional cost associated with generating explanations. Our results indicate that our ap-

proaches provide more faithful and consistent explanations across different instances,

as measured by the metrics of global fidelity, local fidelity, and stability. Furthermore,

our methods exhibit significantly lower computational costs than LIME, as they do

not require additional post-hoc computations for generating explanations.

5. We provided a theoretical analysis of our approaches, showing that they can be seen

as a form of regularized learning that balances the trade-off between accuracy and
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interpretability. We proved that incorporating the interpretable white-box model and

the JS divergence as regularization terms in the loss function encourages the black-box

model to learn a decision boundary that is more aligned with the interpretable model,

leading to improved global and local explainability, while striking a better balance

between accuracy and interpretability compared to post-hoc methods like LIME.

5.2 Limitations and Future Work

Despite the promising results and contributions of our work, there are several limi-

tations and avenues for future research:

• Model selection: In our current implementation, we focused on using sparse linear

models as the inherently interpretable white-box models. While sparse linear models

balance interpretability and predictive power, they may not always be the most suitable

choice for every dataset or application. Future work could explore integrating other

interpretable models, such as decision trees or rule-based systems, into our frameworks

to provide more diverse and domain-specific explanations.

• Explanation types: Our current frameworks focus primarily on feature-based explana-

tions, highlighting the importance of individual features in the model’s decision-making

process. While feature-based explanations are widely used and practical, they may not

always be the most suitable explanation for every application or user. Future research

could explore integrating other explanation types, such as rule-based, concept-based,

or example-based explanations, into our frameworks. Rule-based explanations provide

human-readable IF-THEN rules that capture the model’s decision logic, making them

easily interpretable for domain experts. Concept-based explanations align the model’s

behavior with human-understandable concepts, bridging the gap between the model’s

internal representation and the user’s domain knowledge. Example-based explanations

present similar instances from the training data to justify the model’s predictions, pro-

viding a more intuitive understanding of the model’s reasoning. By incorporating a

diverse range of explanation types, we can cater to the specific needs and preferences of

different users and application domains, enhancing the interpretability and usefulness

of the generated explanations.
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• Scalability: Although our approaches have shown significant computational advantages

at testing time over post-hoc methods like LIME, the scalability of our methods to huge

datasets and complex model architectures remains to be investigated. Future research

could focus on developing more efficient optimization techniques and parallelization

strategies to enhance the scalability of our frameworks.

• Evaluation metrics: We used evaluation metrics, such as global fidelity, local fidelity,

and stability, to assess the quality of the generated explanations. However, there is

still a lack of consensus in the XAI community regarding the most appropriate metrics

for evaluating explainability methods. Future work could involve collaborating with

domain experts and end-users to develop more comprehensive and application-specific

evaluation frameworks that capture the usefulness and interpretability of explanations

from a human perspective.

• Human-in-the-loop explanations: While our approaches generate more faithful and

consistent explanations compared to post-hoc methods, the ultimate goal of explain-

able AI is to provide meaningful and actionable insights for human users. Future

research could explore the integration of human feedback and domain knowledge into

the explanation generation process, allowing for more interactive and user-centric ex-

planations.

• Fairness and bias: Explainable AI techniques have the potential to uncover and mit-

igate biases in machine learning models. However, our current frameworks do not

explicitly address the issues of fairness and bias. Future work could investigate how

our approaches can be extended to detect and mitigate biases, ensuring that the gen-

erated explanations are faithful, consistent but also fair, and unbiased.

• Data Quantity and Quality: The transparency of the white-box model may depend

on the quality and quantity of the training data, as well as the complexity and hetero-

geneity of the underlying distribution. In particular, if the data are noisy or biased, or

if the true relationship between the input and output variables is highly nonlinear or

ambiguous, the white-box explainer model in our proposed framework could be easily

replaced by alternative differentiable white-box models, such as rule-based or sparse

additive models.
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• Real-world applications: While we have demonstrated the effectiveness of our ap-

proaches on benchmark datasets, future research could focus on applying our frame-

works to real-world applications in domains such as healthcare, finance, and criminal

justice. Collaborating with domain experts and stakeholders in these fields could pro-

vide valuable insights into the practical challenges and requirements for deploying

explainable AI solutions in real-world settings.

5.3 Conclusion

In conclusion, this work contributed to the field of explainable AI by proposing

novel frameworks that integrate interpretability directly into the training process of black-

box models. Our approaches, pre-hoc and co-hoc explainability, provide faithful, consistent,

and computationally efficient explanations that outperform post-hoc methods like LIME. By

extending our frameworks to provide local explanations and conducting theoretical analyses,

we have demonstrated the effectiveness and versatility of our frameworks in enhancing the

explainability of black-box models.

However, explainable AI remains an active and challenging research area, with many

open questions and opportunities for future work. This dissertation’s limitations and fu-

ture directions highlight the need for continued research efforts to develop more scalable,

user-centric, and application-specific explainability techniques. By addressing these chal-

lenges and collaborating with domain experts and end-users, we can move closer to building

transparent, accountable, and trustworthy AI systems that benefit society as a whole.
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