Morphological parameters of a Spitzer survey of stellar structure in galaxies.

Benne W. Holwerda
University of Louisville

J. C. Munoz-Mateos
National Radio Astronomy Observatory

S. Comeron
University of Oulu

S. Meidt
Max-Planck-Institut für Astronomie

K. Sheth
National Radio Astronomy Observatory

See next page for additional authors

Follow this and additional works at: http://ir.library.louisville.edu/faculty

Part of the Astrophysics and Astronomy Commons

Original Publication Information

ThinkIR Citation

http://ir.library.louisville.edu/faculty/214

This Article is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Faculty Scholarship by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. For more information, please contact thinkir@louisville.edu.
Authors

This article is available at ThinkIR: The University of Louisville's Institutional Repository: http://ir.library.louisville.edu/faculty/214
The morphology of galaxies can be quantified to some degree using a set of scale-invariant parameters. Concentration (C), asymmetry (A), smoothness (S), the Gini index (G), the relative contribution of the brightest pixels to the second-order moment of the flux (M20), ellipticity (E), and the Gini index of the second-order moment (GM) have all been applied to morphologically classify galaxies at various wavelengths. Here, we present a catalog of these parameters for the Spitzer Survey of stellar structure in Galaxies, a volume-limited, near-infrared (NIR) imaging survey of nearby galaxies using the 3.6 and 4.5 μm channels of the Infrared Array Camera on board the Spitzer Space Telescope. Our goal is to provide a reference catalog of NIR quantified morphology for high-redshift studies and galaxy evolution models with enough detail to resolve stellar mass morphology. We explore where normal, non-interacting galaxies—those typically found on the Hubble tuning fork—lie in this parameter space and show that there is a tight relation between concentration (C82) and M20 for normal galaxies. M20 can be used to classify galaxies into earlier and later types (i.e., to separate spirals from irregulars). Several criteria using these parameters exist to select systems with a disturbed morphology, i.e., those that appear to be undergoing a tidal interaction. We examine the applicability of these criteria to Spitzer NIR imaging. We find that four relations, based on the parameters A and S, G and M20, GM, C, and M20, respectively, select outliers in morphological parameter space, but each selects different subsets of galaxies. Two criteria (GM > 0.6, G > −0.115 × M20 + 0.384) seem most appropriate to identify possible mergers and the merger fraction in NIR surveys. We find no strong relation between lopsidedness and most of these morphological parameters, except for a weak dependence of lopsidedness on concentration and M20.

Key words: galaxies: elliptical and lenticular, cD – galaxies: general – galaxies: irregular – galaxies: spiral – galaxies: statistics – galaxies: stellar content – galaxies: structure

Online-only material: color figures, machine-readable tables

The resulting parameter space is hardly mathematically orthogonal or complete, but it has been extensive as well as very specific use. There are clear advantages of simple parameterizations of galaxy morphology: no human biases, practical to implement on millions of objects, and the possibility to directly and qualitatively compare across wavelength and redshift or with other characteristics. For example, at higher redshift, there are many galaxies that do not conform to the classical Hubble morphological classification, but these can still be qualified using this system. Based on a choice of parameter space and training sample, one can subsequently try to classify galaxies along the Hubble tuning fork through a machine-learning algorithm (e.g., Lahav et al. 1996; Molinari & Smareglia 1998; Ball et al. 2004; Scarlata et al. 2007; Kormendy & Bender 2012).

Disturbed morphology can be used to identify ongoing galaxy major mergers, and morphology classification parameters have been seen much use on galaxy samples observed at low and high redshift to infer the fraction and rate at which galaxies merge (Conselice et al. 2003, 2005, 2008, 2009; Yan et al. 2005; Bundy et al. 2005; Cassata et al. 2005; Ravindranath et al. 2006; Scarlata et al. 2007; Trujillo et al. 2007; Lotz et al. 2008; Jogee et al. 2009; Darg et al. 2010; López-Sanjuan et al. 2009a, 2009b). Concurrently, these parameters have shown promise in classifying objects along the Hubble tuning fork, both locally (Conselice 2003; Lotz et al. 2004; Taylor-Mager et al. 2007; Muñoz-Mateos et al. 2009) and at high redshift (Scarlata et al. 2007; Huertas-Company et al. 2009). Meanwhile, efforts using visual inspection and classification by single observers or crowds have kept apace with quantified, automated classifiers (e.g., Darg et al. 2010; Fortson et al. 2012; Hoyle et al. 2011; Keel et al. 2013; Skibba et al. 2009, 2012; Masters et al. 2010, 2011, 2012; B. W. Holwerda et al., in preparation).

In this paper, we report our application of the popular morphological parameters to the data of the Spitzer Survey of stellar structure in Galaxies (S4G; Sheth et al. 2010, www.cv.nrao.edu/~ksketh/s4g).

The Infrared Array Camera (IRAC; Fazio et al. 2004) on board the Spitzer Space Telescope (Werner et al. 2004) mostly maps the older stellar population at 3.6 and 4.5 μm and hence stellar mass in these systems (Eskew et al. 2012; Meidt et al. 2012a; S. E. Meidt et al., in preparation), and IRAC images are much less encumbered by dust extinction than any visible light images. Thus, the S4G morphological parameterization reveals the underlying stellar mass Hubble type rather than the apparent one, somewhat distorted by dust and star formation (Buta et al. 2010). The S4G sample is one of the largest and uniformly selected and observed in the near-infrared (NIR), inviting the possibility of a study of the relations of NIR morphological parameters with each other and to Hubble type, tidal disturbance, lopsidedness, etc.

Strongly disturbed systems occupy a known subspace of these morphological parameters. Those selected from this S4G sample can be compared with the canonical Arp catalog of disturbed galaxies to illustrate how well the morphological parameterization selects individual disturbed galaxies.

The aim of S4G is to be volume, mass, and luminosity limited, using a representative sample of galaxies. It now becomes possible to infer a local volume merger fraction and rate based on the morphological selection of disturbed systems. Our goals are to (1) describe the S4G morphological parameter catalog, (2) explore where the “normal” galaxies lie in this quantified morphological parameter space and explore to what degree these can be morphologically typed based on these parameters, and (3) examine those galaxies that are selected as “disturbed” from this catalog by the various morphological criteria.

Our goal for this paper is to present a uniformly computed catalog of the quantified morphological parameters for S4G for which codified morphological classifications from the Third Reference Catalogue (RC3; de Vaucouleurs et al. 1991) exist. This quantified morphological catalog will subsequently serve as a reference for higher redshift surveys where Hubble types are unknown, as well as results from detailed galaxy evolution modeling.

This paper is organized as follows: Section 2 briefly describes the S4G data products, and Section 3 introduces the morphological parameters and the application of these parameters to S4G. Section 4 presents the resulting catalogs. Section 5 discusses the morphological parameters’ relation to Hubble type, and Section 6 discusses those systems that show clear signs of disturbance. Section 7 discusses the link with lopsidedness, and Section 8 presents our conclusions.

2. S4G DATA

S4G is a volume-, magnitude-, and size-limited (D < 40 Mpc, |b| > 30°, mBcorr < 15.5, D25 > 1′) survey of 2349 nearby galaxies in 3.6 μm and 4.5 μm (IRAC channels 1 and 2) of the IRAC (Fazio et al. 2004) of the Spitzer Space Telescope (Werner et al. 2004), using both archival cryogenic and ongoing warm-mission observations (for a full description and selection criteria, see Sheth et al. 2010). All images have been reprocessed by the S4G pipeline. The reprocessed pixel scale is 0′′.75; the resolution is 1′′/7 for 3.6 μm and 1′′/6 for 4.5 μm. The data have been made public (http://irsa.ipac.caltech.edu/data/SPITZER/S4G/).

For this paper, we use the first and second pipeline products (P1 and P2) of S4G (M. W. Regan et al., in preparation) available from DR1 (2013 January) for 2349 galaxies: the photometry images (phot) from P1 and foreground and background object masks from P2 for both the 3.6 and 4.5 μm images (see for more details Sheth et al. 2010). Our morphological parameters are in concert with the final S4G data products (J.-C. Muñoz-Mateos et al., in preparation).

S4G is designed to be a volume-, luminosity-, and especially mass-limited representative sample. Since the initial selection required an H i radial velocity from HyperLEDA (Paturel et al. 2003), early types are relatively underrepresented (Figure 1). In addition, early types are underrepresented because they are typically found in denser environments outside the local volume. The distribution of distances (based on radial velocities) is shown in Figure 2. The majority of our sample is between 10 and 30 Mpc. The resolution of the Spitzer/IRAC (≈2′′) translates to a physical resolution of less than a kpc over this distance range.

S4G observations ideally trace the stellar mass of galaxies in both the 3.6 and 4.5 μm channels (Pahre et al. 2004a, 2004b), with the 3.6 μm considered optimal to study the stellar mass (Zibetti & Groves 2011; Meidt et al. 2012a; S. E. Meidt et al., in preparation). However, both have known contaminants such as the 3.3 μm polycyclic aromatic hydrocarbon (PAH) feature in the 3.6 μm channel (see the PAH heating models by Bakes et al. 2001) and contamination from stochastically heated small dust grains (Lu et al. 2003; Flagey et al. 2006; Mentuch et al. 2009, 2010). We refer the reader to Meidt et al. (2012a) and S. E. Meidt et al. (in preparation) for a comprehensive discussion of

17 See also Holwerda et al. (2007a, 2007c).
the non-stellar and anomalous mass-to-light stellar population contaminating the 3.6 μm channel as a map of stellar mass.

S4G has seen use on a variety of galaxy phenomena: disk truncation (Comerón et al. 2012), bar fraction (K. Sheth et al., in preparation), thick disks (Comerón et al. 2011a, 2011b, 2011c), visual and automated morphological classification (Buta et al. 2010; S. Laine et al., in preparation; J. L. Hinz et al., in preparation), stellar mass mapping (Meidt et al. 2012a), the role of asymptotic giant branch stars in galaxy appearance (Meidt et al. 2012b), disk lopsidedness (D. Zaritsky et al., in preparation), and spiral structure (Elmegreen et al. 2011), star formation hidden in spiral arms (Elmegreen et al. 2012), Hα kinematics and the stellar disk (Erroz-Ferrer et al. 2012), and early-type galaxies with tidal debris (Kim et al. 2012).

3. MORPHOLOGICAL PARAMETERS

In this paper, we use the concentration–asymmetry–smoothness (CAS) system from Bershad et al. (2000), Conselice et al. (2000), and Conselice (2003), the Gini and M_{30} system from Lotz et al. (2004), and a hybrid parameter G_M, the Gini parameter of the second-order moment (Holwerda et al. 2011a).

Concentration is defined as (Kent 1985)

$$C_{82} = 5 \log \left(\frac{r_{80}}{r_{20}} \right),$$

where r_G is the radius of the circular aperture that includes that percentage of the total light of the object. For example, the Sloan Digital Sky Survey (SDSS) generally uses C_{42}, the ratio of the 40% over 20% radii, and Scarlata et al. (2007) and Muñoz-Mateos et al. (2009) use the 80% over 20% ratio (C_{82}). We opt to use the C_{82} definition here. This concentration index can be used to quickly discern between light profiles; a de Vaucouleurs profile ($I \propto R^{-4}$) has a concentration value of $C_{82} = 5.2$, and a purely exponential one has a value of $C_{82} = 2.7$. It also can be used to identify unique phenomena, for example, H I disk stripping (Holwerda et al. 2011b). In the case of disk galaxies observed in the NIR, one can expect this parameter to rise in highly inclined disks: there is more light in the line of sight in the center of the galaxy, less obstructed by dust. Bendo et al. (2007) find a smooth increase in concentration in the 3.6 μm channel with inclination (their Figure 2), but Holwerda et al. (2011d) find a much more complex relation for H I maps. We derive the inclination from the axis ratio reported in J.-C. Muñoz-Mateos et al. (in preparation) for the 25 mag arcsec$^{-2}$ isophote ($\cos^2(i) = (q^2-q_0^2)/(1-q_0^2)$) and find no relation between any of the morphological parameters and the disk inclination (see Figure 23). We choose not to correct for inclination because (1) we do not always know the inclination accurately (typically not better than 10$^\circ$), (2) any correction would necessarily need to assume a template galaxy to derive the inclination from (and by necessity ignore disk thickness) or rely on a three-dimensional galaxy model, and (3) in the case of a comparison with high-redshift samples, accurate disk inclinations would not be available. Therefore, we choose not to correct for inclination angle. In effect, we explore apparent rather than intrinsic morphology space, including any effects of viewing angle (e.g., apparent disk ellipticity). Scarlata et al. (2007) adopted such a similar approach, in part because accurate inclinations were not available for their high-redshift sample and the computation of disk inclination is not calibrated with H I observations.

In an image with n pixels with intensities $I(i, j)$ at pixel positions (i, j), in which the value of the pixel is $I_{180}(i, j)$ in the image rotated by 180$^\circ$, asymmetry is defined as (Schade et al. 1995; Conselice 2003)

$$A = \frac{\sum_{i,j}|I(i, j) - I_{180}(i, j)|}{2\sum_{i,j}|I(i, j)|}.$$

We chose to ignore the positive background contribution to asymmetry as the Spitzer data have a very high signal-to-noise ratio and the added asymmetry from sky noise is negligible (see also Holwerda et al. 2011d). Fully symmetric galaxies (e.g., ellipticals) would have very low values of asymmetry. Even a regular spiral would not show a high value of asymmetry. For example, a grand-design spiral galaxy’s spiral arms map...
onto each other with a 180° rotation (the rotational symmetry of galaxies can be used to infer dust extinction in pairs of galaxies; see White & Keel 1992; White et al. 2000; Domingue et al. 2000; Keel & White 2001a, 2001b; Keel et al. 2013; Holwerda et al. 2007b, 2009, 2013; Holwerda & Keel 2013). Small-scale structure (e.g., H\textsc{i} regions) in the arms would, however, contribute to a higher asymmetry value for spiral galaxies. Flocculant spirals can be expected to be slightly more asymmetric still. The highest values of asymmetry can be found in either irregular galaxies (Irr) or galaxies with strong tidal disruptions, provided that the tidal structures are included in the calculation and are relatively bright due to recently triggered star formation. If the wavelength over which the parameter is computed is less sensitive to star formation, as is the case with the S4G imaging, then the asymmetry signal of interaction or H\textsc{i} regions in spiral arms can be expected to be lower.

Smoothness (also called clumpiness in the original Conselice 2003) is defined as

\[S = \frac{\sum_{i,j} I(i,j) - I_S(i,j)}{\sum_{i,j} I(i,j)}, \]

where \(I_S(i,j) \) is the same pixel in the image after smoothing with a choice of kernel. Smoothness is a parameterized version of the unsharp masking technique Malin (1978) used on photographic plates to identify faint structures. The various definitions employ different smoothing kernels and sizes; the most recent one uses a flexible kernel size of 0.2 Petrosian radii and a boxcar shape. To simplify matters, we chose to use a fixed 3 pixel FWHM Gaussian smoothing for our definition (a 30–300 pc scale). We note that we use the term “smoothness” for historical reasons as this has become the de facto designation of this parameter (the CAS scheme), even though an increase in its value means a more clumpy appearance of the image (hence its original designation “clumpiness”).

Very smooth galaxies (ellipticals) have very low values of smoothness, but in other galaxies the value of the smoothness parameter depends on the size of the smoothing kernel used. If the kernel’s size corresponds to, for example, the width of spiral arms at the distance of the galaxy, then grand-design spirals will have relatively high smoothness values. Alternatively, if the kernel corresponds to large H\textsc{i} regions (common in the Hubble Space Telescope (HST) surveys), both spirals and Irr galaxies will show higher smoothness values.

Abraham et al. (2003) and Lotz et al. (2004) introduced the Gini and \(M_{20} \) parameters. Both are related to the concentration of the light, but the Gini parameter does not assume that the brightest pixel is in the geometric center of the galaxy image, and the \(M_{20} \) parameter is more sensitive to merger signals and does not impose circular symmetry on non-merging galaxies.

The Gini parameter is an economic indicator of equality, i.e., \(G = 1 \) if all the flux is in one pixel and \(G = 0 \) if all the pixels in the object have equal values. We use the implementation from Abraham et al. (2003) and Lotz et al. (2004):

\[G = \frac{1}{ln(n-1)} \sum_{i} (2i - n - 1) |I_i|, \]

where \(I_i \) is the intensity of pixel \(i \) in an increasing flux-ordered list of the \(n \) pixels in the object and \(J \) is the mean pixel intensity. B. W. Holwerda et al. (in preparation) find a weak link between Gini and current star formation.

Lotz et al. (2004) introduce the relative second-order moment (\(M_{20} \)) of an object. The second-order moment of a pixel is \(M_i = I_i \times R_i = I_i \times [(x_i - x_c)^2 + (y_i - y_c)^2] \), where \(I_i \) is the value of pixel \(i \) in the image, \(x_i \) and \(y_i \) are the \(x \) and \(y \) coordinates of that pixel, and \(x_c \) and \(y_c \) are the position of the galaxy’s center. Each pixel value is weighted with the projected radius away from the galaxy center.

The total second-order moment of an image is defined as

\[M_{tot} = \sum M_{i} = \sum I_i[(x_i - x_c)^2 + (y_i - y_c)^2]. \]

When we now rank the pixels by value, we can define the relative second-order moment of the brightest 20% of the flux:

\[M_{20} = \log \left(\frac{\sum M_{i}}{M_{tot}} \right), \]

for which \(\sum M_{i} < 0.2 \) is true.\(^{20}\) where pixel \(k \) marks the top 20% point in the flux-ordered pixel list. Some authors vary the central position \((x_c, y_c)\) to minimize this parameter (Lotz et al. 2004; Bendo et al. 2007), but we treat deviations from this value due to variation in the center as a source of uncertainty.

The \(M_{20} \) parameter is a parameter that is sensitive to bright structure away from the center of the galaxy; the flux is weighted in favor of the outer parts. It is therefore relatively insensitive to tidal structures (provided of course that these are included in the calculation), specifically star-forming regions formed in the outer spiral or tidal arms. If no such structures are in the image, the 20% brightest pixels will most likely be concentrated in the center of the galaxy, which is weighted lower. Thus, one can expect low values of \(M_{20} \) for smooth galaxies with bright nuclei (ellipticals, S0, or Sa) but much higher values (less negative) for galaxies with extended arms featuring bright H\textsc{i} regions. For example, Holwerda et al. (2012) show how the combination of \(M_{20} \) and asymmetry can be used to identify extended ultraviolet disks (e.g., those identified by Thilker et al. 2007). As with the smoothness parameter, one expects the contributions from star formation to be much less in S4G, lowering the contrast of H\textsc{i} regions at larger radii and lowering the values for \(M_{20} \) in galaxies that would have a much higher values in bluer wavebands.

Instead of the intensity of the pixel \(I_i \), one can use the second-order moment of the pixel \(M_i = I_i[(x_i - x_c)^2 + (y_i - y_c)^2] \) in Equation (4). This is the GM parameter (Holwerda et al. 2011a):

\[G_M = \frac{1}{Mn(n+1)} \sum (2i - n - 1) |M_i|, \]

which is an indication of the spread of pixel values weighted with the projected radial distance to the galaxy center.

In essence, this is the Gini parameter with a different weighting scheme than unity for each pixel. Similar to the \(M_{20} \) parameter, it emphasizes the flux from the outer regions of the galaxy. If there is significant flux in the outer parts, this will boost the value of \(G_M \). Contrary to \(M_{20} \), it does not depend on a somewhat arbitrary delineation of the brightest 20% flux for the denominator but relies on all pixel values. Unlike the Gini parameter, however, it does rely on a supplied center of the galaxy (to compute \(M_i \)). For concentrated galaxies, the \(G_M \) and Gini values will be close together, but as relatively more flux is evident in the outer parts of the galaxy, \(G_M \) will be higher. Holwerda et al. (2011e) found \(G_M \) to be a good single parameter to identify active mergers (sweeping tidal tails, etc.) from atomic hydrogen maps (H1).

Scarlata et al. (2007) added the ellipticity of a galaxy’s image to the mix of parameters in order to classify galaxies according to type in the COSMOS field. Ellipticity is defined as

\[E = 1 - b/a, \]
3.1. Computation of Morphological Parameters

To compute the morphological parameters, one needs the image, the center of the object, and a criterion for which pixels to include. The object center is taken from the S4G catalog (J.-C. Muñoz-Mateos et al., in preparation), and pixels are included if they exceed our surface brightness criterion (25 mag arcsec$^{-2}$) and are not excluded by the P2 masks. We chose a practical limit of 25 mag arcsec$^{-2}$ (AB magnitude) in both bands (Sheth et al. 2010; J.-C. Muñoz-Mateos et al., in preparation). S4G is sensitive down to ≈ 27 mag$_{ab}$ arcsec$^{-2}$ in both bands, in the case of smoothed isophotes but not individual pixels. We cut out a section of the mosaic corresponding to $5 R_{25} \times 5 R_{25}$, the radius from de Vaucouleurs et al. (1991) around the central position, to speed computation.

The use of an isophotal criterion is uncommon in HST surveys of distant galaxies that span large redshifts, since the selected area will be affected by cosmological surface brightness dimming, K-corrections, evolution, and zero-point offsets at different redshifts. For these applications, an aperture with the Petrosian radius is often employed (see Bershady et al. 2000). Muñoz-Mateos et al. (2009) find that an elliptical aperture based on the Petrosian radius misses significant emission in the Spitzer Infrared Nearby Galaxy Survey (SINGS; Kennicutt et al. 2003) IRAC images, depending on the concentration of the galaxy (i.e., depending on Hubble type). Since this is a local volume sample that suffers little from the redshift issues discussed above, we opt for an isophote-defined area (all pixels exceeding 25 mag arcsec$^{-2}$) to fully include all information, while excluding as much sky noise as practical.

3.2. Uncertainties

Uncertainties in the morphological parameters come from the uncertainty in the position of the center, the image segmentation, and shot noise in the pixel flux values. Potential biases are if the parameter values change also with viewing angle (i.e., disk inclination) and distance to the object. We explore these issues in Sections 2 and 3 and Figures 23 and 24 in Appendix B.

Some authors minimize the parameters—most often asymmetry—by varying the central position (Bendo et al. 2007; Muñoz-Mateos et al. 2009). However, de Blok et al. (2008) find that the dynamical center and the brightest point in the 3.6 μm light distribution nearly always coincide. Instead of minimizing, we take the central position from the S4G catalog as given but then vary this input center with a random Gaussian distribution with FWHM = 3 pixels. This variance then defines a measure of our uncertainty in these parameters.

The second uncertainty relates to the segmentation of the image, i.e., which parts of the image are assigned to the target object and which are assigned to other objects or masked because of image artifacts. Depending on crowding of objects in the field, a substantial fraction of the information from an extended object may be lost. DR1 of S4G applies uniform criteria to mask objects not belonging to the target galaxy using a combination of a SExtractor segmentation image (see also Holwerda 2005) and visual masking by the data team. While a different fraction of the image will be masked for each target galaxy, we can be confident that the masking is self-consistent across the sample.

Our remaining choice is which parts of the image to include as information on the target galaxy, i.e., which pixels contain enough flux from this galaxy to be included and which pixels are mostly background noise? Different authors have solved this in the literature. For example, both Bendo et al. (2007) and Muñoz-Mateos et al. (2009) use an elliptical aperture to define the boundaries on the image over which the morphological parameters are to be computed. The high-redshift studies, however, tend to use an isophotal cutoff, a minimum value, or signal-to-noise ratio for pixels to be included. The latter reasoning is that an elliptical aperture may both cut off outlying flux belonging to the target galaxy and include areas of near-pure noise. Because our goals include serving as a benchmark for higher redshift surveys, we opt for an isophotal approach. But the choice of both masking and the threshold or aperture will influence the level of noise included in the pixel collection over which the morphological parameters are computed. One solution would be to take a random subset of the pixel collection that is the target galaxy and compute the parameters over these. The variance in the parameter values would be an indication of how critically the parameters depend on the inclusion of certain pixels. In an extreme case, for example, a single saturated pixel could throw all the morphological parameters and the variance would reflect that. However, taking subsamples would change the signal-to-noise ratio in each subset of pixels.

For the majority of parameters, the uncertainty is dominated by variance in the input central position and shot noise in the pixels. Computing the variance from subsamples of pixels would count the pixel shot noise twice. The exception is the Gini parameter, which does not depend on the input central position but does depend critically on the size of the sample. Therefore, we use jackknifed (subsampled) Gini values to compute its uncertainty, using a set of 10 random subsamples.

The third uncertainty is the Poisson noise in the pixel flux values. We estimate this by randomizing the pixel values around the mean with the same rms as the real pixel collection but keeping the general shape of the pixel collection. This has the advantage of keeping the total information going into the morphological parameter the same, but it quantifies the effect of pixel value outliers on the overall parameter value, i.e., a single bright spot skewing the computed value.

The reported uncertainties in Tables A1 and A2 are the quadratic combination of the uncertainty due to variance in the central position and the uncertainty due to shot noise in the pixels. In the case of the Gini parameter, it is the quadratic combination of the uncertainties estimated from subsampling and pixel shot noise. These values are formal uncertainties of these parameters as the viewing angle and distance may still influence the perception of morphology and affect the

19 The issue of the Gini parameter’s dependence on signal-to-noise ratio noted by Lisker (2008) is a direct result of the use of an aperture rather than an isophote. However, the S4G galaxies are well above the signal-to-noise levels discussed by Lisker.
margorical parameter values. However, since the viewing angle is arguably part and parcel of a galaxy morphology (e.g., Scarlata et al. 2007 treat it as such) and S4G is a sample of local galaxies (as described in the previous section), making distance less of an issue, we leave these effects out of the formal error.

4. MORPHOLOGY CATALOGS

Tables A1 and A2 list the morphological parameters for both IRAC wavelengths (3.6 and 4.5 μm) and their uncertainties for all 2349 galaxies (full tables are available in the electronic edition of the paper). We compute the C_{35} concentration, asymmetry, smoothness (after a 3 pixel FWHM Gaussian smooth), the Gini coefficient, M_{20}, the Gini coefficient of the second-order moment (G_{M}), and the ellipticity of the images. Uncertainties are based on randomly changing the central position (with the exception of Gini) and a random reshuffle of the pixel values to simulate shot noise. We note that these uncertainties should be viewed as formal errors and do not include the effects of, for example, disk inclination, which has a pronounced effect (see also Bendo et al. 2007; Holwerda et al. 2011d). We explore the possibility of an ordered morphological list based on these parameters and their ability to select out-of-the-ordinary or merging morphology in the NIR.

5. GALAXY CLASSIFICATION: WHERE NORMAL GALAXIES LIE

As already noted, these parameters do not constitute an orthogonal parameter space, and most often some combination is used to define a subspace populated by unperturbed galaxies on the Hubble tuning fork, i.e., “normal” galaxies. First, we explore each parameter with Hubble type and subsequently the two-parameter combinations from Lotz et al. (2004) and Conselice (2003).

Normal spaces have been defined for local samples by Conselice (2003) and Lotz et al. (2004) from the visible light image collection originally presented in Frei et al. (1996). Morphological parameters from Spitzer IRAC images for the SINGS sample have been reported by Bendo et al. (2007), Muñoz-Mateos et al. (2009), and Holwerda et al. (2011d). We will compare with each of these studies to explore where normal galaxies reside in the morphological parameter space measured at 3.6 and 4.5 μm. In Figures 4–14, we use the RC3 numerical Hubble type (Table 1) from HyperLEDA (Paturel et al. 2003) to color-code the data points. These are visual classifications in bluer wavelength images, but their uniformity and numerical scale allow for a quick comparison.

5.1. Single Parameters

Figure 3 shows the relation between Hubble type (RC3, Table 1) and each of the morphological parameters. Concentration, Gini, and M_{20} show the most promise for differentiating among Hubble types. No single parameter alone appears discerning enough to quantify Hubble type completely. This has been found previously for visible light morphologies by Lotz et al. (2004), Conselice (2003), and Scarlata et al. (2007). M_{20} appears to have the most differentiating power for Hubble type classification, i.e., this parameter has the steepest dependence on Hubble type in Figure 3 (see Section 5.2.3). The Spearman ranking with Hubble type (Table 2) ranks concentration, M_{20}, and Gini as reasonably closely linked to Hubble type (a ranking of 0 is unrelated, −1 anti-correlated, and 1 linearly related). The link is stronger with 3.6 μm parameters than 4.5 μm. For comparison, the ranking with stellar mass is also listed in Table 2. The showing that the morphological relation is related to total stellar mass as well (from low-mass Irr to massive ellipticals).

In the M_{20} panel, a clustering is visible near M_{20} = −1 for T > 2. We inspected the S4G images of some examples of these objects. They include many examples of edge-on and barred galaxies. In the case of edge-on galaxies, the line-of-sight integration of stellar light (with little extinction) results in relatively more light at larger galactocentric radii; thus, the same Hubble type has a greater contribution from the top 20% of pixels at larger radii. A similar effect happens if stars are dynamically concentrated in a bar: some of the brightest pixels will occur at larger radii, increasing the value of M_{20}.

5.2. Parameter Pairs

In this section, we discuss a few of the parameter pairs noted in the literature (Conselice 2003; Lotz et al. 2004; Muñoz-Mateos et al. 2009) as being useful for separating “normal” galaxies from “disturbed” ones and morphologically classifying these “normal” galaxies. For example, Figure 15 in Appendix C illustrates the distribution of the S4G sample over the parameter space. Buta et al. (2010) note that late-type (S0/a to Sc) galaxies appear earlier in type at 3.6 μm, due to the slightly increased prominence of the bulge and the reduced effects of extinction.

5.2.1. Asymmetry and Smoothness

Conselice (2003) defines an asymmetry–smoothness relation (A = 0.35 × S + 0.02) for R-band images where normal galaxies reside. Figure 4 shows the relation between asymmetry and smoothness. The population is split between two sequences: one where smoothness follows asymmetry, mostly populated by Irr and spirals, and one where these parameters are completely unrelated. Neither case presents a clear separation between early and late types.

In these NIR images (and perhaps with our implementation of the parameters), there is little use for this pair as a classifier. One obvious difference between this study and any previous one is the wavelength: in their comparisons between wavelengths in the SINGS/THINGS sample, both Muñoz-Mateos et al. (2009) and Holwerda et al. (2011d) find much lower values of asymmetry for 3.6 μm compared with other wavelengths, especially the optical. The typically lower values of asymmetry are the cause of the poor separation of early and late types.

We note that our simple implementation of smoothness, i.e., a fixed-size smoothing kernel, could be affected by distance effects, but the mean of the smoothness parameter for a given Hubble type does not change between nearby and distant

Table 1

Legend for the Numerical Hubble Types from HyperLEDA (Paturel et al. 2003)

<table>
<thead>
<tr>
<th>Hubble</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>−5</td>
</tr>
<tr>
<td>S0−0</td>
<td>−3</td>
</tr>
<tr>
<td>S0</td>
<td>−2</td>
</tr>
<tr>
<td>S0/a</td>
<td>0</td>
</tr>
<tr>
<td>Sa</td>
<td>1</td>
</tr>
<tr>
<td>Sab</td>
<td>2</td>
</tr>
<tr>
<td>Sb</td>
<td>3</td>
</tr>
<tr>
<td>Sbc</td>
<td>4</td>
</tr>
<tr>
<td>Sc</td>
<td>6</td>
</tr>
<tr>
<td>Sc-Irr</td>
<td>8</td>
</tr>
<tr>
<td>Irr</td>
<td>10</td>
</tr>
</tbody>
</table>
Figure 3. Relation between Hubble type and each of the morphological parameters in 3.6 μm. Solid points are the mean value for each Hubble type, and the error bars are the rms in each type.

subsamples. A more likely reason is that Conselice (2003) use R-band optical images and S4G is in the NIR with the resulting different dependencies on star formation and dust extinction.

5.2.2. Gini and M20

Lotz et al. (2004) showed that Gini and M20 together separate early from late types based on visible light images. They define a criterion between normal and disturbed galaxies (see Equation (14)). Figure 5 shows the Gini–M20 space for S4G. There seems to be a (noisy) sequence between Gini and M20 with Hubble type. This correlation reflects the well-known trend of an increase in central/bulge prominence from late to early type. Surprisingly, early-type (elliptical and S0) galaxies appear to display a range of Gini values. This is somewhat unusual as these
Figure 4. Relation between asymmetry and smoothness for 3.6 (left) and 4.5 \(\mu\)m (right) for S^4G galaxies. The dashed line is asymmetry–smoothness equality, a prerequisite for interaction from Conselice (2003) for interacting systems (Equation (13)). Galaxies above this dashed line and with asymmetry greater than \(A = 0.4\) are candidates for ongoing or recent interactions.

(A color version of this figure is available in the online journal.)

Table 2

The Spearman Ranking of the Relation between Hubble Type or Stellar Mass and the Morphological Parameters in Either the 3.6\(\mu\)m or 4.5\(\mu\)m Images for Our Full Sample

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>A</th>
<th>S</th>
<th>(M_{20})</th>
<th>G</th>
<th>(G_M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6(\mu)m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\log_{10}(M_*))</td>
<td>0.11 (3.74)</td>
<td>-0.06 (1.90)</td>
<td>-0.15 (5.25)</td>
<td>-0.08 (2.95)</td>
<td>0.06 (1.94)</td>
<td>-0.09 (3.17)</td>
</tr>
<tr>
<td>Hubble type</td>
<td>-0.55 (29.20)</td>
<td>0.02 (0.88)</td>
<td>0.26 (12.67)</td>
<td>0.62 (33.86)</td>
<td>-0.52 (27.21)</td>
<td>0.05 (2.36)</td>
</tr>
<tr>
<td>[3.6–4.5]</td>
<td>0.00 (0.08)</td>
<td>0.02 (0.55)</td>
<td>-0.01 (0.39)</td>
<td>0.00 (0.11)</td>
<td>0.00 (0.03)</td>
<td>-0.01 (0.23)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>A</th>
<th>S</th>
<th>(M_{20})</th>
<th>G</th>
<th>(G_M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5 (\mu)m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\log_{10}(M_*))</td>
<td>0.10 (3.57)</td>
<td>-0.03 (1.18)</td>
<td>-0.10 (3.45)</td>
<td>-0.06 (2.01)</td>
<td>0.02 (0.68)</td>
<td>-0.04 (1.37)</td>
</tr>
<tr>
<td>Hubble type</td>
<td>-0.43 (21.69)</td>
<td>-0.05 (2.28)</td>
<td>0.09 (4.04)</td>
<td>0.50 (25.91)</td>
<td>-0.38 (18.81)</td>
<td>-0.06 (2.80)</td>
</tr>
<tr>
<td>[3.6–4.5]</td>
<td>0.00 (0.01)</td>
<td>0.04 (1.23)</td>
<td>-0.00 (0.13)</td>
<td>-0.02 (0.52)</td>
<td>0.02 (0.53)</td>
<td>0.02 (0.64)</td>
</tr>
</tbody>
</table>

Note. The absolute \(z\) values of significance for each of the Spearman rankings are noted in parentheses.

are the smoothest galaxies, with the smallest contribution to the second-order moment by the brightest 20% of the flux (\(M_{20}\)) because these are all in the center. Several of these are selected as “disturbed” galaxies (see also the discussion of Figure 12 below). However, their pixel values are not homogeneous—with each pixel contributing the same fraction of the flux—and thus the Gini parameter becomes akin to a concentration index (Figure 6) as ranking by flux becomes similar to ranking by radius.

Muñoz-Mateos et al. (2009) define an envelope based on the morphology of the SINGS galaxies for the Gini–\(M_{20}\) space (dotted lines in the left panel of Figure 5). The S^4G parameters do not appear to adhere to this envelope. Our implementation is different on two points: first, we use an isophotal definition of the pixels to be included, and second, we include any bright central source in our computation. In Holwerda et al. (2011d), we compared our results with those from Bendo et al. (2007) for the SINGS sample, computed over a similar elliptical aperture. There is an offset in the Gini parameter—our Gini values are 0.15 higher—which can be attributed to the convolution of the 3.6\(\mu\)m images to the 24\(\mu\)m resolution by Bendo et al. (2007). Similarly, Muñoz-Mateos et al. (2009) find that for different apertures, the values of Gini change between the Gini values computed over the \(R_{25}\) elliptical aperture and the Petrosian radius elliptical aperture. The difference is \(\sim 0.1\). Thus, the choice to include central sources, the choice of aperture, and, thirdly, any convolution all add a shift to the Gini parameter values for the whole sample.

In Figure 5, we find that the offset in \(M_{20}\) is 0.5 lower than those typically found by Muñoz-Mateos et al. (2009), which would be the result of our choice of an isophotal area over an elliptical aperture: \(M_{20}\) is higher as low-flux pixels are excluded, and therefore the relative contribution from the brightest 20% is smaller. A larger number of pixels contributing a small fraction of the total flux would increase the value of the Gini parameter. However, the isophotal criterion does away with low-contribution pixels, and this may explain our lower values of Gini.

5.2.3. Concentration–\(M_{20}\)

Originally, Lotz et al. (2004) introduced the \(M_{20}\) parameter as a possible alternative to the concentration parameter from Conselice (2003). The definition of \(M_{20}\) does not hinge on the placement of circular or elliptical apertures and is thus more sensitive to “any bright nuclei, bars, spiral arms, and off-center star clusters.” Muñoz-Mateos et al. (2009) find a clean relation between \(C_{82}\) and \(M_{20}\) at 3.6\(\mu\)m for galaxies in the SINGS sample that represents a clear sequence of Hubble morphologies.
Figure 5. Relation between Gini and M_{20} for 3.6 (left) and 4.5 μm (right) for S4G galaxies. The dashed line is the interaction criterion in Equation (14) from Lotz et al. (2004). The dotted lines in the 3.6 μm plot are the limits of the envelope from Muñoz-Mateos et al. (2009).

(A color version of this figure is available in the online journal.)

Figure 6. Relation between concentration and Gini for 3.6 (left) and 4.5 μm (right) for S4G galaxies. Points are color-coded according to Hubble type. Both parameters are closely related for early types but diverge for late types as additional structure influences both differently.

(A color version of this figure is available in the online journal.)

Scarlata et al. (2007) also single out the concentration (C_{82}) and M_{20}, as well as Gini–M_{20} combinations for their discriminatory power.

Figure 7 shows the relation between our C_{82} and M_{20}. Obviously, the relation is different from the one in Muñoz-Mateos et al. (2009) as we use the same definition of concentration but include any central source. In particular, the 3.6 μm relation is much tighter between these two parameters than any other pair, with only a few objects that are possibly disturbed galaxies (see below) away from the correlation. A second-order polynomial fit between C_{82} and M_{20} at 3.6 μm yields a relation of

$$M_{20} = -0.0017 \times (C_{82})^2 - 0.47 \times C_{82} - 0.43,$$

(9)

and for 4.5 μm,

$$M_{20} = -0.064 \times (C_{82})^2 - 0.04 \times C_{82} - 0.85,$$

(10)

after excluding the points above the “disturbed” line. Thus, the concentration and M_{20} at both wavelengths are closely related for the majority of the S4G galaxies. Figure 8 shows the residual as a function of Hubble type.

It appears that in the case of the 3.6 and 4.5 μm images, one can define the normal galaxy sequence of C_{82} and M_{20}, and any galaxy with morphology that deviates from this relation by more than 0.5 can be marked as “peculiar.” In the case of the 4.5 μm images, there are many more galaxies that would be marked as peculiar by this selection.

Moreover, we can use the C–M_{20} selection to identify “normal”/unperturbed galaxies and subsequently classify these using the M_{20} parameter. One potential use of this relation is a check of galaxy models. Typical stellar mass maps should lie on this C_{82}–M_{20} sequence.

We now fit the relation between the Hubble type from HyperLEDA and the M_{20} parameter, after excluding outliers from the concentration–M_{20} relation. The numerical Hubble type, derived from M_{20} only, at either 3.6 or 4.5 μm, can be expressed as

$$T(3.6 \mu m) = -0.57 \times (M_{20})^2 - 0.31 \times M_{20} + 7.91,$$

(11)
Figure 7. Relation between concentration and M_{20} for 3.6 (left) and 4.5 μm (right) for S4G galaxies. The dashed line is the interaction criterion for optical classification from Lotz et al. (2004; Equation (18)) and the dotted line is the best fit to the concentration and M_{20} relation (Equations (9) and (10)).

(A color version of this figure is available in the online journal.)

Figure 8. Residual at 3.6 (left) and 4.5 μm (right) for S4G galaxies after subtracting the concentration–M_{20} relations in Equations (9) (left panel) and (10) (right panel).

(A color version of this figure is available in the online journal.)

or

$$T(4.5 \mu m) = 0.86 \times (M_{20})^2 - 5.3 \times M_{20} + 10.2, \quad (12)$$

respectively. Figure 9 shows the Hubble type distribution of M_{20}-selected subsamples. One can retrieve the broad classifications from HyperLEDA, i.e., late- versus early-type galaxies or Irr galaxies from spirals, but a more detailed distinction cannot be made using this approach alone.

Given the subjective nature of visual galaxy classifications, one could use this automatically derived Hubble type as an alternative to catalogs such as RC3 or HyperLEDA in future uses of S4G or in future NIR imaging surveys. As the 3.6 μm relation has the least scatter, we recommend this band for this broad typing in particular.

6. GALAXY CLASSIFICATION: DISTURBED SYSTEMS

There are a few established criteria to select morphologically disturbed galaxies based on these parameters in the literature. These are mostly based on visible light data and select galaxies during the first and second passes of a merger and often times recent merger remnants as well. Here, we compare how well such parameters could be applied to the S4G NIR imaging.

For visible light data, Conselice (2003) define the following criterion:

$$A > 0.38 \text{ and } S > A. \quad (13)$$

In general, he considers any highly asymmetric galaxy as a candidate merging system. The vast majority of our galaxies are not disturbed according to this criterion, and those selected are classified as late types (Figure 4). The definition of smoothness fluctuates somewhat, but this may be a viable way to select disturbed or Irr galaxies.

Lotz et al. (2004) added two different criteria using Gini and M_{20},

$$G > -0.115 \times M_{20} + 0.384, \quad (14)$$

and Gini and asymmetry,

$$G > -0.4 \times A + 0.66 \text{ or } A > 0.4. \quad (15)$$

10
Figure 9. Histogram of Hubble types from the RC3 (de Vaucouleurs et al. 1991) for the complete S4G sample and the distribution of RC3 types for different selections of M20-derived types, following Equation (11). Those galaxies classified as late type by Equation (11) are in fact late type according to the RC3, but a finer distinction cannot be made, i.e., Sa- from Sc-type spirals. (A color version of this figure is available in the online journal.)

The latter is a refinement of the Conselice (2003) criterion in Equation (13).

The G–M20 criterion selects the scatter away from the locus of galaxies that includes a variety of Hubble types (Figure 5). The slope and normalization will have to be adjusted to select all the disturbed systems. The bigger spread in Gini parameters for early types (E and S0) for their given M20 value is the cause for this. These early-type “disturbed” systems do indeed include some galaxies with close companions (notably NGC 5195, M51’s companion), but also some S0s with faint spiral structure and especially many S0 galaxies with rings visible in the 3.6 and 4.5 μm images. The second criterion, using Gini and asymmetry, does not seem to be applicable to the S4G data (Figure 10).

Holwerda et al. (2011e) defined some criteria for 21 cm radio data (H I), which have a much lower spatial resolution than S4G and show the atomic hydrogen gas, not the stellar content. They define “morphologically disturbed,” based on their GM parameter, as

$$G_M > 0.6,$$

or based on asymmetry and M20,

$$A > -0.2 \times M_{20} + 0.25,$$

or concentration and M20, similar to the criteria from Lotz et al. (2004) (Equations (14) and (15)). Based on Figure 7, we define a C–M20 criterion for Spitzer imaging, similar to Equation (11) in Holwerda et al. (2011a), as

$$C_{82} > -2.5 \times M_{20} + 1.$$

Of these, the GM and the C82–M20 criteria seem to be applicable to the S4G data (Figures 7 and 11), in the latter case with a slight renormalization. In the latter criterion’s case, 4.5 μm morphology is more often disturbed than that of the 3.6 μm data. One possibility is in our view that in these galaxies there is a hot dust contribution to the global morphology of these disks from H II regions (see Section 6.3). This leaves us with four criteria that may well select the outlying “disturbed” galaxies.

6.1. What Kind of Galaxies Are Selected as Disturbed?

The four different criteria in Table 3 select different Hubble types as “disturbed.” Figure 12 shows the distribution of Hubble types for the four criteria that seem promising for use on Spitzer data to identify disturbed galaxies. The asymmetry–smoothness criterion (Equation (13)) selects many more galaxies than the other criteria, with a preference for spirals. The fact that so many galaxies are selected makes this criterion suspect to use for the selection of unusual or interacting systems. The Gini–M20 criterion (Equation (14)) also selects a mix of Hubble types, mostly earlier type spirals (Sb or Sc). As noted, the early types that are selected appear to be a mix of actually interacting galaxies and S0 galaxies with rings or spiral structure. The GM criterion selects predominantly the latest types (Sc and Irr). The C–M20 criterion (Equation (18)) selects later types as well. A large fraction of these are edge-on spirals or very faint

Figure 10. Relationship between Gini and asymmetry for 3.6 (left) and 4.5 μm (right) for S4G galaxies. The dashed line is the interaction criterion from Lotz et al. (2004) (Equation (15)). Galaxies to the right of and above this line are candidate interactions. (A color version of this figure is available in the online journal.)
Holwerda et al.

Figure 11. Relation between Gini and G_M for 3.6 (left) and 4.5 μm (right) for S4G galaxies. The horizontal dashed line is the interaction criterion for H_I maps from Holwerda et al. (2011a) (Equation (16)). Galaxies above the line are candidate interactions.

(A color version of this figure is available in the online journal.)

Figure 12. Histogram of Hubble types for the full S4G sample and those galaxies selected by the four criteria as disturbed. The asymmetry–smoothness criterion (Equation (13)) from Conselice (2003), the Gini–M_{20} criterion (Equation (14)) from Lotz et al. (2004), and the G_M (Equation (16)) and concentration–M_{20} (Equation (18)) criteria from Holwerda et al. (2011a).

(A color version of this figure is available in the online journal.)

Our sample of 2349 galaxies is the full, volume-, and mass-limited sample of S4G, but the values in Table 3 show that not every criterion translates well to Spitzer IRAC morphologies for tidally disturbed galaxies defined for other wavelengths. Only the G_M and G–M_{20} criteria select a similar fraction of galaxies to be interacting in the local universe as previous studies (∼5% Darg et al. 2010; Knapen & James 2009; Holwerda et al. 2011c; S. Laine et al., in preparation), using techniques such as visual inspection of the SDSS images and morphological selection of disturbed H_I maps.

These two criteria (G_M and G–M_{20}) predominantly select later types as “unusual,” so these selection criteria may not work as well for the early-type galaxies observed in the NIR that are interacting. Combined with the relative lack of early types in the S4G sample, we note that these two morphological selections estimate a merger rate for the later types from S4G.

6.2. Arp Atlas

In our 2349 galaxies, there are 104 galaxies out of the 338 in the Arp catalog of peculiar galaxies (Arp 1966, 1995). Figure 13 shows the distributions of these 104 galaxies. The first fact to note is that there hardly any are selected by the morphological criteria for disturbed systems, i.e., “peculiar” does not equate with “disturbed” in the quantified morphology sense. This cautions the use of a selection of galaxies with outlying morphologies. Galaxies with a peculiar appearance in visible light are not those identified in outlying morphological parameters in the NIR.

The second fact to note is that while these morphological parameters may contain enough information to approximately morphologically classify and single out tidally disturbed systems, they do not contain enough power to single out galaxies with peculiar properties. That remains in the scope of visual classification (S. Laine et al., in preparation).

6.3. [3.6–4.5] Color

One option that may influence the difference in the concentration–M_{20} relations between the 3.6 and 4.5 μm images is a contribution from the PAH feature at 3.1 μm to the

Table 3

<table>
<thead>
<tr>
<th>Criterion</th>
<th>3.6 μm</th>
<th>4.5 μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>(No.)</td>
<td>(%)</td>
<td>(No.)</td>
</tr>
<tr>
<td>3 > A & A > 0.38</td>
<td>600</td>
<td>25.5</td>
</tr>
<tr>
<td>$G > -0.115 \times M_{20} + 0.384$</td>
<td>166</td>
<td>7.1</td>
</tr>
<tr>
<td>$G_M > 0.6$</td>
<td>76</td>
<td>3.2</td>
</tr>
<tr>
<td>$C > -2.5 \times M_{20} + 1$</td>
<td>24</td>
<td>1.0</td>
</tr>
</tbody>
</table>
3.6 μm images or relatively brighter hot dust emission in the 4.5 μm channel. Figure 14 shows the residual from the C–M$_{20}$ fit as a function of global [3.6–4.5] color from J.-C. Munoz-Mateos et al. (in preparation). The majority of S4G galaxies lie in a narrow range of color [3.6–4.5] = −0.7 to −0.3 with a mean color of −0.427. The most extreme colors paradoxically have the smallest residuals, and the morphological outliers (residual > 1.5) have typical colors. Table 2 also lists the correlation between the morphological parameters and the [3.6–4.5] color. The Spearman values are as close to unrelated as one can expect.

In our opinion, this points to a scenario where one or more bright H II regions or other features, likely at larger radii, displace the galaxy from the C–M$_{20}$ morphological relation but not from the typical [3.6–4.5] color, i.e., there is not enough hot dust or PAH emission in the bright H II regions to change the galaxy-wide color, but enough flux (at a greater distance to the center) to change the appearance.

7. LOPSIDEDNESS

Morphological lopsidedness is a distinct displacement of the disk with respect to its apparent center (photometric or kinematic). The effect was initially noticed in H I and then in stellar disks (see Jog & Combes 2009, for a comprehensive review). The first comprehensive study on stellar disks was by Rix & Zaritsky (1995), and a study on S4G was just completed (Zaritsky et al. 2013). The motivation for this analysis is very similar to our own: the advent of large surveys, ample computing power, and the desire for more reproducible results in morphological studies.

Zaritsky et al. (2013) perform an azimuthal Fourier decomposition of the luminosity in circular annuli at two radial intervals on the S4G data. Similar to Rix & Zaritsky (1995), they calculate the relative strength of the first and second Fourier component: ⟨A$_1$⟩ is the average of A$_1$/A$_0$, and ⟨A$_2$⟩ is the average of A$_2$/A$_0$. A$_m$ is the amplitude of the m mode (m = 0–4) in the image. The m = 0 mode corresponds to the central amplitude (the concentration of flux in the center), the m = 1 mode corresponds to a displacement of the flux in one direction with respect to the center, i.e., lopsidedness, and m = 2 is an axisymmetric displacement of flux with respect to the center, e.g., a strong bar.

Zaritsky et al. (2013) report these values calculated between 1.5–2.5 disk scale lengths ⟨(A$_1$)$_m$⟩ and ⟨(A$_2$)$_m$⟩ and 2.5–3.5 scale lengths ⟨(A$_1$)$_m$⟩ and ⟨(A$_2$)$_m$⟩ in the S4G data. The deep S4G data

Figure 13. Distribution of morphological parameters in the 3.6 μm data of the 104 Arp galaxies in our sample. Dashed lines are the selection criteria (Equations (13) and (14)) for disturbed galaxies: the asymmetry–smoothness criterion from Conselice (2003) (Equation (13)), the Gini–M$_{20}$ criterion from Lotz et al. (2004) (Equation (14)), and the G$_M$ and concentration–M$_{20}$ criteria from Holwerda et al. (2011a) (Equations (16) and (18), respectively). Only the Gini–M$_{20}$ criterion selects a sizable number of Arp atlas galaxies based on their S4G morphologies. (A color version of this figure is available in the online journal.)
allow the additional measurement at larger radii compared with earlier studies. The \(m = 1 \) modes \(\langle A_1 \rangle_i \) and \(\langle A_1 \rangle_o \) trace the lopsidedness of the disk.

There is only a weak link in H\(_i\) among the \(C, A, S, \) Gini, \(M_{20} \), and \(G_M \) parameters and the presence of lopsidedness (Holwerda et al. 2011a). However, the new morphology catalog and the lopsidedness parameterization for an S\(_4\)G subsample allow us to compare the relations among the strength of lopsidedness and the morphological parameters. Figures 15, 16, 17, and 18 show our catalog color-coded with the \(m = 1 \) and \(m = 2 \) modes at both radii. They illustrate that the lopsidedness sample does not cover the full morphological parameter space, with only a few points above the traditional interacting criteria, i.e., Equations (15) and (16). Figures 19 and 20 show the direct relation between the \(m = 1 \) and \(m = 2 \) modes with the morphological parameters. Figures 21 and 22 show the same for the inner and outer rings, respectively. Table 4 lists the Spearman ranking of all our parameters with the \(m = 1 \) and \(m = 2 \) modes at both radii for both wavelengths. Between lopsidedness \((m = 2) \) at either radius and most of our parameters, there is only a weak correlation or none at all. The strongest anti-correlation is between \(\langle A_1 \rangle_i \) and concentration, and the strongest correlation is between \(\langle A_1 \rangle_i \) and \(M_{20} \). The concentration and \(M_{20} \) parameters are equally strongly correlated with the \(m = 2 \) mode. The lack of a strong relation between the morphological parameters...
Table 4
The Spearman Ranking of the Relations between the lopsidedness Parameterizations from Zaritsky et al. (2013) and the Morphological Parameters in 3.6 μm and 4.5 μm for the Available Subsample of 187 Galaxies

<table>
<thead>
<tr>
<th>Lopsidedness</th>
<th>C</th>
<th>A</th>
<th>S</th>
<th>M_{20}</th>
<th>G</th>
<th>G_M</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6 μm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(A_1)_i$</td>
<td>−0.30 (3.86)</td>
<td>−0.03 (0.39)</td>
<td>0.12 (1.50)</td>
<td>0.35 (4.45)</td>
<td>−0.22 (2.81)</td>
<td>0.03 (0.34)</td>
</tr>
<tr>
<td>$(A_2)_i$</td>
<td>−0.31 (3.99)</td>
<td>−0.20 (2.48)</td>
<td>0.09 (1.15)</td>
<td>0.29 (3.61)</td>
<td>−0.27 (3.40)</td>
<td>−0.02 (0.31)</td>
</tr>
<tr>
<td>$(A_1)_o$</td>
<td>−0.21 (2.61)</td>
<td>−0.11 (1.37)</td>
<td>0.19 (2.35)</td>
<td>0.18 (2.30)</td>
<td>−0.19 (2.31)</td>
<td>0.03 (0.41)</td>
</tr>
<tr>
<td>$(A_2)_o$</td>
<td>−0.48 (6.38)</td>
<td>−0.16 (1.93)</td>
<td>0.16 (2.03)</td>
<td>0.39 (5.09)</td>
<td>−0.40 (5.17)</td>
<td>0.00 (0.05)</td>
</tr>
<tr>
<td>4.5 μm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(A_1)_i$</td>
<td>−0.22 (2.76)</td>
<td>−0.10 (1.26)</td>
<td>0.02 (0.22)</td>
<td>0.22 (2.72)</td>
<td>−0.18 (2.18)</td>
<td>−0.16 (1.96)</td>
</tr>
<tr>
<td>$(A_2)_i$</td>
<td>−0.24 (2.94)</td>
<td>−0.20 (2.47)</td>
<td>0.01 (0.18)</td>
<td>0.13 (1.58)</td>
<td>−0.17 (2.14)</td>
<td>−0.19 (2.39)</td>
</tr>
<tr>
<td>$(A_1)_o$</td>
<td>−0.12 (1.52)</td>
<td>−0.09 (1.16)</td>
<td>0.09 (1.16)</td>
<td>0.07 (0.86)</td>
<td>−0.10 (1.21)</td>
<td>−0.10 (1.26)</td>
</tr>
<tr>
<td>$(A_2)_o$</td>
<td>−0.38 (4.94)</td>
<td>−0.25 (3.19)</td>
<td>−0.05 (0.65)</td>
<td>0.32 (4.13)</td>
<td>−0.32 (4.04)</td>
<td>−0.18 (2.23)</td>
</tr>
</tbody>
</table>

Note. The absolute z values of significance for each of the Spearman rankings are noted in parentheses.

Figure 17. Distribution of the 3.6 μm morphological parameters color-coded with the $\langle A_2 \rangle_i$ parameter from Zaritsky et al. (2013), where available. The full S4G morphological sample is marked with gray crosses for reference. The dashed lines are as in Figure 15.

Figure 18. Distribution of the 3.6 μm morphological parameters color-coded with the $\langle A_2 \rangle_o$ parameter from Zaritsky et al. (2013), where available. The full S4G morphological sample is marked with gray crosses for reference. The dashed lines are as in Figure 15.

Figure 19. Direct relation between the inner (computed between 1.5–2.5 scale lengths) $m = 1$ mode from Zaritsky et al. (2013) and the six morphological parameters.

Figure 20. Direct relation between the inner (computed between 1.5–2.5 scale lengths) $m = 2$ mode from Zaritsky et al. (2013) and the six morphological parameters.

(A color version of this figure is available in the online journal.)
8. CONCLUDING REMARKS

Based on 3.6 and 4.5 μm images of 2349 galaxies from the S4G survey, we can conclude that:

1. There is a close relation for normal galaxies between their concentration (C82) and M20 (Figure A3), in 3.6 μm images.
2. To first order, a Hubble type can be found from M20 alone (Figure 9), but subtype classification is impossible.
3. Four morphological criteria work to identify “disturbed” or unique systems (Table 3), but each selects a different subgroup of our sample. Only the GM and G−M20 criteria select close to the typical merger fraction of the local universe. The C−M20 criterion provides a lower limit on the interaction fraction.
4. General morphological type, i.e., early type versus late type, can be inferred from the M20 parameter in 3.6 μm images; finer morphological information cannot be discerned.
5. The lack of a relation between the concentration−M20 residual and global galaxy color points to distinct substructures causing the residual, not global hot dust or PAH contributions.
6. There is only a weak link among concentration and M20 and lopsidedness in a subsample (Table 4), and these parameters are not suited to the detection of this phenomenon.

We thank the entire S4G team for their efforts on this project and the anonymous referee for his or her insightful comments that improved the manuscript. The lead author thanks the European Space Agency for the support of the Research Fellowship program. This work was co-funded under the Marie Curie Actions of the European Commission (FP7-COFUND). We acknowledge financial support to the DAGAL network from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA grant agreement number PITN-GA-2011-289313. E.A. and A.B. acknowledge the Centre National d’Etudes Spatiales (CNES, France) for financial support. They also acknowledge support from the FP7 Marie Curie Actions of the European Commission, via the Initial Training Network DAGAL under REA grant agreement 289313. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research has made use of NASA’s Astrophysics Data System. We acknowledge the usage of the HyperLEDA database (http://leda.univ-lyon1.fr; Paturel et al. 2003).

APPENDIX A

TABLES OF MORPHOLOGICAL PARAMETERS

The full catalog of morphological parameters for the S4G sample of galaxies for the 3.6 and 4.5 μm (Tables A1 and A2). IRAC channels: the Gini, M20, Concentration, Asymmetry Smoothness, Ellipticity and GM parameter for each galaxy with formal errors as described in Section 3.2.

APPENDIX B

SYSTEMATICS

Two possible systematics are explored here in this section: any relation between inclination and the morphological parameters and the effect of smoothing due to distance on the morphological parameters. Figure 23 shows the lack of a relation between the inclination and any of the morphological parameters. One could expect a relation between disk inclination and concentration due to line-of-sight integration. However, no such relation in S4G exists.

Similarly, one can expect a relation between smoothness and distance. Galaxies farther away appear smoother, which is the reasoning behind the surface brightness fluctuation distance measurement method. However, there is no such relation...

Holwerda et al.

between the distances of the S4G galaxies and their smoothness evident in Figure 24.

The Spearman rankings of the relations between inclination or distance and the S4G morphological parameters bear out the lack of a relation (Table A3), albeit at low z-value confidences.

APPENDIX C

LOPSIDEDNESS

Zaritsky et al. (2013) published the lopsidedness parameters for a sub-sample of the S4G catalog. Here, we present a comparison between the Fourier modes computed over two radial annuli and our morphology catalog. Especially a relation to Asymmetry or Asymmetry with some of the other

Table A1

The Morphological Parameters at 3.6 µm for the 2349 S4G Galaxies

<table>
<thead>
<tr>
<th>Name</th>
<th>Gini</th>
<th>M_{20}</th>
<th>C_{22}</th>
<th>A</th>
<th>S</th>
<th>E</th>
<th>G_M</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESO011-005</td>
<td>0.31 ± 0.01</td>
<td>−2.36 ± 0.08</td>
<td>2.19 ± 0.11</td>
<td>0.60 ± 0.02</td>
<td>0.74 ± 1.11</td>
<td>0.07 ± 0.01</td>
<td>0.43 ± 0.00</td>
</tr>
<tr>
<td>ESO012-010</td>
<td>0.37 ± 0.02</td>
<td>−1.96 ± 0.09</td>
<td>2.88 ± 0.18</td>
<td>0.36 ± 0.07</td>
<td>0.33 ± 5.55</td>
<td>0.42 ± 0.01</td>
<td>0.44 ± 0.01</td>
</tr>
<tr>
<td>ESO012-014</td>
<td>0.21 ± 0.01</td>
<td>−0.91 ± 0.05</td>
<td>1.45 ± 0.08</td>
<td>0.67 ± 0.02</td>
<td>0.85 ± 0.03</td>
<td>0.04 ± 0.03</td>
<td>0.53 ± 0.01</td>
</tr>
<tr>
<td>ESO013-016</td>
<td>0.48 ± 0.01</td>
<td>−1.99 ± 0.11</td>
<td>3.73 ± 0.18</td>
<td>0.45 ± 0.05</td>
<td>0.48 ± 0.04</td>
<td>0.07 ± 0.03</td>
<td>0.53 ± 0.00</td>
</tr>
<tr>
<td>ESO015-001</td>
<td>0.32 ± 0.01</td>
<td>−2.28 ± 0.15</td>
<td>1.02 ± 0.22</td>
<td>0.56 ± 0.08</td>
<td>0.71 ± 1.11</td>
<td>0.08 ± 0.02</td>
<td>0.51 ± 0.00</td>
</tr>
<tr>
<td>ESO026-001</td>
<td>0.45 ± 0.01</td>
<td>−2.11 ± 0.14</td>
<td>3.10 ± 0.14</td>
<td>0.52 ± 0.03</td>
<td>0.46 ± 1.11</td>
<td>0.04 ± 0.02</td>
<td>0.44 ± 0.01</td>
</tr>
<tr>
<td>ESO027-001</td>
<td>0.64 ± 0.01</td>
<td>−2.55 ± 0.10</td>
<td>4.37 ± 0.29</td>
<td>0.89 ± 0.02</td>
<td>0.25 ± 0.05</td>
<td>0.25 ± 0.03</td>
<td>0.49 ± 0.01</td>
</tr>
<tr>
<td>ESO027-008</td>
<td>0.63 ± 0.01</td>
<td>−2.67 ± 0.08</td>
<td>3.77 ± 0.33</td>
<td>0.93 ± 0.01</td>
<td>0.30 ± 5.55</td>
<td>0.32 ± 0.02</td>
<td>0.51 ± 0.00</td>
</tr>
<tr>
<td>ESO048-017</td>
<td>0.26 ± 0.01</td>
<td>−1.74 ± 0.10</td>
<td>1.91 ± 0.12</td>
<td>0.62 ± 0.01</td>
<td>0.76 ± 1.11</td>
<td>0.04 ± 0.01</td>
<td>0.47 ± 0.00</td>
</tr>
<tr>
<td>ESO054-021</td>
<td>0.44 ± 0.01</td>
<td>−2.02 ± 0.08</td>
<td>3.61 ± 0.13</td>
<td>0.42 ± 0.04</td>
<td>0.33 ± 0.04</td>
<td>0.24 ± 0.03</td>
<td>0.49 ± 0.01</td>
</tr>
</tbody>
</table>

(This table is available in its entirety in a machine-readable form in the online journal. A portion is shown here for guidance regarding its form and content.)

Table A2

The Morphological Parameters at 4.5 µm for the 2349 S4G Galaxies

<table>
<thead>
<tr>
<th>Name</th>
<th>Gini</th>
<th>M_{20}</th>
<th>C_{22}</th>
<th>A</th>
<th>S</th>
<th>E</th>
<th>G_M</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESO011-005</td>
<td>0.47 ± 0.02</td>
<td>−2.23 ± 1.34</td>
<td>0.00 ± 0.78</td>
<td>0.31 ± 0.15</td>
<td>0.13 ± 2.78</td>
<td>0.63 ± 0.04</td>
<td>0.88 ± 0.01</td>
</tr>
<tr>
<td>ESO012-010</td>
<td>0.34 ± 0.01</td>
<td>−1.92 ± 0.17</td>
<td>0.00 ± 0.31</td>
<td>0.37 ± 0.14</td>
<td>0.34 ± 0.06</td>
<td>0.47 ± 0.02</td>
<td>0.56 ± 0.01</td>
</tr>
<tr>
<td>ESO012-014</td>
<td>0.19 ± 0.01</td>
<td>−0.42 ± 0.16</td>
<td>0.00 ± 0.23</td>
<td>0.79 ± 0.04</td>
<td>0.92 ± 1.11</td>
<td>0.12 ± 0.15</td>
<td>0.79 ± 0.00</td>
</tr>
<tr>
<td>ESO013-016</td>
<td>0.45 ± 0.01</td>
<td>−0.90 ± 0.13</td>
<td>0.00 ± 0.37</td>
<td>0.30 ± 0.09</td>
<td>0.18 ± 2.78</td>
<td>0.10 ± 0.05</td>
<td>0.80 ± 0.01</td>
</tr>
<tr>
<td>ESO015-001</td>
<td>0.32 ± 0.02</td>
<td>−1.83 ± 0.39</td>
<td>0.00 ± 0.79</td>
<td>0.33 ± 0.22</td>
<td>0.26 ± 0.11</td>
<td>0.40 ± 0.23</td>
<td>0.68 ± 0.02</td>
</tr>
<tr>
<td>ESO026-001</td>
<td>0.44 ± 0.02</td>
<td>−1.99 ± 0.18</td>
<td>3.54 ± 0.24</td>
<td>0.51 ± 0.05</td>
<td>0.35 ± 0.08</td>
<td>0.07 ± 0.04</td>
<td>0.58 ± 0.01</td>
</tr>
<tr>
<td>ESO027-001</td>
<td>0.58 ± 0.01</td>
<td>−2.46 ± 0.21</td>
<td>0.00 ± 0.47</td>
<td>0.97 ± 0.02</td>
<td>0.09 ± 1.39</td>
<td>0.18 ± 0.05</td>
<td>0.43 ± 0.01</td>
</tr>
<tr>
<td>ESO027-008</td>
<td>0.53 ± 0.01</td>
<td>−0.62 ± 0.20</td>
<td>0.00 ± 0.38</td>
<td>1.00 ± 0.00</td>
<td>0.07 ± 0.09</td>
<td>0.49 ± 0.05</td>
<td>0.66 ± 0.01</td>
</tr>
<tr>
<td>ESO048-017</td>
<td>0.18 ± 0.00</td>
<td>−0.83 ± 0.02</td>
<td>1.70 ± 0.04</td>
<td>0.39 ± 0.01</td>
<td>0.36 ± 5.55</td>
<td>0.04 ± 0.00</td>
<td>0.41 ± 0.00</td>
</tr>
<tr>
<td>ESO054-021</td>
<td>0.42 ± 0.01</td>
<td>−1.12 ± 0.14</td>
<td>3.08 ± 0.19</td>
<td>0.44 ± 0.04</td>
<td>0.35 ± 5.55</td>
<td>0.20 ± 0.05</td>
<td>0.61 ± 0.01</td>
</tr>
</tbody>
</table>

(This table is available in its entirety in a machine-readable form in the online journal. A portion is shown here for guidance regarding its form and content.)

Figure 23

Six morphological parameters as a function of inclination. None of the morphological parameters relate closely to the inclination, not even concentration.

Figure 24

Six morphological parameters as a function of distance. None of the morphological parameters relate closely to the distance, not even smoothness.

Table A3

The Spearman Ranking of the Relation between Inclination or Distance and the Morphological Parameters in Either 3.6 μm or 4.5 μm Images for Our Full Sample

<table>
<thead>
<tr>
<th>Type</th>
<th>C</th>
<th>A</th>
<th>S</th>
<th>M_{20}</th>
<th>G</th>
<th>G_{M}</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6 μm</td>
<td>-0.07 (1.84)</td>
<td>-0.01 (0.29)</td>
<td>0.02 (0.44)</td>
<td>0.04 (1.12)</td>
<td>-0.07 (1.86)</td>
<td>-0.02 (0.58)</td>
</tr>
<tr>
<td>Inclination (°)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance (Mpc)</td>
<td>-0.01 (0.40)</td>
<td>-0.02 (0.63)</td>
<td>-0.01 (0.46)</td>
<td>-0.01 (0.28)</td>
<td>-0.01 (0.40)</td>
<td>0.00 (0.04)</td>
</tr>
<tr>
<td>4.5 μm</td>
<td>-0.06 (1.52)</td>
<td>-0.03 (0.78)</td>
<td>0.02 (0.54)</td>
<td>0.03 (0.92)</td>
<td>-0.05 (1.31)</td>
<td>-0.00 (0.13)</td>
</tr>
<tr>
<td>Inclination (°)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance (Mpc)</td>
<td>-0.01 (0.49)</td>
<td>-0.02 (0.52)</td>
<td>-0.04 (1.31)</td>
<td>0.02 (0.54)</td>
<td>-0.03 (1.07)</td>
<td>-0.03 (0.88)</td>
</tr>
</tbody>
</table>

Note. The absolute z values of significance for each of the Spearman rankings are noted in parentheses.

morphological parameters would be of interest for future searches for lopsidedness. The lopsidedness signal in these morphology parameters is weak in the stellar values as it is in atomic hydrogen (Holwerda et al. 2011c).

References
