Development of phosphinimine-sulfonate ligands for late metal catalysis.

Suisheng Shang 1966-
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

Recommended Citation
https://doi.org/10.18297/etd/1312

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.
DEVELOPMENT OF PHOSPHINIMINE-SULFONATE LIGANDS FOR LATE METAL CATALYSIS

By

Suisheng Shang
B.E., Central South University of Technology
M.Med., Guangxi Medical University
M.S., University of Louisville

A Dissertation
Submitted to the Faculty of the
College of Arts and Sciences of the University of Louisville
in Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

Department of Chemistry
University of Louisville
Louisville, Kentucky

August 2013
DEVELOPMENT OF PHOSPHINIMINE-SULFONATE LIGANDS
FOR LATE METAL CATALYSIS

By

Suisheng Shang
B.E., Central South University of Technology
M.Med., Guangxi Medical University
M.S., University of Louisville

A Dissertation Approved on

August 9, 2013

By the Following Dissertation Committee

Dissertation Director, Prof. Christopher T. Burns

Prof. Craig A. Grapperhaus

Prof. Michael H. Nantz

Prof. Gerold A. Willing
ACKNOWLEDGEMENTS

First I would like to thank my advisor, Prof. Christopher T. Burns, for his professional advising, generous support, and continuous patience through my time in his research group at the University of Louisville.

I would like also to thank my committee members, Prof. Craig A. Grapperhaus, Prof. Michael H. Nantz and Prof. Gerold A. Willing, for their valuable advisory efforts in this dissertation work as well as all other related academic events.

I want to thank all the people who have worked at the Burns Laboratory for their help in my research. Especially, I thank my colleague, Mr. Rajesh Thapa, whose help and cooperation is indispensable in the completion of the dissertation research.

I wish to express my appreciation to the Department of Chemistry at the University of Louisville that has made my dream to study the advanced chemistry a real story.

Finally, I thank my wife, Xian and daughter, Xuan for their love. Without their understanding and companionship, I would have never been here for chemistry.
ABSTRACT

DEVELOPMENT OF PHOSPHINIMINE-SULFONATE LIGANDS
FOR LATE METAL CATALYSIS

Suisheng Shang

August 9, 2013

Transition metal complexes are widely used as homogeneous catalysts mediating a variety of organic reactions, such as σ-bond activation/formation, regio-/enantio-selective reactions, oxygen transfer, homo-/co-polymerization, etc. Among miscellaneous supporting ligands, bidentate ligands bearing a sulfonate donor have drawn considerable attention. Phosphine sulfonate ligands have been successfully developed for neutral palladium alkyls that promote incorporation of polar vinyl monomers into polyethylene chains producing highly linear copolymers. In the past decade, extensively investigated sulfonate ligands are mainly three types, phosphine-sulfonate, NHC-sulfonate, and olate-sulfonate. Phosphine-sulfonate ligands support palladium(II) for catalysis of ethylene copolymerization with polar vinyl monomers. They also support ruthenium(II) and (IV) forming complexes that are catalysts in regioselective alkylation reactions. NHC-sulfonate ligands form copper(I) complexes promoting asymmetric conjugate addition with high enantioselectivity. One olate-sulfonate ligand is known. It can stabilize Ru(II) to form a Ru(II) alkenylidene complex to perform ring closure metathesis (RCM). The literature has shown that sulfonate ligands have unique catalytic properties.
Pursuing enhanced donor capability and tunable electronic and steric properties while retaining the unique catalytic properties of the sulfonate donor, we have developed a series of phosphinimine-sulfonate ligands which employ phosphinimine as a co-donor. The phosphinimine-sulfonate ligands are synthesized in their zwitterionic forms from commercially available toluidine-sulfonic acid and in 7 steps. The synthetic steps include chlorination of sulfonic acid, formation of alkyl sulfonate esters, diazotization of amines, azidation of diazonium salts, formation of phosphazene group via Staudinger reaction, and protonation-deprotection of the phosphazene. The zwitterionic ligands are air-stable and convenient for creation of a ligand library. The desired anionic ligands can be readily generated by deprotonation with sodium hydride. Phosphinimine-sulfonate ligands show good coordination ability with palladium precursors such as (cod)PdMeCl or Py$_2$PdMeCl to form corresponding palladium methyl complexes. Palladium methyl complexes containing triphenyl, methyldiphenyl, di-n-butylphenyl, and tri-n-butylphosphinimine-sulfonate ligands have been synthesized.

A thermal behavior study of the synthesized palladium methyl complexes showed that 2,6-positions of the phosphiniminobenzene rings are subjected to orthopalladation. An ethylene reactivity test showed that phosphinimine sulfonate palladium methyl complexes can oligomerize ethylene forming alkanes and are catalyst candidates for polymerization. A study on the introduction of ortho-bulky groups to maintain proper steric properties required for blocking axial faces of the palladium’s coordination plane in ethylene polymerization and copolymerization will be required to develop the phosphinimine motif further.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ACKNOWLEDGEMENTS</th>
<th>iii</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF SCHEMES</td>
<td>xii</td>
</tr>
</tbody>
</table>

CHAPTER 1 Introduction

1.1 Sulfonate Ligands Related to Late Metal Catalysis... 2
1.2 Phosphinimine Ligands Related to Late Metal Catalysis... 13
1.3 Dissertation Objective... 15

CHAPTER 2 Synthesis of Zwitterionic Phosphiniminium Arenesulfonates

2.1 Introduction... 17
2.2 Results and Discussion... 20
2.3 Conclusions... 47
2.4 Experimental Section... 49

CHAPTER 3 Synthesis and Reactivity of Triphenylphosphinimine-sulfonate Palladium Methyl Pyridine Complex

3.1 Introduction... 82
3.2 Results and Discussion... 84
3.3 Conclusions... 99
3.4 Experimental Section... 100

CHAPTER 4 Synthesis and Reactivity of Alkyl-based Phosphinimine-sulfonate Palladium Methyl Pyridine Complexes

4.1 Introduction... 118
4.2 Results and Discussion...118
4.3 Conclusions...128
4.4 Experimental Section...129

CHAPTER 5 Conclusions ...141

REFERENCES..145
APPENDICES ..152
CURRICULUM VITAE...253
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Tolman cone angles of phosphines</td>
<td>33</td>
</tr>
<tr>
<td>2.2 13C, 1H and 2D NMR data of 36</td>
<td>44</td>
</tr>
<tr>
<td>3.1 13C, 1H and 2D NMR data of 41</td>
<td>88</td>
</tr>
<tr>
<td>3.2 13C, 1H and 2D NMR data of 42</td>
<td>105</td>
</tr>
<tr>
<td>4.1 13C, 1H and 2D NMR data of 45</td>
<td>120</td>
</tr>
<tr>
<td>4.2 Percentages of orthopalladation</td>
<td>124</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Mesomeric structures of sulfonate group</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Bidentate mode of sulfonate group</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Tridentate sulfonate copper (II) complexes</td>
<td>3</td>
</tr>
<tr>
<td>1.4 Three types of sulfonate ligands</td>
<td>4</td>
</tr>
<tr>
<td>1.5 [P^SO]Pd Complexes</td>
<td>7</td>
</tr>
<tr>
<td>1.6 Mesomeric structures of phosphinimine ligands</td>
<td>14</td>
</tr>
<tr>
<td>1.7 Mono and bisphosphinimine ligands and zinc complex</td>
<td>14</td>
</tr>
<tr>
<td>1.8 Phosphinimine-sulfonate ligands and PNSO Pd complex</td>
<td>15</td>
</tr>
<tr>
<td>2.1 Azide precursors</td>
<td>.27</td>
</tr>
<tr>
<td>2.2 1H NMR of 36</td>
<td>43</td>
</tr>
<tr>
<td>2.3 ORTEP plot of 36 and 37</td>
<td>47</td>
</tr>
<tr>
<td>3.1 Two possible isomers of 41</td>
<td>89</td>
</tr>
<tr>
<td>3.2 ORTEP plot of 42</td>
<td>92</td>
</tr>
<tr>
<td>4.1 NOESY correlations in cis-45</td>
<td>121</td>
</tr>
</tbody>
</table>
List of Schemes

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Catalytic cycle of $[P^\text{SO}]\text{Pd}$ complex</td>
<td>5</td>
</tr>
<tr>
<td>1.2 Berry's pseudo-rotation</td>
<td>6</td>
</tr>
<tr>
<td>1.3 Regioselective alkylation</td>
<td>8</td>
</tr>
<tr>
<td>1.4 Regioselective alkylation mechanism</td>
<td>8</td>
</tr>
<tr>
<td>1.5 Regiosesective alkylation by $[P^\text{SO}]\text{Ru(IV)}$</td>
<td>9</td>
</tr>
<tr>
<td>1.6 Catalytic cycle in hydroformylation of 1-hexene</td>
<td>10</td>
</tr>
<tr>
<td>1.7 Enatioselective conjugation addition by $[\text{NHC}^\text{SO}]\text{Cu(I)}$</td>
<td>11</td>
</tr>
<tr>
<td>1.8 Asymmetric allylic addition $[\text{NHC}^\text{SO}]\text{Cu(II)}$</td>
<td>12</td>
</tr>
<tr>
<td>1.9 Ring closure metathesis by $[O^\text{SO}]\text{Ru(II)}$</td>
<td>13</td>
</tr>
<tr>
<td>2.1 Retroanalysis for two synthetic strategies</td>
<td>19</td>
</tr>
<tr>
<td>2.2 Synthesis and complexation of sodium phosphinimine-sulfonate</td>
<td>20</td>
</tr>
<tr>
<td>2.3 Chlorination in 8 hours</td>
<td>22</td>
</tr>
<tr>
<td>2.3a Proposed mechanism of $5\text{-HO}_3\text{SCl}$</td>
<td>23</td>
</tr>
<tr>
<td>2.4 Mechanism for $6\text{-HO}_3\text{SCl}$</td>
<td>23</td>
</tr>
<tr>
<td>2.5 Synthesis of 5</td>
<td>24</td>
</tr>
<tr>
<td>2.6 Synthesis of alkyl toluidine-2-sulfonates</td>
<td>26</td>
</tr>
<tr>
<td>2.7 Synthesis of alkyl 2-azido-5-methylbenzenesulfonate</td>
<td>29</td>
</tr>
</tbody>
</table>
2.8 Synthesis of phosphinimine-sulfonate esters..30
2.9 Mechanism of Staudinger Reaction...32
2.10 Kirsanov Reactions...34
2.11 Isobuty sulfonate cleaved by Bu₄NI...35
2.12 Isobuty sulfonate cleaved by iminium iodide..35
2.13 "BuN₄I to cleave phosphinimine sulfonate ester...36
2.14 Isobutyl sulfate cleaved by piperidine..36
2.15 Piperidine to cleave isobutyl phosphinimine sulfonate.....................................37
2.16 Piperidine to cleave n-propyl phosphinimine sulfonate....................................37
2.17 DABCO to cleave phosphinimine sulfonate ester..38
2.18 Proposed mechanism for DABCO experiments...39
2.19 Hydrogen bonding effect in piperidine experiments ...41
2.20 Pyridinium tetrafluoroborate to cleave phosphinimine sulfonate ester..............41
2.21 Pyridinium tetrafluoroborate to cleave phosphinimine sulfonate ester
 in the presence of pyridine...42
2.22 Synthesis of phosphiniminium-sulfonate..43
2.23 One-pot synthesis of phosphiniminium-sulfonates...46
3.1 P^SO zwitterion reacts with Pd/Ni precursors...82
3.2 Synthesis of [P^SO]PdMeCl...83
3.3 Lutidine replaces chlorine..83
3.4 Synthesis of [P^SO]Pd(lutidine)Me...84
3.5 Phosphinimine-sulfonate to react with (cod)PdMeCl...85
3.6 Generation of sodium phosphinimine-sulfonate...86
3.7 Synthesis of sodium phosphinimine-sulfoante: NaN(TMS)$_2$ as a base.............86
3.8 Synthesis of sodium phosphinimine-sulfoante: NaH as a base.....................87
3.9 Synthesis of complex 41..87
3.10 Proposed mechanism for formation of 41..90
3.11 Synthesis of 41 and 42..91
3.12 Conformational Interchange of 42..92
3.13 Endo and exo orthopalladation...93
3.14 Thermal behavior of 41 and 42...94
3.15 Mechanism of orthopalladation...96
4.1 Synthesis of 45-47..119
4.2 Thermal behavior of 45 and 46...124
4.3 Complexes 42, 45-47: Reactivities and mechanism.................................127
CHAPTER ONE
INTRODUCTION

Transition metal complexes are widely used as homogeneous catalysts mediating a variety of organic reactions, such as σ-bond activation/formation, regio-/enantio-selective reactions, oxygen transfer, homo-/co-polymerization, etc.\(^1\) Compared with heterogeneous catalysis, homogeneous catalysis has the most important advantage in its mechanism study, which rationalizes reaction processes so that reaction selectivity can be realized and product structures can be controlled.\(^2\) In transition metal-mediated catalysis, the metal center plays an important role in catalysts’ability to survive polar environments. Early metals prefer to adopt high oxidation states and intrinsically have high oxophilicity; late metals prefer to be at low oxidation states and have low oxophilicity. As a result, late transition metals have excellent tolerance to heteroatoms. For example, early metal based Ziegler-Natta catalysts are used in polymerization of non-polar olefins, whereas late metal based α-diimine and phosphine-sulfonate complexes are catalysts for copolymerization of polar vinyl monomers.\(^3,4\) In an organometallic catalyst, the most important determinant is its ligand environment which determines catalyst activity and product structures. A transition metal complex ligand environment includes two types of ligands, the spectator and the actor. As a rule, a spectator ligand does not change its structure during catalytic processes but intrinsically defines catalytic reactivity by providing the metal center with proper electronic and steric properties. In
organometallic catalysis, miscellaneous spectator ligands have been developed for reactions. The following discussion is limited to sulfonate and phosphinimine ligands which are related to late transition metal catalysis.

1.1 Sulfonate Ligands Related to Late Metal Catalysis

The sulfonate group is based on a 6-valence sulfur species. In a sulfonate group, the lone pair of electrons on an oxygen atom resonates among the three oxygen atoms through the sulfur π-dπ conjugation (Figure 1.1). This feature relates to Berry’s pseudo-

![Figure 1.1 Mesomeric structures of sulfonate group](image)

rotation, an important concept in ethylene polymerization. The three oxygen atoms may exchange their positions to bind to the metal center, causing isomerization of sulfonate complexes. Since the conjugate acid SO₃H is a strong acid (ArSO₃H, pKa = -6.5), the sulfonate donor is a weak anionic lone pair donor when bound to a transition metal in the monodentate mode. Very few sulfonate complexes, except those using the sulfonate

![Figure 1.2 Bidentate mode of sulfonate group](image)

donor as an actor ligand, are known. Instead, the sulfonate donor has been used in a bidentate ligand mode whose binding strength can be enhanced through the resonance
effect provided by a strong donor like N, P, or O donors (Figure 1.2). Bidentate sulfonate complexes can exist in three complexation fashions, \((\text{Nu, SO}_3)\text{M}\), \((\text{Nu, SO}_3)_2\text{M}\), and \([\text{(Nu, SO}_3)\text{M}]_2\) \((\text{Nu} = \text{N, P, O})\). Bidentate sulfonate ligands coordinate with metal centers to form 5-7 membered rings, of which, the 6 and 7 membered coordinating rings take the puckered conformation. Late transition metals like Pd, Ni, Ru, Rh, Cu, Ag, etc. can form complexes with bidentate sulfonate ligands. Tridentate sulfonate ligands are also known for stabilizing transition metals (Figure 1.3).\(^8\)

Relevant to late metal catalysis, there are three important types of bidentate sulfonate ligands, phosphine-sulfonate \((\text{P}^\text{SO})\) (Figure 1.4, a), NHC-sulfonate \((\text{NHC}^\text{SO})\) (Figure 1.4, b), and olate-sulfonate ligands \((\text{O}^\text{SO})\) (Fig. 1.4, c).\(^9\) In a phosphine-sulfonate ligand, the chelating sulfonate donor works with a neutral coordinating phosphine co-donor to stabilize late metals like Pd(II), Ni(II), Ru(II), Ru(IV), and Rh(I) forming a 6-membered coordination ring.\(^5c,10\) The electronic and steric factors can be tuned through placing different substituents on phosphorus. In an NHC-sulfonate ligand, N-heterocyclic carbene is the neutral lone pair co-donor. NHC-sulfonate ligand can stabilize silver(I) or copper(I) forming a 7-membered coordinative ring.\(^9b\) The electronic and steric factors can be tuned through placing different substituents on a nitrogen atom in the NHC ring. In the olate-sulfonate ligand, the co-donor is an anionic oxido donor.
This ligand stabilizes Ru(II) to form a 6-membered coordinative ring. The electronic and steric factors cannot be tuned through modification to the oxido co-donor. They are reached through modification to another spectator ligand. Phosphine-sulfonate complexes are catalysts for ethylene polymerization and copolymerization, regioselective alkylation and allylation. NHC-sulfonate complexes catalyze enantioselective reactions including chiral conjugation addition, allylic addition, hydroboration, boration, and diboration. The olate-sulfonate complex is a catalyst for olefin metathesis.

Phosphine-sulfonate (P^SO) Ligands

Being a first catalytically significant bidentate sulfonate ligand, P^SO was initially developed by Drent and co-workers as palladium catalysts performing insertion chemistry to form linear copolymers of ethylene and alkyl acrylates. This work is based on an ill-defined P^SO Pd catalyst. The combination of the zwitterionic phosphine-sulfonate ligand (Figure 4a) and a Pd precursor, Pd(dba)\textsubscript{2} or Pd(OAc) can *in situ* generate a (P^SO)Pd complex, which proves active in incorporating alkyl acrylates into polyethylene chains. As is shown in scheme 1.1, the product is an ethylene-initiated, acrylate-terminated random copolymer. P^SO Pd hydride is initially formed by the oxidative addition of Pd to PH bond in the P^SO zwitterion. The catalytic cycle starts by
association and insertion of the ethylene molecule to the Pd-H. Repetition of this step results in a polyethylene chain to grow on Pd, forming a palladium alkyl species

\[
\text{[P^SO]Pd} \xrightarrow{\beta-H \text{ elimination}} [\text{P^SO}PdH] \xrightarrow{x\text{C}_2\text{H}_4} [\text{P^SO}PdP_x] \xrightarrow{n[\text{yC}_2\text{H}_4, \text{MA}]} [\text{P^SO}PdOMe] \xrightarrow{\text{MA 1,2-insertion}} [\text{P^SO}PdP_x] \xrightarrow{n[\text{yC}_2\text{H}_4, \text{MA}]} [\text{P^SO}PdOMe] \xrightarrow{\beta-H \text{ elimination}} [\text{P^SO}PdH] \xrightarrow{x\text{C}_2\text{H}_4} [\text{P^SO}PdP_x] \xrightarrow{n[\text{yC}_2\text{H}_4, \text{MA}]} [\text{P^SO}PdOMe] \xrightarrow{\beta-H \text{ elimination}} [\text{P^SO}PdH] \xrightarrow{x\text{C}_2\text{H}_4} [\text{P^SO}PdP_x] \xrightarrow{n[\text{yC}_2\text{H}_4, \text{MA}]} [\text{P^SO}PdOMe] \xrightarrow{\beta-H \text{ elimination}} [\text{P^SO}PdH] \xrightarrow{x\text{C}_2\text{H}_4} [\text{P^SO}PdP_x] \xrightarrow{n[\text{yC}_2\text{H}_4, \text{MA}]} [\text{P^SO}PdOMe] \xrightarrow{\beta-H \text{ elimination}} \]

\text{Scheme 1.1 Catalytic cycle of [P^SO]Pd complex}

([P^SO]Pd-P_x). Randomly, methyl acrylate (MA) associates to this species and inserts into the Pd-C bond. Since MA is an unsymmetrical vinyl species, the insertion can be in 1,2- or 2,1-fashion. However, due to a reduced steric repulsion between the migrating group and the substituent on the olefin and a lowered energy barrier, the acrylate unit prefers to insert into the growing polyethylene chain in 1,2-insertion.5c, 9a At the end of catalytic cycling, β-hydride elimination releases the copolymer chain and regenerates the catalyst P^SO Pd hydride species.

P^SO Pd alkyl complexes can take two geometries, cis-isomer and trans-isomer. The cis-isomer reflects the geometry where the alkyl group lies on the side of the phosphine donor, whereas the trans-isomer shows that it is on the side of the sulfonate donor. Because of the strong trans influence of the phosphine functional group, however, the alkyl group is not allowed to stand on its trans position. A cis-isomer is therefore the preferred and stable geometry.11 In ethylene polymerization, both isomers are possible for
chain growth by insertion chemistry. However, because of its more labile character, the *trans*-isomer is preferred over the *cis*-isomer.\(^5b\) This requires a fast equilibrium between the two isomers. The sulfonate group in the P\(^\text{SO}\) ligand plays a unique role in the isomerization process. As is shown in Scheme 1.2, the sulfonate group can use its second oxygen to coordinate the Pd metal center, forming a 5-membered associative intermediate. The two coordinated oxygen atoms can exchange, undergoing the so-called Berry’s pseudo-rotation to result in *cis-trans* isomerization of the complex.\(^5a\) Further studies comparing Pd complexes bearing phosphine-sulfonate, imine-phenolate, and diphosphine ligands showed that the anionic sulfonate can destabilize the κ-chelating mode of the co-monomer like acrylonitrile and increase the population of π-complexes.\(^12\) The sulfonate donor is important in the copolymerization process.

Based on the ill-defined P\(^\text{SO}\) Pd catalyst, well-defined P\(^\text{SO}\) Pd alkyl complexes have been designed and synthesized. Modifications to the P\(^\text{SO}\) Pd complex structures were carried out by changing the alkyl group and labile ligand on the metal and placing different bulk on the phosphorus (Fig. 1.5). In polymerization, the alkyl group (R as in Fig. 1.5) is the initiating carbon source where the polymer chain can grow via insertion of ethylene or vinyl units. R can be CH\(_3\), CH\(_2\)SiMe\(_3\), CH\(_2\)\(^t\)Bu, CH\(_2\)Ph, or Ph.\(^13\) The labile ligand (L as in Fig. 1.5) is used for generation of a coordination open site.
can be an amine base like pyridine, lutidine, or pyridazine, or a phosphine like PPh₃. It can also be an anionic species like the chloride ion. An important observation is that the use of DMSO as a labile ligand can significantly increase the catalyst activity. Steric bulk on phosphorus (R' as in Fig. 1.5) can be realized by placing substituents like Ph, 2-EtPh, 2-MeOPh, 2-EtOPh, 2-PrOPh, and 2-(2,6-MeO₂Ph)Ph. Cyclohexyl group is also a choice for this purpose. Successfully incorporated to polyethylene have been polar vinyl monomers including alkyl acrylates, vinyl acetate, vinyl fluoride, alkyl vinyl ether, vinyl ketone, vinyl cyclohexane, acrylonitrile, vinyl sulfone, styrene derivatives, N-isopropylacrylamide, and N-vinylpyrrolidinone, norbornene derivatives, and allyl monomers. Generally, the catalyst activity is low (< 40 gmmol⁻¹h⁻¹), the incorporation ratios are low (<20% vinyl comonomers) and polymer molecular weight is low (Mₙ<15,000).

In addition to linear copolymerization, regioselective reactions are important applications of phosphine-sulfonate ligands. Arene ruthenium(II) complexes containing a P^SO ligand mediate the sp³ CH bond activation at the 3(C) position of N-protected cyclic aliphatic amines such as N-benzylpyrrolidine facilitating regioselective alkylation with an aldehyde species such as benzaldehyde. As is shown in scheme 1.3, P^SO Ru(II) complex A or B catalyzes the conversion of N-benzylpyrrolidine to C-3 benzylated species (a) at a high conversion ratio 99% with an olefinated species (b) as
the minor. It shows that 88-89% of the 3(C)-alkylated species (a) can be obtained using catalyst A and B. On the phosphorus atom, a phenyl group can be replaced with a tert-butyl group. The catalytic process involves nonoxidative dehydrogenation, C-C bond formation, and hydrogen transfer. As is shown in Scheme 1.4, [P^SO]Ru abstracts hydride to convert amine to a cationic iminium species followed by the formation of azomethine ylide promoted by the ruthenium hydride species. In the presence of acid, the ylide is isomerized to enamine, which can undergo a Michael-type addition with
benzaldehyde forming an enolate intermediate. The following acid-assisted dehydration is supposed to afford a conjugate iminium which can be reduced by ruthenium hydride giving C(3) alkylated amine.10d

PSO ruthenium(IV) complex can mediate O-allylation of \(p\)-MeOC\textsubscript{6}H\textsubscript{4}OH with allyl chloride and C-allylation of indole with allylic alcohols to selectively form branched products (Scheme 1.5).10c In the presence of PSO Ru(IV) catalyst (C), O-allylation of \(p\)-MeOC\textsubscript{6}H\textsubscript{4}OH can be carried out in acetonitrile and dichloromethane to yield 98:2 and 97:3 branched and linear products. Compared to phosphine-carbonate ligand supported complex (D), PSO ruthenium complex (C) shows higher activity (room temperature, no heating necessary) and regioselectivity (higher branched/linear ratio). This demonstrates that the electron deficient sulfonate donor tends to give high reactivity and selectivity. In
the C-allylation of indole, a high selectivity for the branched products can be obtain at a branched/linear ratio 95:5 using catalyst C. Interestingly, “poor regioselectivity” has been observed for carbonyl rhodium(I) featuring a P^SO chelating ligand. The complex catalyzes hydroformylation of 1-hexene to give a mixture primarily consisting of n-septanal (35-60%) and 2-methylhexanal (15-35%) along with a minority of isomerized products 2-hexenes.10f As a rule of thumb, catalysts supported by firmly chelating ligands tend to selectively form linear products.18 In this case, poor regioselectivity can be ascribed to the relatively weak chelating effect of the P^SO ligand – the nature of P^SO
ligand. Based on this important understanding, P^SO ligand has probably lost its chelating state to rhodium metal to allow formation of both linear and branched aldehydes during the catalytic cycle. As is shown in scheme 1.6, hydrogen gas splitting results in O-chelating monodentate sulfonate Rh(I) intermediate. There are two pathways to undergo hydroformylation. On the one hand, monodentate sulfonate Rh(I) undergoes association and migratory insertion of hexane and CO to form linear or branched septanals and regenerates the P,O-chelating bidentate sulfonate Rh(I) catalyst. On the other hand, the sulfonate ligand can be replace by CO to generate the zwitterionic ligand species and RhH(CO)_nL complexes. The later can catalyze the formation of linear or branched septanals.10f

\textit{NHC-Sulfonate (NHC^SO)}

Chiral NHC-sulfonate (NHC^SO) Cu(I) complex derived from a dimeric NHC^SO Ag(I) complex and (CuOTf)_2 catalyzes the asymmetric conjugate addition of organozinc reagents such as Me_2Zn or Ph_2Zn to cyclic \gamma-keto ester creating all-carbon quaternary stereogenic centers in high enantioselectivity (up to 84\% ee) and high efficiency (>98\% yield) (Scheme 1.7).9b This compares to the low enantioselectivity (<30\% ee) and inefficiency (<25\% yield) of its NHC-phenolate analogs. The significant

\textbf{Scheme 1.7 Enantioselective conjugation addition by [NHC^SO]Cu(I)}

\[
\begin{align*}
&\text{Ar} = 2,6-iPrC_6H_3 \\
&\text{2.5 mol\%}
\end{align*}
\]
differences derive from steric and electronic differences between monomeric copper(I) complexes containing NHC-phenolate and NHC-sulfonate. NHC-phenolate ligands chelate in an 8-membered ring, whereas NHC-sulfonate forms Cu(I) complex in a 7-membered ring, which is more geometrically constrained. In addition, sulfonate donor is less basic than the phenolate donor. Similarly, replacement of sulfonate with carbonate donor immediately lowers the enantioselectivity to less than 30% ee. The donor capability is apparently a determinant of selectivity. The chiral NHC^SO Cu(I) complex also promotes hydroboration of styrene derivatives and boration/diboration of terminal alkynes in high regioselectivity (99:1 er and 97:3 er).^{19}

Scheme 1.8 Asymmetric allylic addition by [NHC^SO]Cu(II)

![Scheme 1.8 Asymmetric allylic addition by [NHC^SO]Cu(II)](image)

Cu(II) complex derived from a chiral NHC-sulfonate ligand promotes asymmetric allylic addition, in which vinylaluminum can add to the benzylic position of a styrene derivative forming a vinylated product with 98% enantioselectivity, 98% S_N2' and E
selectivity, and 98% conversion (Scheme 1.8). This compares to the inactivity profiles for its corresponding NHC-phenol and NHC-naphtholate analogs.20

\begin{center}
\textbf{Scheme 1.9 Ring closure metathesis by [OSO]Ru(II)}
\end{center}

\begin{center}
\begin{tikzpicture}
\node [align=center] at (0,0) {EtO\textsubscript{2}C CO \textsubscript{2}Et \xrightarrow{0.5 \text{ mol\% F + G}} EtO\textsubscript{2}C CO \textsubscript{2}Et};
\node [align=center] at (3.5,0) {\text{CDCl}_3, \Delta, 15 \text{ min.}};
\node [align=center] at (7.5,0) {95\%};
\end{tikzpicture}
\end{center}

\textit{Olate-Sulfonate (OSO) Ligands}

One olate-sulfonate (OSO) ligand is known.9c It can stabilize Ru(II) to form a Ru(II) alkenylidene complex to perform ring closure metathesis (RCM). As is shown in scheme 1.9, the di-terminal alkene ester species can be converted to a cyclic alkene species in the presents of OSO Ru(II) alkylidene as a catalyst. The conversion ratio is 95%.

1.2 \textbf{Phosphinimine Ligands Related to Late Metal Catalysis}

Phosphinimines, sp2 nitrogen based ligands are attractive donors in coordination chemistry. Phosphinimines possess a highly polarized P=N bond because of the mesomeric effect (Figure 1.6). It forms a coordinative bond with transition metals and
has tunable electronic and steric properties. In phosphinimine complexes, a dual coordination sphere is present since the steric bulk has been slightly removed from the metal center. The inner sphere can be used for catalytic reaction, whereas the outer sphere provides protection for the inner sphere catalysis. Bidentate phosphinimine ligands are reported to stabilize a wide scope of late transition metal species including Fe(II)/Fe(III), Co(II), Rh(I), Pd(II), Ni(II), Zn(II). Tridentate phosphinimine ligands are known to for palladium and nickel complexes.

Relevant to late metal catalysis, phosphinimine donor is primarily developed for zinc complexes which can promote formation of polylactide via ring open polymerization. The ligand employs dibenzo[b,d]furan as the backbone and has a phosphinimine donor tethered on its 4 position or two on its 4,6-positions constituting bidentate (P=N^O) or tridentate (P=N^O^N=P) chelating mode (Figure 1.7, a and b).
Due to unwanted side reactions such as inter- and intramolecular esterification and chain transfer, P= N^O ligand supported cationic zinc complexes can only form low molecular weight (up to Mn = 5000) polylactide. Some P=N^O^N=P supported zinc complexes are active for polymerization with high molecular weight (up to Mn = 50,000) products. The pincered cationic zinc complex (Figure 1.7, c) shows high activity in polymerization of rac-lactide. At the ambient condition, it can convert 200 equivalents of rac-lactide into polylactide in 50 minutes. The process has a living polymerization character. The mechanism is coordination and insertion polymerization.23g

1.3 Dissertation Objective

In P^SO ligands, the tertiary phosphine moiety provides tunable electronic and steric properties. Triarylphosphines act as σ donors.2 The steric bulk is provided by placing different aryl groups on phosphorus such as phenyl, o-tolyl, o-ethylphenyl, o-propylphenyl, o-anisyl, and o-(2,6-dimethoxy)phenyl groups.10b,16c In the NHC^SO ligands, the NHC moiety works as the source for electronic and steric properties. The imidazole nitrogen atoms donate electrons to increase the donor strength of the singlet carbene. Bulky groups on imidazole’s 3-nitrogen contribute steric bulk required for
catalytic reactivity.9b Pursuing enhanced donor capability and tunable electronic and steric properties while retaining the unique catalytic properties of the sulfonate donor, we have designed and synthesized a series of phosphinimine-sulfonate (PN\(^{\text{SO}}\)) ligands (Figure 1.8, a). As a modification to the P\(^{\text{SO}}\) ligand system, a phosphinimine motif has been built to replace the phosphine functionality. We have already synthesized the palladium complexes (Figure 1.8, b) using discrete PN\(^{\text{SO}}\) ligands and studied their thermal behavior and ethylene reactivity. The development of PN\(^{\text{SO}}\) ligands will be discussed in chapter two. The synthesis and reactivity of phenyl-based PN\(^{\text{SO}}\) Pd complexes will be described in chapter three and that of alkyl-based PN\(^{\text{SO}}\) Pd complexes will be detailed in chapter four.
2.1 Introduction

Bidentate ligands are an important category of ligands supporting organometallic complexes acting as homogeneous catalysts. However, those containing a sulfonate donor are few. Very recently, Drent and co-workers developed phosphine-sulfonate bidentate ligands for palladium catalysts which are capable of incorporating popular vinyl monomers such as methyl acrylate, vinyl acetate, acrylonitrile, etc. into polyethylene chains in high linearity. Based on Drent’s work, some other bidentate ligands containing a sulfonate donor have been designed and synthesized for catalysis in late metal regioselective and enantioselective reactions. For instance, Bruneau and coworkers utilized phosphine-sulfonate ligands to form Ru(II) complexes to mediate the sp^3 CH bond activation at the C(3) position of N-protected cyclic aliphatic amines such as N-benzylpyrrolidine facilitating regioselective alkylation with an aldehyde species such as benzaldehyde. Hoveyda and co-worker have developed N-heterocyclic carbene/sulfonate bidentate ligands which are useful copper catalysts for enantioselective reactions.

Synthesis of phosphinimine-arenesulfonate involves constructing the phosphinimine functionality ortho to a sulfonic acid group. One challenge for this chemistry is that the hydrophilic nature of the sulfonic acid group usually complicates the organic solvent based synthesis. In the synthesis of phosphine-arenesulfonates, the
solubility issue was addressed by Drent and coworkers using a dilithiated species, 2-lithiobenzenesulfonate lithium salt. This allows a manipulation of substitution reaction with diarylmethoxyphosphines \([(2-\text{ROC}_6\text{H}_4)\text{P}(\text{OMe}), \text{R} = \text{Me}, \text{Et}, \text{Pr}]\) in THF with ease. Functionalization of phosphinimine can be achieved through Staudinger, Kirsanov, or Mitsunobu reactions. However, all three types of reactions require amine derivatives as starting materials. The challenge is that an incoming basic group like the amino or imino group can cause compatibility problems with the neighboring acidic group. A common practice to avoid incompatibility between the acidic and the basic groups is to start the synthesis with a 2-halo or 2-nitro sulfonic acid. Protection of the sulfonic acid group with its isobutyl or neopentyl esters allows introduction of an amino group into its ortho position by either amination of the ortho halogen group or reduction of the ortho nitro group. To build an ortho amido unit, Howery and coworkers converted 2-fluorobenzenesulfonic acid to its neopentyl ester for the protection purpose. This allowed them to manipulate the nucleophilic substitution of amine for the fluoro group to form the ortho amino sulfonic acid species, which can be readily amidated. Similarly, when they synthesized the NHC-sulfonate ligands, Hoveyda and coworkers protected 2-bromobenzenesulfonic acid with its isobutyl ester for the manipulation of amination of the ortho bromo group so that a chiral ethylenediamine functionality can be introduced into the ortho position of the sulfonic acid group. Under the protection of the sulfonate ester, nitro group has also been used as an amino precursor in the realization of the ortho amine-sulfonate scaffold. This can be exemplified by the formation of aryl 2-acylaminobenzenesulfonates.

\(p\)-Toluidine-2-sulfonic acid, available commercially, is the most ready-to-go
ortho amine-sulfonate scaffold. This synthon allows us to work on the phosphinimine structure in two ways. For simplicity, can we run the Staudinger reaction without protecting the sulfonic acid group to obtain a phosphinimino-benzenesulfonate sodium salt? This will be similar to Drent’s strategy for the PSO ligand synthesis. Or, should we protect the sulfonic acid group before carrying out the Staudinger reaction to phosphoranylate the ortho amino group? If this is a have-to-do choice, it needs a clean conversion of the ortho amine-sulfonic acid to its sulfonyl chloride for esterification and a neat transformation of the sulfonate esters without touching the ortho basic amine group. The literature shows that p-toluidine-2-sulfonic acid can be chlorinated to its sulfonyl chloride with chlorosulfuric acid. Synthesis of sulfonyl chloride is critical for the protection of the sulfonate group, making the protecting strategy promising. A retroanalysis (Scheme 2.1) illustrates the two synthetic strategies, the sulfonate-unprotected and the sulfonate-protected.

Scheme 2.1 Retroanalysis for two synthetic strategies

Sulfonate-unprotected Strategy

Sulfonate-protected Strategy
2.2 Results and Discussion

Attempted Synthesis of Sodium Phosphinimine-sulfonate

To apply a straightforward synthetic strategy, we attempted to prepare the anionic ligand sodium phosphimine-sulfonate by directly functionalizing sodium toluidine-2-sulfonate. As is shown in Scheme 2.2, toluidine-2-sulfonic acid (1) was converted to sodium toluidine-2sulfonate (2) with a yield of 98%. The deprotonation of the sulfonic acid was performed by boiling 1 in diluted aqueous solution of NaOH. Compound 2 was diazotized with NaNO₂ and H₂SO₄ in water at 0 °C. In the reaction, 20 mol% urea was to destroy the excess nitrous acid (HONO); charcoal to adsorb non-polar impurities; filtration to remove solid trashes. Due to its solubility in water, the diazonium bisulfate salt stayed in the filtrate. The obtained aqueous diazonium bisulfate salt (2-N₂⁺HSO₄⁻) was subjected to azidation with NaN₃ in water at 0 °C to form sodium 2-azido-5-methylbenzenesulfonate (3). Azide 3 was isolated in low yield (20-50%) and contained water. In anhydrous THF, the Staudinger reaction of 3 with PPh₃ was
run to afford sodium 2-(triphenylphosphiniminino)-5-methylbenzenesulfonate (4) in 86% yield.25a Crude 4 was a white solid and further treated with hexanes-benzene, 3:1 to remove impurities. Based on 31P NMR, 4 was completely free of excess starting triphenylphosphine and a reaction by-product triphenylphosphine oxide. However, other non-interpretable impurities were observed in the 1H NMR spectrum. Also surprising to us, all proton resonances, as well as the 31P resonance for the phosphinimine peak at $\delta_P = 2.8$ ppm, were broadened. Any solvent effect was excluded by running 1H and 31P NMR experiments with different deuterated solvents such as dichloromethane-d_2, chloroform-d, and THF-d_8.

Complexation of 4 was attempted by reacting it with (cod)PdCl$_2$ in CH$_2$Cl$_2$ in the presence of pyridine. An orange precipitate was isolated from the reaction. Unfortunately, the 1H NMR was more complicated than expected even though the 31P NMR showed one single peak and we were unable to obtain a well characterized [NPSO]PdCl(py) complex (4a).

Development of Zwitterionic Phosphiniminium-Sulfonates

Alternately, we developed a synthetic route involving protection and deprotection the sulfonic acid group.32 It includes 5 steps: 1) chlorination of the starting toluidine-2-sulfonic acid to its sulfonyl chloride; 2) esterification to form alkyl sulfonates; 3) conversion of the sulfonate ester protected amines to diazonium salts for azidation; 4) $P=N$ double bond formation to prepare the sulfonate ester protected phosphinimine; 5) deprotection of the phosphinimine-sulfonate esters to produce zwitterionic phosphiniminium-sulfonate. The synthesis is successful and provides clean ligands in the
form of zwitterion. Basing on this success, we also developed a one-pot synthetic route, a combination of step 4 and 5. It proves an efficient and versatile pathway for a facile access to the proligand library.

Preparation of Toluidine-2-sulfonyl Chloride

Toluidine-2-sulfonic acid (1) is commercially available chemical. As is mentioned in the introduction, it can be converted to its sulfonyl chloride by chlorination with chlorosulfuric acid (ClSO$_3$H) with the ortho-amine untouched. A 1933 patent shows that the reaction was performed by dissolving 1 part of the sulfonic acid 1 in 5 parts of ClSO$_3$H at 0 °C in 1 hour and heating the solution for 8 hours, followed by quenching the reaction by pouring the hot solution onto a large amount of ice to yield the crude product as a pale yellow solid.29 We tried to reproduce the reaction as described in the patent. However, it gave us a mixture consisting not only the desired monosulfonyl chloride, toluidine-2-sulfonyl chloride (5) and the unwanted disulfonyl chloride, toluidine-2,6-disulfonyl chloride (6) as well (Scheme 2.3). Based on the literature,33 the chlorination process is initiated first by protonation of the anionic sulfonate with 2 equivalents of ClSO$_3$H to generate the ammonium-sulfonyloxonium dichlorosulfate intermediate (7) (Scheme 2.3a). The nucleophilic attack on the sulfonyloxonium sulfur by the chloride
anion that is released from the S=O double bond formation produces the protonated species of 5 (5-HO₃SCl) and sulfuric acid. The neutral species 5 is resulted from the quenching workup. Understandably, the 5 position of 5-HO₃SCl is reluctant in reactivity due to the presence of electron withdrawing group ortho-NH₃⁺. But long time exposure to hot ClSO₃H may have largely increased the reactivity of this position. Mechanistically, we proposed that in an extended heating environment, another equivalent of ClSO₃H reacted with 5-HO₃SCl via the electrophilic aromatic substitution to form the σ-complex.
(8) (Scheme 2.4). Intramolecular lone pair rearrangement extruded an HCl to form intermediate 9. The 4th equivalent of ClSO$_3$H performed the reaction showing in Scheme 2.3 to chlorinate 9 to 6-HO$_3$SCl, which could be neutralized to the disulfonyl chloride 6 in the quenching workup.

With this understanding, we reinvestigated the reaction by performing it in different reaction times, 2, 4, 6, and 8 hours. Because of the symmetrical structure of 6, 1H NMR spectra were used for its differentiation from 5. 1H NMR spectra showed that the 6- and 8-hour reactions contained 6 in a significant amount. The 4-hour reaction contained very little 6. The best is the 2-hour reaction and there are no seeable peaks of 6 on the 1H NMR spectrum. Optimally, the chlorination of toluidine-2-sulfonic acid (1) can be run by dissolving the starting 1 in ClSO$_3$H in 1 hour at 0 °C and heating the solution to 80 °C for 2 hours (Scheme 2.5). After the reaction is quenched with ice, the sulfonyl chloride (5) can precipitate out as a yellow solid. The product can be dried in the vacuum oven at 40 °C. A typical scale is of 4 grams and with a yield of 80%.

Scheme 2.4 Mechanism for 6-HO$_3$SCl
Synthesis of Alkyl Toluidine-2-sulfonates

In literature, neopentyl and isobutyl sulfonate esters are most encountered protecting groups. Neopentyl sulfonates are usually formed by esterification of the neopentyl alcohol with a sulfonyl chloride species and can tolerate a variety of robust reagents including Grinard reagent like vinyl-MgBr, CrO₃, NBS/benzoyl peroxide, H₂/RaNi, DIBAL, NaI, aqueous NaOH or HBr, HONH₂, and NaH. The cleavage can be completed by heating the neopentyl sulfonate ester in the presence of tetramethylammonium iodide (Me₄NI) in a polar aprotic solvent like DMF at 160 °C for 16 hours. Isobutyl sulfonates are also available from the esterification of the corresponding isobutyl alcohol with a sulfonyl chloride species and can survive reagents like SOCl₂, TFA, NaBH₄, H₂/Pd, etc. The protective groups can be readily cleaved with Bu₄NI. The deprotection is usually manipulated in acetone and by heating to 55 °C for 12 hours. In addition to these two sulfonates, candidate protecting groups widely screened include isopropyl, n-butyl, difluoroethyl, hexafluoroisopropyl, trifluoroethyl, and α-(trifluoromethyl)benzyl, phenyl, tetrahydropyran-2-methyl, 3-methyl-3-oxetane-methyl groups. Deprotecting conditions are 1) 1M NaI in acetone refluxing for 16 hours; 2) 20% piperidine in DMF at room temperature for 16 hours; 3) 0.3 M NaN₃ in DMSO at 70 °C for 16 hours; 4) excess Fe(0) in 2:2:1 EtOH/HOAc/H₂O at 50 °C for 1 hour; 5) 9:1 CH₂Cl₂/2 M NaOH in MeOH at room temperature for 16 hours; 6) 48% HBr refluxing.
for 2 hours, and 7) 0.1 M BBr₃ in CH₂Cl₂ at room temperature for 2 hours. These protecting groups displays different abilities to tolerate different conditions. To reach our chemistry, we looked for a proper protecting group which is compatible with the subsequent reactions including diazotization, azidation, and Staudinger reaction and whose cleavage condition does not affect the phosphinimine group. For this purpose, we successfully prepared alkyl esters including neopentyl, isobutyl, n-butyl, and n-propyl sulfonates. We also attempted to make more robust esters like methyl and allyl sulfonates but did not obtain them as isolated products due to their thermal instability.

The synthesis of neopentyl, isobutyl, n-butyl, and n-propyl toluidine-2-sulfonates (10-13) were carried out by sulfonylation of the corresponding alkyl alcohols with the sulfonyl chloride (5) in CH₂Cl₂ in the presence of 1.2 equivalents of DABCO as a proton scavenger (Scheme 2.6). A pure sulfonate ester can be obtained by running the reaction mixture through a silica gel plug. The typical yield is above 80% at a 2-4 gram product scale. The characterization of 10-13 has been finished using ¹H NMR. In comparison to 5, aliphatic signals demonstrate the introduction of alkyl groups. Reminiscent of sulfonate ester bond formation, the neopentyl sulfonate 10 gave a singlet
at δ_H = 3.63 ppm; the isobutyl sulfonate 11 a doublet at δ_H = 3.77 ppm; the n-butyl and n-propyl sulfonates 12 and 13 triplets at δ_H = 3.97 ppm. All esters had a broad singlet around δ_H = 4.80 ppm with a 2H integration number, showing that the ortho-amino group was innocent during the esterification.

Synthesis of Alkyl 2-Azido-5-methylybenzenesulfonates

Azides are useful reagents for a couple of organic transformations. N-Heterocyclic carbene (NHC) can couple with an aryl or alkyl azide species to form imidazole-2-triazene compounds which are monomers for polytriazene. Azides provides access to aza-ylide reagents by performing the Staudinger reaction with triphenylphosphine. Through aza-ylides, some important functionalities like amine and amide can be realized. However, azide chemistry is infamous for its explosive potential. Due to formation of diazidomethane, combination of sodium azide and dichloromethane can result in explosion. For the laboratory safety, converting the nucleophilic inorganic azide to an electrophilic organic one is a strategy for the manipulation of this chemistry. Following Sharpless’ “Rule of Six” and the mechanism of diazotransfer proposed by Wong, different research groups have developed three types of stable azide precursors including triflyl azide (14), imidazole-1-sulfonyl azide (15), and benzotriazole-1-sulfonyl azide (16) (Figure 2.1). These azide precursors are sulfonyl azide derivatives and their delivery of the azide unit is catalyzed by CuSO_4.

With this
knowledge, we attempted using the azide precursors 15 and 16 to convert the sulfonate ester protected amine (10) to its azide derivative. Unfortunately, none of them worked for unknown reasons.

In the foregoing context, when we made the sodium 2-azido-5-methylbenzenesulfonylate (3) we followed Blackburn’s method to add the NaN₃ solution into the filtrate of the diazonium bisulfate salt (2⁻N₂⁺HSO₄⁻). The problem here is that the filtrate contained unreacted H₂SO₄. Excess strong acid could acidify NaN₃ to hydrazoic acid (HN₃). Since HN₃ is a highly volatile, toxic and explosive liquid, its generation and evolution causes stringent health and safety issues. Further, the formation of the volatile HN₃ lowers the concentration of the nucleophile NaN₃ in water. This explains why the yield of azide-sulfonate was low (20-50%). Clearly, an HN₃ free synthetic methodology will avoid these adverse factors. Instead of the aqueous filtrate, an isolated diazonium salt species, if used for the azidation step, is apparently one choice. For isolation, the diazonium salt must be stable in air enough to allow at least a simple separation manipulation like filtration. In the Schiemann reaction, as we know, heating dry diazonium fluoroborate is a method to fluorinate an aromatic ring. Diazonium fluoroborate is precipitated from water and usually stable to allow being dried in air. Specific to our reaction portfolio, a quick filtration to wash away the excess acid will help address the above mentioned problems. A stable diazonium fluoroborate is usually
prepared by diazotizing an arylamine with sodium nitrite and HCl, then precipitating the diazonium chloride with HBF₄ or NaBF₄. In our practice, we directly employed HBF₄ as the acid to run the diazotization reaction. After completion of diazotization, we performed a quick filtration in air and washed the collected orange solid with water, ethanol and water to remove the residual HBF₄. The obtained wet diazonium fluoroborate salt was suspended into cold water for the azidation with NaN₃. In this way, we have successfully prepared neopentyl, isobutyl, n-butyl, and n-propyl toluene-4-azide-3-sulfonates (17-20) at reasonably high yields (53-83%) (Scheme 2.7). All the azide-sulfonates 17-20 are ether soluble and worked up by extracting the aqueous mixture with ether. The neopentyl azide-sulfonate 17 is isolated as a yellow solid and the others 18-20 as brown oils.

Scheme 2.7 Synthesis of alkyl 2-azido-5-methylbenzenesulfonates

To verify the structure of the isolated diazonium fluoroborate, we took a ¹H NMR spectrum for 11-N₂⁺BF₄⁻ using dms-o-d₆ as the deuterated solvent. The three aromatic signals had shifted to downfield in comparison to its amine-sulfonate 11. The diazonium fluoroborate 11-N₂⁺BF₄⁻ turned to a red solution and decomposed shortly after the NMR experiment. The azide-sulfonates 17-20 were characterized by interpreting ¹H and ¹³C NMR spectra. Compared with their corresponding amine-sulfonates 11-13, 17-20 did not
show peaks around \(\delta_H = 4.80 \text{ ppm} \). This demonstrates the success of the conversion of the NH\(_2\) group to the N\(_3\) group. Aliphatic signals matched the corresponding neopentyl, isobutyl, n-butyl, and n-propyl substituents. This demonstrated all alkyl sulfonates survived the acidic condition (HONO and HBF\(_4\)) during the diazotization and the nucleophilic condition (NaN\(_3\)) during the azidation.

Synthesis of Alkyl 2-(Triaryl/alkyldiarylphosphiniminino)-5-methylbenzenesulfonates

As is shown in Scheme 2.8, alkyl 2-azido-5-methylbenzenesulfonates 17-20 were successfully converted to different phosphinimine-sulfonates (21-26) by Staudinger reaction using a specific triarylphosphine like triphenylphosphine (Ph\(_3\)P) and tri-p-tolylphosphines ((p-tolyl)\(_3\)P) or alkyldiarylphosphine like methyldiphenylphosphine (MePh\(_2\)P) in 1.05-1.2 equivalents.\(^3\) Respectively, 17 formed neopentyl 2-(triphenylphosphiniminino)-5-methylbenzenesulfonate (21); 18 formed isobutyl 2-(triphenylphosphiniminino)-5-methylbenzenesulfonate (22), 2-(tri-p-tolylphosphiniminino)-5-methylbenzenesulfonate (25) and 2-
(methyl diphenyl phosphinimino-5-methyl benzenesulfonate (26); 19 formed n-butyl 2-
(triphenyl phosphinimino)-5-methyl benzenesulfonate (23); and 20 formed n-propyl 2-
(triphenyl phosphinimino)-5-methyl benzenesulfonate (24). The reactions were pretty
straightforward. All were run in toluene at room temperature and completed in 4 hours.
Yields are good to excellent except that for 26. After completion, a typical Staudinger
reaction resulted in a green solution. In the workup, toluene was removed and the
resulting viscous residue was treated with hexanes-benzene 3:1 to remove the unreacted
phosphine and the by-product phosphine oxide. This yields the desired solid product at a
relatively high yield for each of phosphinimine-sulfonates (21-23, 25, and 26). In the case
of 26, derived from MePh₂P, the obtained viscous residue was still a viscous state in the
mixture of hexanes-benzene 3:1. This made precipitation of 26 from the solution difficult.
Decantations of the solvents had taken away relatively a large portion of the product. The
actual isolated yield of 26 became low. The tough workup relates to the nature of the
alkyl group in the phosphinimine motif.

The characterization of 21-26 was accomplished by 1H, 31P, and 13C NMR
spectra. 31P chemical shifts are particularly useful in determining product purity.
Typically, a reaction mixture contains the desired phosphinimine-sulfonate, unreacted
phosphine, and by-product phosphine oxide. They have characteristic 31P chemical shifts.
NMR experiments showed that all the phosphinimine-sulfonates (21-26) resonate at 2-3
ppm on 31P NMR spectra. Phosphines have negative chemical shifts, δₚ = -5.0 ppm for
Ph₃P and δₚ = -28.0 ppm for MePh₂P, whereas their oxides have positive chemical shifts,
δₚ = 28.0 ppm for Ph₃PO and δₚ = 30.0 ppm for MePh₂PO. These experimental data for
phosphines and phosphine oxides are identical to those in literature. In addition, 1H
NMR spectra clearly showed the incorporated phosphine units. For phosphinimine-sulfonates 21-24 bearing a Ph₃P=N fragment, two typical sets of doublet of doublets in the aromatic area showed that the 2,6- and 3,5-proton signals were split by both the phenyl proton and the phosphorus nuclei. For phosphinimine-sulfonate 26, the upfield doublet at $\delta_H = 30.0$ ppm demonstrated the presence of a MePh₂P=N unit.

To diversify the steric bulk, we attempted coupling two ortho-bulky phosphines, (o-tolyl)₃P and (1-naphthyl)₃P with isobutyl toluene-4-azide-3-sulfonate 18 via the Staudinger route. We did not obtain desired phosphinimine-sulfonate products from the two ortho-bulky phosphines. Non-reactivity apparently relates to the disfavored steric hindrance from either (o-tolyl)₃P or (1-naphthyl)₃P. Mechanistically, Staudinger reaction is initiated by the nucleophilic attack of triarylphosphine on the terminal nitrogen with partial positive charge (Scheme 2.9). The resulting phosphonium-amide zwitterions (27) ring-closes presumably to form a 4-membered ring intermediate (28), which can undergo 2,2-σ migration to extrude N₂ and form the P=N double bond which can resonate to its aza-ylide structure (29). However, in the case of (o-tolyl)₃P or (1-naphthyl)₃P, too much
steric bulk on P and N atoms can hinder from forming 4-membered intermediate 28, subsequently stop producing the desired phosphinimine structure 29.

The steric bulk of phosphines can be quantitatively described using Toman cone angles. The larger the cone angle, the more hindered the steric bulk of a phosphine species. Steric hindrance is a limit of Staudinger reaction. Therefore, a phosphinimine’s reactivity toward Staudinger reaction can be correlated to its cone angle. Tolman cone angles of some phosphines we are interested are listed in Table 2.1. Among the listed phosphines, \((o\text{-tolyl})_3P\) has the largest cone angle \(\theta = 195^\circ\), therefore it is the most hindered phosphine species and does not react toward Staudinger reaction. \(PPh_3\) and \(MePh_2P\) have relatively small cone angles, they do react toward Staudinger reaction. Predictably, \(Me_2PhP\), whose cone angle is the smallest, should be active in this reaction. Our further investigation also indicates that \(BnPh_2P\) and \(Bn_3P\) are workable phosphines. These three phosphine species will be introduced in later discussion. Currently, \(165^\circ\) \((Bn_3P)\) is the largest cone angle to allow a phosphine to couple with an amine-sulfonate ester via the Staudinger route.

As a ligand to metal, the steric bulk is frequently demanded to be placed at the \textit{ortho} position. For instance, \textit{ortho}-methoxyphenyl is used in P^\text{SO} ligand. In the
ethylene copolymerization with methyl acrylate using P^SO Pd complexes, two ortho-methoxy groups assist suppress the formation of Pd enolate complexes through an intermittent chelating effect to the metal center.9a In the Brookhart α-diimine palladium polymerization, high polymers are possible due to a retarded chain transfer, which is realized by placing two 2,6-diisopropylphenyl groups on the α-diimine scaffold to block the axial faces of the metal center.47 With the expectation to introduce ortho-bulky phosphines into our ligand backbone, we explored Kirsanov reaction.25b Neopentyl and isobutyl toluidine-2-sulfonates (10, 11) were respectively reacted with dibromotriphenylphosphorane (Ph\textsubscript{3}PBr\textsubscript{2}) in the presence of triethylamine in toluene at room temperature (Scheme 2.10). After 16 hours, the desired neopentyl 2-(triphenylphosphinimino-5-methylbenzenesulfonate (21) from the starting amine-sulfonate 10 was isolated as a solid at a 55% yield. However, the other Kirsanov reaction resulted in a 3-component mixture primarily consisting of Ph\textsubscript{3}PO and the starting amine-sulfonate 11. The desired isobutyl 2-(triphenylphosphiniminino)-5-methylbenzenesulfonate (22) was only a minor component in the mixture. The 31P NMR spectrum indicated there were 6% phosphorus nuclei from 22 (δ\textsubscript{P} = 2.2 ppm) and all the
rest from Ph₃PO (δ = 29.0 ppm). The attempted Kirsanov reaction did not show a more promising scenario than did the Staudinger route.

Deprotection of Alkyl 2-(Triphenylphosphiniminino)-5-methylbenzenesulfonates

Sulfonate esters are usually deprotected using iodides such as tetrabutylammonium iodide (Bu₄NI), tetramethylammonium iodide (Me₄NI), N,N-dimethylmethiniminium iodide ([Me₂NCH₂]I), and sodium iodide (NaI).\(^9\)\(^b\),\(^24\),\(^34\)\(^-\)\(^35\) For example, 2 equivalents of Bu₄NI were used to deblock isobutyl sulfonate in the synthesis of nucleoside sulfonate derivatives (Scheme 2.11).\(^35\) Acetone was used as the solvent and the deprotecting reaction was done at 55 °C and in 12 hours. N,N-dimethylmethiniminium iodide, [Me₂NCH₂]I was uniquely selected as a deprotecting reagent in the synthesis of NHC-sulfonate ligands.\(^9\)\(^b\) As shown in Scheme 2.12, [Me₂NCH₂]I played dual roles in the reaction. On the one hand,
the iodide anion worked to cleave the sulfonate ester bond; on the other hand, the N,N-dimethylmethiniminium cation provided a one-carbon unit to cyclize the imidazoline ring. The reaction was run in acetic acid and at 110 °C. In our experiments, we attempted using 2 equivalents of Bu₄NI to deblock isobutyl 2-(triphenylphosphiniminno)-5-methylbenzenesulfonate 22. The experiments were carried out by refluxing 22 in the presence of 2 equivalents of Bu₄NI in three different solvents including benzene, CH₂Cl₂ and THF. None of the three conditions worked (Scheme 2.13). In consideration of potential unwanted aza-Wittig reaction between the substrate and acetone,⁴⁸ we did not select acetone as a solvent in these experiments. This could be one reason for non-

![Scheme 2.13 \(^{11} \text{Bu}_4 \text{I} \) to cleave phosphinimine-sulfonate ester](image)

reactivity. Compared to the substrates showing in scheme 2.11, the steric hindrance arisen from the ortho relationship of the sulfonate and phosphinimine groups may disfavor the reaction.

Piperidine is a nitrogen-based protic amine. Neopentyl sulfonate esters can tolerate piperidine.²⁴,⁴⁹ In literature, it indicated that 6% piperidine in CDCl₃ was able to cleave isobutyl sulfates at room temperature (Scheme 2.14). In 24 hours, a 100%
conversion was observed. Taking this strategy, we tried the deprotection of isobutyl phosphinimine-sulfonate 25 using piperidine as a deprotecting reagent. In a series of NMR experiments, 1 and 3 equivalents of piperidine were used. Two different temperatures, room temperature and 64 °C were tested. After 6 and 24 hours no reactions were observed for all the experiments (Scheme 2.15). As is shown in scheme 2.14, the sulfate substrate reactive toward piperidine is not hindered at the ortho position. In contrast, our phosphinimine-sulfonate is hindered at the ortho position. Steric hindrance is apparently a factor affecting deprotection reactivity. Basing on these observations, we believed that a less bulky, more robust protecting group is necessary for the ease of deprotection. Logically, our deprotection work was moved to using n-propyl phosphinimine-sulfonate as a substrate.
n-Propyl 2-(triphenylphosphiniminino)-5-methylbenzenesulfonate 24 was subjected to deprotecting experiments using two nitrogen bases, the protic piperidine and aprotic DABCO. In the piperidine experiments (Scheme 2.16), different piperidine concentrations in CDCl₃ were used and the temperature was set at 68 °C. Under these conditions, 1 and 2 equivalents of piperidine could cleave the sulfonate ester, but the reactions were slow. To reach above 80% conversion, 5, 10, and 20 equivalents of piperidine are required. During a 4-day experiment, the fastest cleavage of 24 by 20 equivalents of piperidine could be completed within 2 days with the best conversion ratio of [nPrP][NP^SO] (nPrP = N-propylpiperidinium) (30) at 87%. In the cleavage reactions, the employment of 5, 10, 20 equivalents of piperidine caused oxidation of 30 to generate 3%, 9%, and 12% of Ph₃P=O respectively. These data showed that the cleavage by piperidine followed an S_N2 mechanism, i.e., the reaction rate is as a function of piperidine concentration. It deserves to note that the amount of by product Ph₃P=O relates to piperidine concentration but not time. Namely, for a given piperidine concentration, the Ph₃P=O level is constant regardless of reaction time.

<table>
<thead>
<tr>
<th>n</th>
<th>1 day</th>
<th>2 days</th>
<th>3 days</th>
<th>4 days</th>
<th>Ph₃PO (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>31</td>
<td>55</td>
<td>67</td>
<td>80</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>49</td>
<td>74</td>
<td>83</td>
<td>95</td>
<td>9</td>
</tr>
<tr>
<td>20</td>
<td>72</td>
<td>87</td>
<td>90</td>
<td>97</td>
<td>12</td>
</tr>
</tbody>
</table>
In the DABCO experiments, 2 and 5 equivalents of DABCO were used for cleavage of 24. In 2 days, we observed 51% and 70% conversion to [\(n^{\text{Pr}}\text{D}][\text{NP}^\text{SO}]\) (\(n^{\text{Pr}}\text{D} = \text{N-propyl-DABCO}\)) (31) (Scheme 2.17) along with formation of triphenylphosphine oxide, whose content depended not only on DABCO concentration, but also on time. For the 2 equivalent DABCO reaction, 1 day caused 8% Ph\(_3\)P=O; 2 days caused 18% Ph\(_3\)P=O. For the 5 equivalent DABCO reaction, 1 day caused 15% Ph\(_3\)P=O; 2 days caused 28% Ph\(_3\)P=O. Compared with the protic base piperidine, the aprotic base DABCO deblocked the n-propyl sulfonates in a slow fashion but accompanying high level of Ph\(_3\)P=O. What reasons have made the two types of bases different in their reaction profiles?

Scheme 2.17 DABCO to cleave phosphinimine sulfonate ester

<table>
<thead>
<tr>
<th>n</th>
<th>day(s)</th>
<th>31 (%)</th>
<th>Ph(_3)PO (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>32</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>51</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>60</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>70</td>
<td>28</td>
</tr>
</tbody>
</table>
In the DABCO experiments, we believed that decomposition of the sulfonate species (31) after deprotection of the phosphinimine-sulfonate ester 24 resulted in generation of Ph$_3$P=O. Literature shows that sulfonic acid can be an oxidant oxidizing Ph$_3$P to Ph$_3$PO (Scheme 2.18, a). In a separate experiment, we found that heating isobutyl amine-sulfonate (11) in acetonitrile resulted in sultam (32) (Scheme 2.18, b). Sultam is a subliming compound and has been synthesized from toluidine-2-sulfonic acid (1) by Wu, et al. Thus, we proposed a decomposition mechanism involving sultam formation for the cleavage of 24 using DABCO as a nucleophile (Scheme 2.18, c).
this proposed mechanism, the \textit{in situ} formed anionic sulfonate species 31 undergoes nucleophilic attacking on phosphorus, where the P=N double bond can be reduced to P-N single bond generating an amide intermediate (33). Subsequently, the anionic amide attacks the electron positive sulfur to cleave the S-O(P) bond. Rearrangement of lone pair forms a 4-membered ring species, an anionic sultam species (34), releasing the byproduct Ph$_3$PO.

This important understanding led us to rationale that the structural difference between 30 and 31, the existence of proton in 30 not in 31, had made the reactivity of the piperidine experiments different than the DABCO experiments. Unlike the aprotic species 31, the protic species 30 was stabilized by intermolecular hydrogen bonding (Scheme 2.19). The hydrogen bonding effect in 30 must have protected 30 from being further decomposed to 34 and Ph$_3$P=O via the sultam route as is shown in Scheme 18c. In a word, both aprotic and protic bases can cleave the n-propyl phosphinimine- sulfonate ester but behave differently. Protonation is necessary to avoid forming Ph$_3$PO.

![Scheme 2.19 Hydrogen bonding effect in piperidine experiments](image)
Based on these observations, pyridinium tetrafluoborate ([HPy][BF₄]) was chosen to react with 24. The idea was that since pyridine has a lower pKa (5.2) than phosphinimine (~9), [HPy][BF₄] could be able to protonate n-propyl phosphinimine-sulfonate 24 and release free pyridine, which can act as a nucleophile to cleave the ester bond. The \textit{in situ} generated n-propyl phosphiniminium-sulfonate ester intermediate would be stable enough to avoid the proposed sultam route when the sulfonate ester bond was cleaved by the ‘aprotic’ pyridine. Pyridinium tetrafluoborate was prepared by protonating pyridine with tetrafluoboric acid diethyl ether complex in diethyl ether.⁴² In a J. Young tube, pyridinium tetrafluoborate and 24 were combined in a 1:1 ratio and dissolved with deuterated dichloromethane (Scheme 2.20). In 30 minutes, ¹H and ³¹P NMR showed complete protonation of 24 to n-propyl toluene-4-triphenylphosphoniminium-3-sulfonate (35). The ³¹P NMR showed a sharp peak at 25.5 ppm (35), downfield shifted from 2.2 ppm (24). The solution was heated to 44 °C for 24 hours and 88% cleavage was observed. On the ¹H NMR spectrum, a sharp doublet at δₕ = 10.27 ppm demonstrated the formation of a zwitterionic species, toluene-4-
phosphiniminium-3-sulfonate (36). The much downfield shifted chemical shift proves the presence of intramolecular hydrogen bonding and the doublet shows the presence of a germinal P atom ($^3J_{PH} = 9.6$ Hz).52 31P NMR chemical shift for 36 appeared at 31.5 ppm.

To speed up the cleavage, we added 1.5 equivalent of free pyridine to the reaction. The cleavage reached 95% after 8 hours (Scheme 2.21). These NMR based reactions indicated that 1) protonation occurs before cleavage of sulfonate ester bond; 2) in situ generated free pyridine can cleave the sulfonate ester bond; 3) additional pyridine can boost the cleavage. Directed by these NMR scale reactions, a scaled up reaction was run.

A solution of pyridinium tetrafluoroborate and 24 in dichloromethane was refluxed for 16 hours. Purification by ether wash, silica gel chromatography, and precipitation using CH$_2$Cl$_2$-Et$_2$O afforded the zwitterionic species 36 (Scheme 2.22). Compound 36, isolated cleanly, in a 96% yield and on a 1.6 g scale, is stable in air.
Compound 36 had been fully characterized using 1H, 31P, 13C NMR spectra and 2D NMR including HSQC and HMBC. As is shown in the 1H NMR spectra (Figure 2.2), a sharp doublet at $\delta_H = 10.27$ ppm (e) with a coupling constant $J_{PH} = 9.6$ Hz is

![Figure 2.2 1H NMR of 36](image)

<table>
<thead>
<tr>
<th>Position</th>
<th>δ_C (J)</th>
<th>δ_H (J)</th>
<th>HSQC</th>
<th>HMBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>130.8</td>
<td>7.74s</td>
<td>CH</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>135.8</td>
<td></td>
<td>C</td>
<td>H-3</td>
</tr>
</tbody>
</table>
characteristic of the P=NH functionality. The aliphatic region gives only a methyl peak at δ_H = 2.26 ppm (b), showing the deprotection is complete and clean. In the aromatic region, except the toluene backbone (a, c, and d), it is clear the phosphino phenyl groups (f, g, and h) are present in the structure. Their splitting patterns indicate the coupling from both proton and phosphorus nuclei. \(^1\)H and \(^{13}\)C chemical shifts were assigned by aid of HSQC and HMBC (Table 2.2). As shown in Table 2.2, HSQC correlations allowed determination of the multiplicities of C-1(CH), C-3(CH\(_3\)), C-4(CH), C-5(CH), C-9(CH), C-10(CH), and C-11(CH). Quaternary carbons C-8, a doublet which has a uniquely large coupling constant (102.2 Hz), showed the connectivity directly with phosphorus. On HMBC, important correlations of C-2 to H-3, C-6 to H-5, C-7 to NH, and C-8 to NH and H-10 helped assignments of quaternary carbons.
One-Pot Synthesis of Zwitterionic Phosphiniminium-sulfonates

We have clearly demonstrated that triphenylphosphiniminium-sulfonate zwitterion is readily available through a series of synthetic manipulations like protecting the sulfonic acid, preparing the azide derivative, forming P=N double bond via Staudinger reaction, and deprotecting of the sulfonate ester. Our practice showed that, however, running Staudinger reaction to introduce some phosphines other than triarylphosphines frequently encountered difficulty in the workup which significantly lowered the yield of phosphinimine products. For instance, isobutyl 2-(methyldiphenylphosphiniminino)-5-methylbenzenesulfonate (26) was obtained by coupling MePh$_2$P with isobutyl 2-azido-5-methylbenzenesulfonate (18) at a low yield (22%) (Scheme 2.8). For removal of the starting MePh$_2$P and side product MePh$_2$PO, the reaction was treated with 3:1 hexanes-benzene. This work up did very good job in all triarylphosphine-related reactions, but not in this one. The mixture revealed high viscosity. Washing it with any solvent combinations (we tried ether-hexanes 1:3 and ether-benzene too 1:1) would take away too much products. Unfortunately, due to air sensitivity, washing the reaction mixture with certain solvents is the only way to pure products. In the workup of the zwitterions 36, however, we easily obtained a satisfactory yield by chromatographic purification. The big point is the stability of the zwitterionic structure of 36. To simple the workup and obtain a high yield, we developed a one-pot route for the zwitterion synthesis. As is shown in
Scheme 2.23 One-pot synthesis of phosphiniminium-sulfonates

Scheme 2.23, starting with n-propyl toluene-azide-sulfonate 17, one-pot synthesis proceeds in tandem of three steps, phosphine coupling by Staudinger reaction, protonation of phosphinimine with pyridinium fluoroborate, and deprotection of n-propyl sulfonate ester with free pyridine. The Staudinger was performed in toluene. After 4 hours, toluene was removed and the obtained solid residue was dissolved in methylene chloride. Pyridinium fluoroborate and additional free pyridine were introduced. An overnight reflux readily produced the desired phosphiniminium-sulfates (36-40).

Purification was performed using silica gel chromatography. The one-pot synthesis has been successfully applied but not limited to the coupling of phosphines including Ph$_3$P ($\theta = 145^\circ$), MePh$_2$P ($\theta = 136^\circ$), Me$_2$PhP ($\theta = 122^\circ$), BnPh$_2$P ($\theta = 152^\circ$), and Bn$_3$P ($\theta = 165^\circ$).

In this way, zwitterionic 36-40 can be synthesized with good isolated yields (65-70%) from silica gel chromatography.

X-Ray Crystallography of 36 and 37

For understanding the structural features of 36 and 37, X-ray crystallography study was conducted. For X-ray diffraction, single crystal of 36 was grown by slow
diffusion of benzene into a CH₂Cl₂ solution of 36; that of 37 was grown by slow diffusion of pentane into a MeOH solution of 37. The temperature for growing single crystals is at room temperature. Crystals were inspected carefully for their suitability for X-ray crystallography.

ORTEP plots generated from X-Ray crystallographic data, have confirmed the structures of 36 and 37 (Figure 2.3).

![Figure 2.3. ORTEP plots of 36 and 37 (ellipsoids with 50% probability).](image)

2.3 Conclusions

To obtain clean, stable phosphinimine-sulfonate ligands, we designed and practiced two synthetic methods using commercially available toluidine-2-sulfonic acid as the starting material. Targeting sodium phosphinimine-sulfonate, a 4-step synthesis without protection of the sulfonic acid does not successfully furnish a clean product. Taking the strategy of protecting the sulfonic acid group, we converted the starting amine-sulfonic acid to its alkyl esters such as neopentyl, isobutyl, n-butyl, and n-propyl amine-sulfonates for the purpose of protecting group screening. These alkyl amine-
sulfonates were transformed to alkyl azide-sulfonates for the Staudinger reaction to form alkyl phosphinimine-sulfonates. Deprotection experiments showed that neopentyl and isobutyl phosphinimine-sulfonates cannot be deblocked by Bu₄NI and piperidine due to the steric hindrance between the ester group and the bulky phosphinimino group. Further experiments demonstrated that n-propyl sulfonate is the proper protecting group which can accommodate the reaction conditions and the ease of deprotection. Initial deprotection experiments showed that both aprotic base DABCO and protic base piperidine worked to cleave the n-propyl triphenylphosphinimine-sulfonate along with Ph₃PO formation. In the DABCO experiments, the Ph₃PO level is relatively high and depends on the DABCO concentration. In the piperidine experiments, the Ph₃PO level is relatively low and unrelated to the piperidine concentration. To explain the difference between using DABCO and piperidine, we proposed two different mechanisms for them. DABCO cleaved the ester to produce an anionic triphenylphosphinimine-sulfonate species which can form Ph₃PO via a sultam route. However, the anionic triphenylphosphinimine-sulfonate species produced in the piperidine cleavage was stabilized by an intramolecular hydrogen bonding effect from the counter cation piperidinium species. This protected the anionic triphenylphosphinimine-sulfonate species from forming Ph₃PO via the sultam route. As a result, pyridinium fluoroborate was chosen as the deprotecting reagent. Pyridinium fluoroborate played dual roles in the cleavage reaction. It protonated phosphinimine to phosphiniminium and released free pyridine. The phosphiniminium form worked to inhibit the sultam route and the free pyridine cleaved the ester bond. The cleavage provided a zwitterionic ligand triphenylphosphiniminium-sulfonate, which is sufficiently stable in air and can be
purified using silica gel chromatography. For the simplicity and ease of workup in the Staudinger reaction, a one-pot synthetic protocol has been created for zwitterionic phosphiniminium-sulfonates. One pot synthesis is a tandem reaction of Staudinger reaction, protonation, and deprotection. It provides a neat synthetic pathway for proligands from a variety of phosphines including Ph₃P, MePh₂P, Me₂PhP, BnPh₂P, and Bn₃P.

In the study of phosphiniminium-sulfonate proligand synthesis, a new methodology for protecting sulfonic acid groups has been developed. For the first time we successfully employed n-propyl sulfonate as a protecting group and used pyridinium fluoroborate as a deprotecting reagent. Protected by n-propyl sulfonates, sulfonate substrates can cleanly undergo a series of manipulations involving diazotization, azidation, and Staudinger reaction. Compared to commonly encountered neopentyl and isobutyl sulfonate esters, however, n-propyl sulfonates are more facile toward deprotection due to the reduced steric hindrance. Pyridinium tetrafluoroborate is proven to be an efficient deprotecting reagent for cleavage of n-propyl phosphiniminium-sulfonates. We believe that the methodology we developed for protection of sulfonic acid will find its new applications in organic synthesis.

2.4 Experimental Section

General Procedures. All manipulations were performed under N₂ or vacuum using standard Schlenk or high vacuum techniques or in N₂-filled drybox unless otherwise specified. N₂ was purified by passage through columns containing activated molecular
sieves and Q-5 oxygen scavenger. Pentane, hexanes, toluene, benzene, and
dichloromethane were purified by passage through columns of activated 4 Å molecular
sieves. Diethyl ether and tetrahydrofuran were distilled from Na/benzophenone ketyl.
CDCl$_3$ and CD$_2$Cl$_2$ were dried over CaH$_2$ for 24 hours, degassed by freeze-pump-thaw
cycles, and vacuum transferred to a storage vessel. Ethylene (research grade) was
obtained from Matheson and used as received. Chlorosulfonic acid from Alfa Aesar,
toluidine-2-sulfonic acid from TCI America, PPh$_3$, PMePh$_2$, Bu$_4$NI, and NaN$_3$ from
Aldrich, PMe$_2$Ph from Strem, P(C$_6$H$_5$CH$_2$)Ph$_2$ from Acros, and NaN$_2$ from J.T. Baker
were purchased and used as received. 1-Propanol was purchased from Aldrich and
distilled from I$_2$/magnesium granules. Piperidine was obtained from Aldrich and distilled
before using. Dibromotriphenylphosphorane (Ph$_3$PBr$_2$) and pyridinium tetrafluoroborate
([HPy][BF$_4$]) were prepared as described in the literature.51 All other solvents were
purchased from Aldrich and used without further purification.1H, 13C, 31P, 19F, 11B NMR
spectra were recorded in Teflon valve sealed tubes on Varian 400 and 500 spectrometers
at ambient probe temperature unless otherwise indicated.1H and 13C chemical shifts are
reported versus SiMe$_4$ and were determined by reference to the residual 1H and 13C
solvent peaks.31P 19F, and 11B chemical shifts were referenced to external 85% aqueous
H$_3$PO$_4$, CF$_3$COOH, and BF$_3$·Et$_2$O, respectively. All the ligands and their precursors bear
a sulfonated toluidine parental structure which has an atom-labeling scheme as follows:

\[
\begin{align*}
\text{SO}_2X & \quad \text{X} = \text{O, Cl, OR}(R = \text{"Pr, } \text{"Bu, } \text{"Bu, neo-Pn}) \\
\text{Y} & \quad \text{Y} = \text{NH}_2, \text{N}_3, -\text{P=N(H)}-
\end{align*}
\]
2-NH$_2$-5-CH$_3$C$_6$H$_3$SO$_2$Cl (5). To a flask containing ClSO$_3$H (20 mL, 300.89 mmol) cooled to 0 °C, toluidine-2-sulfonic acid (4 g, 21.36 mmol) was added portionwise (This and all other following manipulations in this reaction were performed in air). The reaction mixture was stirred for 1 hour at 0 °C and 2 hours at 80 °C. A brown solution was obtained. The brown solution was quickly poured onto a large amount of crushed ice in a 500 mL Erlenmeyer flask affording a yellow precipitate. The precipitate was then filtered and washed with water (3 x 50 mL) to give 5 as a bright yellow solid (3.08 g, 70%). 1H NMR (CD$_2$Cl$_2$): δ 7.56 (s, 1H, 6-CH$^\beta$), 7.28 (dd, J = 8.0, 1.6, 1H, 4-CH$^\beta$), 6.78 (d, J = 8.0, 1H, 3-CH$^\beta$), 5.30 (bs, 2H, NH$_2$), 2.27 (s, 3H, 5-CH$_3$C$_6$H$_3$). 13C NMR (CD$_2$Cl$_2$): δ 143.5, 138.3, 127.9, 127.3, 125.1, 118.3, 19.7. Anal. Calcd for C$_7$H$_8$ClNO$_2$S: C, 40.88; H, 3.92; N, 6.81. Found: C, 40.56; H, 3.84; N, 6.61.

2-NH$_2$-5-CH$_3$C$_6$H$_3$SO$_2$OCH$_2$C(CH$_3$)$_3$ (10). To a solution of DABCO (1.09 g, 9.44 mmol) and neo-pentyl alcohol (0.69 g, 7.87 mmol) in CH$_2$Cl$_2$ (40 mL), toluidine-2-sulfonyl chloride (1.62 g, 7.87 mmol) was added portionwise at 0 °C. The clear yellow solution rapidly turned turbid. After 30 minutes, the reaction mixture was warmed to 25 °C and stirred for 16 hours, affording a white suspension. The suspension was separated using a silica gel plug (20 g) and CH$_2$Cl$_2$ (200 mL). The fractions (50 mL) were analyzed by UV-Vis, and those that contained the product were combined and dried under vacuum yielding 10 as a greenish solid (1.65 g, 86%). 1H NMR (CDCl$_3$): δ 7.49 (s, 1H, 6-CH$^\beta$), 7.16 (dd, J = 8.5, 2, 1H, 4-CH$^\beta$), 6.66 (d, J = 8.5, 1H, 3-CH$^\beta$), 4.80 (bs, 2H, NH$_2$), 3.63 (s, 2H, CH$_2$C(CH$_3$)$_3$), 2.26 (s, 3H, 5-CH$_3$), 0.91 (s, 9H, CH$_2$C(CH$_3$)$_3$). 13C NMR (CDCl$_3$): δ 143.9, 136.1, 129.9,
126.5, 117.4, 116.5, 79.4, 31.6, 26.0, 20.1. Anal. Calcd for C_{12}H_{19}NO_{3}S: C, 56.01; H, 7.44; N, 5.44. Found: C, 55.88; H, 7.37; N, 5.44.

2-NH_{2}-5-CH_{3}C_{6}H_{3}SO_{2}OCH_{2}CH(CH_{3})_{2} (11). To a solution of DABCO (2.02 g, 17.99 mmol) and 1-propanol (1.38 mL, 14.99 mmol) in CH_{2}Cl_{2} (87 mL), toluidine-2-sulfonyl chloride (3.08 g, 14.99 mmol) was added portionwise at 0 °C. The clear yellow solution rapidly turned turbid. After 30 minutes, the reaction mixture was warmed to 25 °C and stirred for 16 hours, affording a white suspension. The suspension was separated using a silica gel plug (20 g) and CH_{2}Cl_{2} (350 mL). The fractions (50 mL) were analyzed by UV-Vis, and those that contained the product were combined and dried under vacuum yielding 11 as a colorless oil (2.64 g, 72%). ^{1}H NMR (CDCl_{3}): δ 7.49 (s, 1H, 6-CH), 7.16 (d, J = 8.0, 1H, 4-CH), 6.66 (d, J = 8.0, 1H, 3-CH), 4.80 (bs, 2H, NH_{2}), 3.77 (d, J = 6.4, 2H, CH_{2}CH(CH_{3})_{2}), 2.26 (s, 3H, 5-CH_{3}), 1.95 (m, 1H, CH_{2}CH(CH_{3})_{2}), 0.90 (d, J = 6.8, 6H, CH_{2}CH(CH_{3})_{2}). ^{13}C NMR (CDCl_{3}): δ 144.1, 136.3, 130.0, 126.8, 117.7, 116.9, 76.4, 28.2, 20.3, 18.8. Anal. Calcd for C_{11}H_{17}NO_{3}S: C, 54.30; H, 7.04; N, 5.76. Found: C, 54.68; H, 7.37; N, 5.44.

2-NH_{2}-5-CH_{3}C_{6}H_{3}SO_{2}O(CH_{2})_{3}CH_{3} (12). To a solution of DABCO (1.43 g, 12.79 mmol) and 1-buanol (0.98 mL, 10.65 mmol) in CH_{2}Cl_{2} (60 mL), toluidine-2-sulfonyl chloride (5) (2.19 g, 10.65 mmol) was added portionwise at 0 °C. The clear yellow solution rapidly turned turbid. After 30 minutes, the reaction mixture was warmed to 25 °C and stirred for 16 hours, affording a white suspension. The suspension was separated using a silica gel plug (25 g) and CH_{2}Cl_{2} (350 mL). The fractions (50 mL) were analyzed by UV-Vis, and
those that contained the product were combined and dried under vacuum yielding 12 as a colorless oil (2.05 g, 80%). 1H NMR (CDCl$_3$): δ 7.49 (s, 1H, 6-CH), 7.17 (d, J = 8.0, 1H, 4-CH), 6.67 (d, J = 8.0, 1H, 3-CH), 4.81 (bs, 2H, NH$_2$), 4.00 (t, J = 6.4, 2H, CH$_2$CH$_2$CH$_2$CH$_3$), 2.25 (s, 3H, 5-C$_3$H$_3$), 1.64 (m, 2H, CH$_2$CH$_2$CH$_2$CH$_3$), 1.35 (m, 2H, CH$_2$CH$_2$CH$_2$CH$_3$), 0.86 (t, J = 7.6, 3H, CH$_2$CH$_2$CH$_2$CH$_3$).

2-NH$_2$-5-CH$_3$C$_6$H$_5$SO$_2$OCH$_2$CH$_2$CH$_3$ (13). To a solution of DABCO (2.88 g, 25.65 mmol) and 1-propanol (1.6 mL, 21.38 mmol) in CH$_2$Cl$_2$ (112 mL), toluidine-2-sulfonyl chloride (4.40 g, 21.68 mmol) was added portionwise at 0 °C. The clear yellow solution rapidly turned turbid. After 30 minutes, the reaction mixture was warmed to 25 °C and stirred for 16 hours, affording a white suspension. The suspension was separated using a silica gel plug (25 g) and CH$_2$Cl$_2$ (350 mL). The fractions (50 mL) were analyzed by UV-Vis, and those that contained the product were combined and dried under vacuum yielding 13 as a colorless oil (3.98 g, 80%). 1H NMR (CDCl$_3$): δ 7.50 (d, J = 2.0, 1H, 6-CH), 7.17 (dd, J = 8.0, 2.0, 1H, 4-CH), 6.67 (d, J = 8.0, 1H, 3-CH), 4.81 (bs, 2H, NH$_2$), 3.97 (t, J = 6.5, 2H, CH$_2$CH$_2$CH$_3$), 2.25 (s, 3H, 5-CH$_3$), 1.67 (m, 2H, CH$_2$CH$_2$CH$_3$), 0.90 (t, J = 7.0, 3H, CH$_2$CH$_2$CH$_3$), 13C NMR (CDCl$_3$): δ 144.1, 136.3, 130.0, 126.8, 117.7, 116.9, 72.2, 22.4, 20.3, 10.2. Anal. Calcd for C$_{10}$H$_{15}$NO$_3$S: C, 52.38; H, 6.59; N, 6.11. Found: C, 52.77; H, 6.30; N, 6.03.

2-N$_3$-5-CH$_3$C$_6$H$_5$SO$_2$CH$_2$C(CH$_3$)$_3$ (17). (a) Diazotization using H$_2$SO$_4$ as the acid. To a solution of concentrated H$_2$SO$_4$ (1.4 mL) and water (8 mL), 10 (2.06 g, 8.00 mmol) was added. The obtained suspension was cooled to 0 °C (This and all other following manipulations in this reaction
were performed in air). After 15 minutes, a solution of NaNO₂ (0.66g, 9.60 mmol) in water (8 mL) precool ed to 0 °C was added dropwise with vigorous stirring. An orange foam formed immediately. After 1 hour stirring at 0 °C, urea (96 mg, 1.6 mmol) was added. After 15 minutes, charcoal (48 mg) was added. After 15 minutes, the reaction mixture was filtered. The clear colorless filtrate was cooled down to 0 °C. With vigorous stirring, a 0 °C solution of NaN₃ (0.88 g, 13.60 mmol) in water (8 mL) was added dropwise. A white precipitate was observed immediately. The mixture was stirred for 1 hour at 0 °C and 12 hours at 25 °C. The white precipitate was filtered off and dried in a vacuum oven at 35 °C for 12 hours, yielding 17 as a white solid (1.60 g, 71%).

(b) Diazotization using HBF₄ as the acid. To a flask containing 10 (0.71 g, 2.50 mmol) cooled to 0 °C, a mixture of 2 mL water and 0.9 mL HBF₄ (48% aqueous solution) precooled to 0 °C was added (This and all other following manipulations in this reaction were performed in air). After 15 minutes, a solution of NaNO₂ (0.19 g, 2.70 mmol) in water (2 mL) precool ed to 0 °C was added dropwise with vigorous stirring. An orange foam formed immediately. After 20 minutes, the orange foam was filtered and washed with a limited amount of 0 °C water (5 mL), 0 °C ethanol (5 mL), and 0 °C water (5 mL), affording an orange solid. Quickly after filtration, the collected solid was added to a flask containing 5 mL of 0 °C water resulting in an orange suspension. With vigorous stirring, a 0 °C solution of NaN₃ (0.28 g, 4.25 mmol) in water (2 mL) was added dropwise to the orange suspension. An orange precipitate was observed immediately. The mixture was stirred for 1 hour at 0 °C and 1 hour at 25 °C. The reaction mixture was extracted with Et₂O (3 x 25 mL). The organic layers were combined and dried over Na₂SO₄. The Na₂SO₄ was filtered off and the volatiles were removed under vacuum.
affording a brown oil. The oil was separated by column chromatography using silica gel (70 g) and hexanes. The column was eluted with hexanes (200 mL), hexanes-Et₂O 90:10 (200 mL), and hexanes-Et₂O 80:20 (600 mL). The fractions (50 mL) were analyzed by UV-Vis, and those that contained the product were combined and dried under vacuum, yielding 17 as a white solid (0.38 g, 53%). ¹H NMR (CDCl₃): δ 7.80 (s, J = 1.5, 1H, 6-CH), 7.59 (dd, J = 8.0, 1.5, 1H, 4-CH), 7.22 (d, J = 8.0, 1H, 3-CH), 3.75 (s, 2H, CH₂C(CH₃)₃), 2.40 (s, 3H, 5-CH₃C₆H₃), 0.96 (s, 9H, CH₂C(CH₃)₃). ¹³C NMR (CDCl₃): δ 135.3, 134.6, 133.9, 130.8, 125.0, 118.9, 79.3, 30.7, 25.0, 19.7, 14.2. Anal. Calcd for C₁₂H₁₇N₃O₃S: C, 50.87; H, 6.05; N, 14.83. Found: C, 50.98; H, 5.94; N, 14.61.

2-N₃-5-CH₃C₆H₄SO₃CH₂CH(CH₃)₂ (18). To a flask containing 11 (2.00 g, 8.22 mmol) cooled to 0 °C, a mixture of 3 mL water and 3 mL HBF₄ (48% aqueous solution) precooled to 0 °C was added (This and all other following manipulations in this reaction were performed in air). After 15 minutes, a solution of NaNO₂ (0.60 g, 8.63 mmol) in water (3 mL) precooled to 0 °C was added dropwise with vigorous stirring. An orange foam formed immediately. After 20 minutes, the orange foam was filtered and washed with a limited amount of 0 °C water (15 mL), 0 °C ethanol (15 mL), and 0 °C water (15 mL), affording an orange solid. Quickly after filtration, the collected solid was added to a flask containing 7 mL of 0 °C water resulting in an orange suspension. With vigorous stirring, a 0 °C solution of NaN₃ (0.91 g, 13.95 mmol) in water (3 mL) was added dropwise to the orange suspension. An orange precipitate was observed immediately. The mixture was stirred for 1 hour at 0 °C and 12 hour at 25 °C. The solid was filtered off and washed with 0 °C water (3x15 mL), then dried in a vacuum oven at 35 °C for 12 hours, yielding 18 as a yellowish solid (1.93
g, 87%). 1H NMR (CDCl$_3$): δ 7.79 (s, 1H, 6-CH), 7.44 (dd, $J = 8.4$, 0.8, 1H, 4-CH), 7.21 (d, $J = 8.4$, 1H, 3-CH), 3.88 (d, $J = 6.4$, 2H, CH$_2$CH(CH$_3$)$_2$), 2.39 (s, 3H, 5-CH$_3$C$_6$H$_3$), 2.01 (m, 2H, CH$_2$CH(CH$_3$)$_2$), 0.94 (d, $J = 6.8$, 6H, CH$_2$CH(CH$_3$)$_2$). 13C NMR (CDCl$_3$): δ 136.4, 135.5, 134.9, 131.8, 126.1, 119.9, 77.1, 28.1, 20.7, 10.6. Anal. Calcd for C$_{11}$H$_{15}$N$_3$O$_3$: C, 49.06; H, 5.61; N, 15.60. Found: C, 49.30; H, 5.57; N, 15.42.

To a flask containing 12 (2.05 g, 8.42 mmol) cooled to 0 °C, a mixture of 3 mL water and 3 mL HBF$_4$ (48% aqueous solution) precooled to 0 °C was added (This and all other following manipulations in this reaction were performed in air). After 15 minutes, a solution of NaNO$_2$ (0.61 g, 8.84 mmol) in water (3 mL) precooled to 0 °C was added dropwise with vigorous stirring. An orange foam formed immediately. After 20 minutes, the orange foam was filtered and washed with a limited amount of 0 °C water (10 mL), 0 °C ethanol (10 mL), and 0 °C water (10 mL), affording an orange solid. Quickly after filtration, the collected solid was added to a flask containing 6 mL of 0 °C water resulting in an orange suspension. With vigorous stirring, a 0 °C solution of NaN$_3$ (0.93 g, 14.31 mmol) in water (3 mL) was added dropwise to the 0 °C orange suspension. An orange oil was observed immediately. The mixture was stirred for 1 hour at 0 °C and 1 hour at 25 °C. The reaction mixture was extracted with Et$_2$O (3 x 10 mL). The organic layers were combined and dried over Na$_2$SO$_4$. The Na$_2$SO$_4$ was filtered off and the volatiles were removed under vacuum yielding 19 as a brownish oil (1.76 g, 77%). 1H NMR (CDCl$_3$): δ 7.79 (s, 1H, 6-CH), 7.44 (dd, $J = 8.4$, 0.8, 1H, 4-CH), 7.21 (d, $J = 8.4$, 1H, 3-CH), 4.13 (t, $J = 6.4$, 2H,
CH₂CH₂CH₃, 2.40 (s, 3H, 5-CH₃C₆H₅), 1.69 (m, 2H, CH₂CH₂CH₂CH₃), 1.41 (m, 2H, CH₂CH₂CH₂CH₃), 0.89 (t, J = 7.6, 3H, CH₂CH₂CH₂CH₃).

2-N₃-5-CH₃C₆H₅SO₃CH₂CH₂CH₃ (20). To a flask containing 13 (3.98 g, 17.34 mmol) cooled to 0 °C, a mixture of 6 mL water and 6 mL HBF₄ (48% aqueous solution) precooled to 0 °C was added (This and all other following manipulations in this reaction were performed in air). After 15 minutes, a solution of NaNO₂ (1.26g, 18.21 mmol) in water (6 mL) precooled to 0 °C was added dropwise with vigorous stirring. An orange foam formed immediately. After 20 minutes, the orange foam was filtered and washed with a limited amount of 0 °C water (15 mL), 0 °C ethanol (15 mL), and 0 °C water (15 mL), affording an orange solid.

Quickly after filtration, the collected solid was added to a flask containing 12 mL of 0 °C water resulting in an orange suspension. With vigorous stirring, a 0 °C solution of NaN₃ (1.92 g, 29.48 mmol) in water (6 mL) was added dropwise to the 0 °C orange suspension. An orange oil was observed immediately. The mixture was stirred for 1 hour at 0 °C and 1 hour at 25 °C. The reaction mixture was extracted with Et₂O (3 x 20 mL). The organic layers were combined and dried over Na₂SO₄. The Na₂SO₄ was filtered off and the volatiles were removed under vacuum yielding 20 as a brownish oil (3.65 g, 82%).

1H NMR (CDCl₃): δ 7.80 (s, 1H, 6-CH), 7.44 (dd, J = 8.4, 0.8, 1H, 4-CH), 7.21 (d, J = 8.4, 1H, 3-CH), 4.09 (t, J = 6.4, 2H, CH₂CH₂CH₃), 2.40 (s, 3H, 5-CH₃C₆H₅), 1.74 (m, 2H, CH₂CH₂CH₃), 0.96 (t, J = 7.6, 3H, CH₃). 13C NMR (CDCl₃): δ 136.4, 135.6, 134.9, 131.7, 126.2, 119.9, 72.9, 22.4, 20.7, 15.2, 10.0. Anal. Calcd for C₁₀H₁₃N₃O₅S: C, 47.05; H, 5.13; N, 16.46. Found: C, 47.34; H, 5.06; N, 16.22.
2-((C₆H₅)₃P=N)-5-CH₃C₆H₅SO₃CH₂C(CH₃)₃ (21). (a) via Staudinger Reaction. To a solution of PPh₃ (1.78 g, 6.79 mmol) in toluene (15 mL), a solution of 17 (1.60 g, 5.66 mmol) in toluene (15 mL) was added via cannula. After stirring for 4 hours, a white precipitate formed. The solid was filtered and washed with a mixture of 1:3 benzene-hexanes (3 x 15 mL), yielding an off-white solid 21 (2.79 g, 95%). (b) via Kirsanov Reaction. To a solution of 10 (0.26 g, 1.00 mmol) in CH₂Cl₂ (5 mL), a solution of PPh₃Br₂ (0.42 g, 1.00 mmol) in CH₂Cl₂ (5 mL) was added via cannula. Et₃N (0.14 mL, 1.0 mmol) was added. Immediately, a green solution was observed. After stirring for 16 hours, the solution was pumped down and the resulting residue was dissolved in THF (15 mL) to result in a white precipitate. The solid was filtered onto a layer of Celite and washed down with CH₂Cl₂ (15 mL). Evaporation of the CH₂Cl₂ solution afforded a solid, which was dried in a vacuum oven yielding 21 as an off-white solid (0.26 g, 50%). ¹H NMR (CD₂Cl₂): δ 7.83 (m, 6H, 2,6-CH of (C₆H₅)₃P=N-), 7.63 (s, 1H, 6-CH of -C₆H₅SO₃-), 7.55 (m, 3H, 4-CH of (C₆H₅)₃P=N-), 7.48 (m, 6H, 3,5-CH of (C₆H₅)₃P=N-), 6.88 (d, J = 8.4, 1H, 4-CH of -C₆H₅SO₃-), 6.40 (d, J = 8.4, 1H, 3-CH of -C₆H₅SO₃-), 3.61 (s, 2H, CH₂C(CH₃)₃), 2.20 (s, 3H, 5-CH₃ of -C₆H₅SO₃-), 0.81 (s, 9H, CH₂C(CH₃)₃). ³¹P NMR (CD₂Cl₂): δ 2.3. ¹³C NMR (CD₂Cl₂): δ 148.7, 134.6, 132.7 (d, Jpc = 10.1, ortho-CH of (C₆H₅)₃P=N-), 131.9 (d, Jpc = 3.1, para-CH of (C₆H₅)₃P=N-), 131.5 (d, J = 2.3), 130.3 (d, Jpc = 99.9, ipso C of (C₆H₅)₃P=N-), 128.7 (d, Jpc = 12.4, meta-CH of (C₆H₅)₃P=N-), 126.6 (d, J = 24.8), 124.9, 122.7 (d, J = 10.9), 78.9, 30.6, 25.9, 19.9. Anal. Calcd for C₃₀H₃₂NO₃PS: C, 69.61; H, 6.23; N, 2.71. Found: C, 69.27; H, 6.09; N, 2.74.
2-((C₆H₅)₃P=N)-5-CH₃C₆H₃SO₃CH₂CH(CH₃)₂ (22). To a solution of PPh₃ (1.29 g, 4.91 mmol) in toluene (15 mL), a solution of 18 (1.10 g, 4.09 mmol) in toluene (15 mL) was added via cannula. After stirring for 4 hours, a white precipitate formed. The solid was filtered and washed with a mixture of 1:3 benzene-hexanes (3 x 15 mL), yielding an off-white solid 22 (1.84 g, 89%). ¹H NMR (CD₂Cl₂): δ 7.82 (m, 6H, 2,6-CH of (C₆H₅)₃P=N-), 7.63 (s, 1H, 6-CH of -C₆H₃SO₃-), 7.58 (m, 3H, 4-CH of (C₆H₅)₃P=N-), 7.49 (m, 6H, 3,5-CH of (C₆H₅)₃P=N-), 6.89 (d, J = 7.6, 1H, 4-CH of -C₆H₃SO₃-), 6.40 (d, J = 7.6, 1H, 3-CH of -C₆H₃SO₃-), 3.70 (d, J = 6.4, 2H, CH₂CH(CH₃)₂), 2.20 (s, 3H, 5-CH₃ of -C₆H₃SO₃-), 1.81 (m, 2H, CH₂CH(CH₃)₂), 0.78 (d, J = 6.4, 3H, CH₃CH(CH₃)₂).

³¹P NMR (CD₂Cl₂): δ 2.5. ¹³C NMR (CD₂Cl₂): δ 148.6, 134.6, 132.6 (d, J_pc = 10.1, ortho-CH of (C₆H₅)₃P=N-), 131.9 (d, J_pc = 2.3, para-CH of (C₆H₅)₃P=N-), 131.4 (d, J = 3.1), 130.3 (d, J_pc = 100.6, ipso C of (C₆H₅)₃P=N-), 128.7 (d, J_pc = 12.4, meta-CH of (C₆H₅)₃P=N-), 126.6 (d, J = 24.7), 125.1, 122.7 (d, J = 10.8), 75.6, 28.11, 19.9, 18.5.

Anal. Calcd for C₂₉H₃₀NO₃PS: C, 69.17; H, 6.00; N, 2.78. Found: C, 69.06; H, 5.99; N, 2.77.

2-((C₆H₅)₃P=N)-5-CH₃C₆H₃SO₃(CH₂)₂CH₃ (23). To a solution of PPh₃ (2.06 g, 7.84 mmol) in toluene (10 mL), a solution of 19 (1.76 g, 6.53 mmol) in toluene (10 mL) was added via cannula. After 4 hours, a brown solution was observed. The solution was pumped down to give a gluey residue. The residue was treated with 1:3 benzene-hexanes (24 mL), affording a precipitate. The solid was filtered and washed with a mixture of 1:3
benzene-hexanes (3 x 15 mL) and hexanes, yielding an off-white powder 23 (1.95 g, 59%). ¹H NMR (CDCl₃): δ 7.83 (m, 6H, 2,6-CH of (C₆H₅)₃P=N-), 7.68 (s, 1H, 6-CH of -C₆H₃SO₃-), 7.53 (m, 3H, 4-CH of (C₆H₅)₃P=N-), 7.46 (m, 6H, 3,5-CH of (C₆H₅)₃P=N-), 6.86 (d, J = 8.0, 1H, 4-CH of -C₆H₃SO₃-), 6.40 (d, J = 8.0, 1H, 3-CH of -C₆H₃SO₃-), 3.95 (t, J = 6.4, 2H, CH₂CH₂CH₂CH₃), 2.20 (s, 3H, 5-CH₃ of -C₆H₃SO₃-), 1.47 (m, 2H, CH₂CH₂CH₂CH₃), 0.71 (t, J = 7.6, 3H, CH₂CH₂CH₂CH₃). ³¹P NMR (CDCl₃): δ 2.2. ¹³C NMR (CDCl₃): δ 148.7, 134.7, 132.7 (d, JPC = 10.1, ortho-CH of (C₆H₅)₃P=N-), 131.9 (d, JPC = 2.4, para-CH of (C₆H₅)₃P=N-), 131.6 (d, J = 2.4), 130.5 (d, JPC = 100.0, ipso C of (C₆H₅)₃P=N-), 128.7 (d, JPC = 12.3, meta-CH of (C₆H₅)₃P=N-), 126.6 (d, J = 24.0), 124.9, 122.7 (d, J = 10.8), 69.5, 31.0, 20.2, 18.7, 13.5.

2-((C₆H₅)₃P=N)-5-

CH₃C₆H₃SO₃CH₂CH₂CH₃ (24). To a solution of PPh₃ (1.95 g, 7.43 mmol) in toluene (20 mL), a solution of 20 (1.58 g, 6.20 mmol) in toluene (10 mL) was added via cannula. After 4 hours, a white precipitate formed. The solid was filtered and washed with a mixture of 1:3 benzene-hexanes (3 x 15 mL), yielding an off-white solid 24 (1.90 g, 63%). ¹H NMR (CDCl₃): δ 7.83 (m, 6H, 2,6-CH of (C₆H₅)₃P=N-), 7.69 (s, 1H, 6-CH of -C₆H₃SO₃-), 7.53 (m, 3H, 4-CH of (C₆H₅)₃P=N-), 7.46 (m, 6H, 3,5-CH of (C₆H₅)₃P=N-), 6.86 (dd, J = 8.0, 1.6, 1H, 4-CH of -C₆H₃SO₃-), 6.40 (d, J = 8.0, 1H, 3-CH of -C₆H₃SO₃-), 3.91 (t, J = 6.4, 2H, CH₂CH₂CH₃), 2.20 (s, 3H, 5-CH₃ of -C₆H₃SO₃-), 1.52 (m, 2H, CH₂CH₂CH₃), 0.77 (t, J = 7.6, 3H, CH₂CH₂CH₃). ³¹P NMR (CDCl₃): δ 2.3. ¹³C NMR (CDCl₃): δ 148.7, 134.7, 132.7 (d, JPC = 10.1, ortho-CH of (C₆H₅)₃P=N-), 131.9 (d, JPC = 3.1, para-CH of
(C₆H₅)₃P=N), 131.6 (d, J = 2.3), 131.0 (d, Jpc = 154.9, ipso C of (C₆H₅)₃P=N), 128.7 (d, Jpc = 12.4, meta-CH of (C₆H₅)₃P=N), 126.7 (d, J = 24.0), 125.0, 122.6 (d, J = 10.9), 71.2, 22.4, 20.2, 10.1. Anal. Calcd for C₂₈H₂₈NO₃PS: C, 68.69; H, 5.76; N, 2.86. Found: C, 68.53; H, 5.70; N, 2.87.

2-((p-Tolyl)₃P=N)-5-

CH₃C₆H₃SO₂CH₂CH(CH₃)₂ (25). To a solution of (p-tolyl)₃P (1.34 g, 4.40 mmol) in toluene (10 mL), a solution of 18 (1.12 g, 4.19 mmol) in toluene (15 mL) was added via cannula. After stirred for a while at 25 °C, the mixture was heated to 60 °C and stirred for 6 hours to give brown solution. Toluene was removed under vacuum, resulting in a viscous residue. Trituration of this residue twice with 1:3 benzene-hexanes (25 mL) and evaporation of the remaining solvents under vacuum yielded 25 as an white solid (1.69 g, 74%).

¹H NMR (CDCl₃): δ 7.68 (m, 6H, 2,6-CH of (p-tolyl)₃P=N), 7.60 (s, 1H, 6-CH of -C₆H₃SO₂-), 7.29 (m, 6H, 3,5-CH of (p-tolyl)₃P=N), 6.86 (d, J = 8.4, 1H, 4-CH of -C₆H₃SO₂-), 6.41 (d, J = 8.4, 1H, 3-CH of -C₆H₃SO₂-), 3.68 (d, J = 6.8, 2H, CH₂CH₂(CH₃)₂), 2.39 (s, 9H, CH₃ of p-tolyl), 2.19 (s, 3H, 5-CH₃ of -C₆H₃SO₂-), 1.80 (m, 2H, CH₂CH₂(CH₃)₂), 0.79 (d, J = 6.8, 3H, CH₂CH₂(CH₃)₂).

³¹P NMR (CDCl₃): δ 3.1. ¹³C NMR (CDCl₃): δ 149.1, 142.1, 134.5, 132.7 (d, Jpc = 10.8, ortho-CH of (p-tolyl)₃P=N), 131.5 (d, Jpc = 3.1), 129.3 (d, Jpc = 12.4, ortho-CH of (p-tolyl)₃P=N), 127.5 (d, Jpc = 102.2, ipso C of (p-tolyl)₃P=N), 126.5, 124.4, 122.6 (d, Jpc = 10.8), 75.5, 28.1, 21.5, 20.2, 18.8.

2-(CH₃(C₆H₅)₂P=N)-5-CH₃C₆H₃SO₂CH₂CH(CH₃)₂ (26).

To a solution of 2-N₃-5-CH₃C₆H₃SO₂CH₂CH(CH₃)₂ (0.81 g, 3.00
mmol) in toluene (20 mL), MePh₂P (0.59 mL, 3.15 mmol) was added via a syringe. After stirring for 4 hours at 25 °C, the mixture was heated to 60 °C and stirred for 6 hours to give a brown solution. Toluene was removed under vacuum, resulting in a viscous residue. Trituration of this residue twice with 2:1 Et₂O-hexanes (25 mL) and evaporation of the solvent under vacuum yielded 26 as a beige solid (0.29 g, 22%). ¹H NMR (CD₂Cl₂): δ 7.88 (m, 4H, 2,6-CH of -(C₆H₅)₂P=N-), 7.63 (s, 1H, 6-CH of -C₆H₃SO₃-), 7.44-7.58 (m, 6H, 3,5- and 4-CH of -(C₆H₅)₂P=N-)), 6.93 (dd, J = 8.4, 1.6, 1H, 4-CH of -C₆H₃SO₃-), 6.33 (d, J = 8.4, 1H, 3-CH of -C₆H₃SO₃-), 3.81 (d, J = 6.4, 2H, CH₂CH(CH₃)₂), 2.20 (s, 3H, 5-CH₃ of -C₆H₃SO₃-), 2.16 (d, JₚH = 12.8, 3H, -CH₃P=N-), 1.93 (m, 1H, CH₂CH(CH₃)₂), 0.88 (d, J = 6.8, 6H, CH₂CH(CH₃)₂). ³¹P NMR (CD₂Cl₂): δ 2.8. ¹³C NMR (CD₂Cl₂): δ 149.1, 134.7, 132.2, 131.8 (d, JₚC = 2.3, para-CH of -(C₆H₅)₂P=N-), 131.3 (d, JₚC = 10.0, ortho-CH of (C₆H₅)₂P=N-), 128.8 (d, JₚC = 11.6, meta-CH of -(C₆H₅)₂P=N-), 126.8, 126.7(d, JₚC = 50.9, ipso-C of -(C₆H₅)₂P=N-), 124.8, 122.5 (d, J = 13.2), 75.8, 28.2, 19.8, 18.6, 13.7(d, JₚC = 62.0). Anal. Calcd for C₂₄H₂₈NO₃PS: C, 65.29; H, 6.39; N, 3.17. Found: C, 65.55; H, 5.02; N, 2.87.

Attempted Synthesis of [¹⁸Bu₄N] [2-(Ph₃P=N)-5-CH₃C₆H₃SO₃] by Deprotection of 2-(Ph₃P=N)-5-CH₃C₆H₃SO₃¹⁸Bu (22) with [¹⁸Bu₄N][I]

(a) **In Benzene.** To a 100 mL single neck round bottom flask containing two solids 2-(Ph₃P=N)-5-CH₃C₆H₃SO₃¹⁸Bu (22) (504 mg, 1 mmol) and [¹⁸Bu₄N][I] (369 mg, 1 mmol), a H₂O condenser was attached and dry benzene (15 mL) was added via syringe. The mixture was stirred under N₂ and refluxed. After 30 minutes, a brown solution was observed. The reaction was monitored by taking a 0.2 mL aliquot after 4 hours and 12 hours. Each aliquot was placed in a valved NMR tube and the C₆H₆ was removed under
vacuum. The resulting oily residue was redissolved using CD$_2$Cl$_2$ (0.7 mL) which was added via vacuum transfer at -196 °C. The tube was sealed and warmed to 25 °C and shaken to produce a clear light yellow solution. The 1H NMR spectra obtained in CD$_2$Cl$_2$ of the 4 and 12 hour intervals showed only unreacted starting material and no reaction had occurred.

(b) In THF. To a 100 mL single neck round bottom flask containing two solids 2-(Ph$_3$P=N)-5-CH$_3$C$_6$H$_3$SO$_3$Bu (22) (504 mg, 1 mmol) and nBu$_4$NI (369 mg, 1 mmol), a H$_2$O condenser was attached and dry THF (15 mL) was added via syringe. The mixture was stirred under N$_2$ and refluxed for 12 hours, resulting in yellow solution. The reaction was monitored by taking a 0.2 mL aliquot. The aliquot was placed in a valved NMR tube and the THF was removed under vacuum. The resulting oily residue was redissolved using CD$_2$Cl$_2$ (0.7 mL) which was added via vacuum transfer at -196 °C. The tube was sealed and warmed to 25 °C and shaken to produce a clear pale yellow solution. The 1H NMR spectrum obtained in CD$_2$Cl$_2$ showed only unreacted starting material 22 and no reaction had occurred.

Generation of $[^n$PrPip][2-(Ph$_3$P=N)-5-CH$_3$C$_6$H$_3$SO$_3$] ($[^n$PrPip = 1- n-Propylpiperidinium) (30) by Deprotection of 2-(Ph$_3$P=N)-5-CH$_3$C$_6$H$_3$SO$_3$$n$Pr (24) with Piperidine

![Structure](image)

With 1 Equivalent of Piperidine. A valved NMR tube was loaded with 24 (49 mg, 0.1 mmol) and CDCl$_3$ (0.5 mL) was added via vacuum transfer at -196 °C. After flushed with N$_2$ gas, the tube was sealed and warmed to 25 °C and shaken to produce a clear colorless solution. Via a microsyringe, piperidine (10 µL, 0.1 mmol) was added quickly after opening the
valve of the sealed tube. The NMR tube was resealed immediately and subjected to a freeze-pump-thaw cycle. The tube was flushed with N₂ and warmed to 25 °C to produce a clear colorless solution. ¹H and ³¹P NMR spectra established that 30 had not formed. The solution was heated to 64 °C for 5 hours. ¹H and ³¹P NMR spectra established that 30 had not formed. The solution was heated to 68 °C for 24 hours, 48 hours, 68 hours, 90 hours, and 120 hours. ¹H and ³¹P NMR spectra were obtained for each time interval. The integration of ³¹P NMR spectra established that after 24 hours at 68 °C, 4.2% 30 and 1.1% Ph₃PO had formed. It was observed that after 48 hours at 68 °C, 22.7% 30 and 1.7% Ph₃PO had formed; after 68 hours, 54.6% 30 and 3% Ph₃PO had formed; after 90 hours, 55.8% 30 and 2.5% Ph₃PO had formed; after 120 hours, 57.1% 30 and 2.8% Ph₃PO had formed. ¹H and ³¹P NMR data from the 120 hour experiment are as follows: ¹H NMR (CDCl₃): δ 7.71-7.90 (m, 16.1H, 2,6-CH of (C₆H₅)₃P=N- in 24 and 30), 7.26-7.70 (m, 24.3H, 6-CH of -C₆H₃SO₃-, 4-CH of (C₆H₅)₃P=N-, and 3,5-CH of (C₆H₅)₃P=N- in 24 and 30), 6.83 (dd, J = 8.0, 1.2, 1.0H, 4-CH of -C₆H₃SO₃- in 24), 6.72 (dd, J = 8.4, 1.2, 1.5H, 4-CH of -C₆H₃SO₃- in 30) 6.34-6.40 (m, 2.4H, 3-CH of -C₆H₃SO₃- in 24 and 30), 3.86 (t, J = 6.8, 2.0H, CH₂CH₂CH₃ in 24), 2.86 (t, J = 5.6, 4.6H, CH₂CH₂CH₃ in 1-n-propylpiperidinium), 2.35 (bs, 5.1H, NH in piperidine and 1-n-propylpiperidinium), 2.17(d, 7.3H, 5-CH₃ of -C₆H₃SO₃- in 30 and 24), 1.30-1.70 (m, 20.9H, CH₂CH₂CH₃ in 24 and 30; -(CH₂)₅- in piperidine and 1-n-propylpiperidinium), 0.87(t, J = 7.6, 3.9H, CH₂CH₂CH₃ in 30), 0.74(t, J = 7.6, 3H, CH₂CH₂CH₃ in 24). ³¹P NMR (CDCl₃): δ 29.0 (2.8%, Ph₃PO), 22.9 (57.1%, 30), 2.4 (40.1%, 24).

With 2 Equivalents of Piperidine. A valved NMR tube was loaded with 24 (49 mg, 0.1 mmol) and CDCl₃ (0.5 mL) was added via vacuum transfer at -196 °C. After flushed with
N\(_2\) gas, the tube was sealed and warmed to 25 °C and shaken to produce a clear colorless solution. Via a microsyringe, piperidine (20 µL, 0.2 mmol) was added quickly after opening the valve of the sealed tube. The NMR tube was resealed immediately and subjected to a freeze-pump-thaw cycle. The tube was flushed with N\(_2\) and warmed to 25 °C to produce a clear colorless solution. \(^1\)H and \(^{31}\)P NMR spectra established that 30 had not formed. The solution was heated to 64 °C for 5 hours. \(^1\)H and \(^{31}\)P NMR spectra established that 30 had not formed. The solution was heated to 68 °C for 24 hours, 48 hours, 68 hours, 90 hours, and 120 hours. \(^1\)H and \(^{31}\)P NMR spectra were obtained for each time interval. The integration of \(^{31}\)P NMR spectra established that after 24 hours at 68 °C, 12.3% 30 and 2.3% Ph\(_3\)PO had formed. It was observed that after 48 hours at 68 °C, 43.8% 30 and 3.2% Ph\(_3\)PO had formed; after 68 hours, 80.1% 30 and 4.4% Ph\(_3\)PO had formed; after 90 hours, 80.9% 30 and 3.7% Ph\(_3\)PO had formed; after 120 hours, 82.2% 30 and 4.7% Ph\(_3\)PO had formed. \(^1\)H and \(^{31}\)P NMR data from the 120 hour experiment are as follows: \(^1\)H NMR (CDCl\(_3\)): δ 7.74–7.90 (m, 8.0H, 2,6-CH of (C\(_6\)H\(_5\))\(_3\)P=N- in 24 and 30), 7.28–7.70 (m, 11.8H, 6-CH of -C\(_6\)H\(_3\)SO\(_3\)-, 4-CH of (C\(_6\)H\(_5\))\(_3\)P=N-, and 3,5-CH of (C\(_6\)H\(_5\))\(_3\)P=N- in 24 and 30), 6.81 (m, 0.1H, 4-CH of -C\(_6\)H\(_3\)SO\(_3\)- in 24), 6.70 (dd, \(J = 8.4, 1.2, 1.5\)H, 4-CH of -C\(_6\)H\(_3\)SO\(_3\)- in 30), 6.34–6.40 (m, 1.1H, 3-CH of -C\(_6\)H\(_3\)SO\(_3\)- in 24 and 30), 3.84 (t, \(J = 6.8, 2.0\)H, CH\(_2\)CH\(_2\)CH\(_3\) in 24), 2.87 (t, \(J = 5.6, 4.6\)H, CH\(_2\)CH\(_2\)CH\(_3\) in 1-n-propylpiperidinium), 2.34 (bs, 5.1H, NH in piperidine and 1-n-propylpiperidinium), 2.15(bs, 3.6H, 5-CH\(_3\) of -C\(_6\)H\(_3\)SO\(_3\)- in 30 and 24), 1.40–1.70 (m, 18.8H, CH\(_2\)CH\(_2\)CH\(_3\) in 24 and 30; -(CH\(_2\))\(_5\)- in piperidine and 1-n-propylpiperidinium), 0.84(t, \(J = 7.6, 3.0\)H, CH\(_2\)CH\(_2\)CH\(_3\) in 30), 0.74(t, \(J = 7.6, 0.5\)H, CH\(_2\)CH\(_2\)CH\(_3\) in 24). \(^{31}\)P NMR (CDCl\(_3\)): δ 29.0 (4.7%, Ph\(_3\)PO), 15.4 (82.3%, 30), 2.4 (13.0%, 24).
With 5 Equivalents of Piperidine. A valved NMR tube was loaded with 24 (49 mg, 0.1 mmol) and CDCl$_3$ (0.5 mL) was added via vacuum transfer at -196 °C. After flushing with N$_2$ gas, the tube was sealed and warmed to 25 °C and shaken to produce a clear colorless solution. Via a microsyringe, piperidine (50 µL, 0.5 mmol) was added quickly after opening the valve of the sealed tube. The NMR tube was resealed immediately and subjected to a freeze-pump-thaw cycle. The tube was flushed with N$_2$ and warmed to 25 °C to produce a clear colorless solution. 1H and 31P NMR spectra established that 30 had not formed. The solution was heated to 68 °C for 24 hours, 48 hours, 72 hours, and 96 hours. 1H and 31P NMR spectra were obtained for each time interval. The integration of 31P NMR spectra established that after 24 hours at 68 °C, 31.2% 30 and 3.0% Ph$_3$PO had formed. It was observed that after 48 hours at 68 °C, 54.8% 30 and 3.1% Ph$_3$PO had formed; after 72 hours, 67.2% 30 and 3.2% Ph$_3$PO had formed; after 96 hours, 78.3% 30 and 3.2% Ph$_3$PO had formed. 1H and 31P NMR data from the 96 hour experiment are as follows: 1H NMR (CDCl$_3$): δ 7.20-7.90 (m, 21 H, 2,6-CH of (C$_6$H$_5$)$_3$P=N-, 6-CH of -C$_6$H$_3$SO$_3$-, 4-CH of (C$_6$H$_5$)$_3$P=N-, and 3,5-CH of (C$_6$H$_5$)$_3$P=N- in 24 and 30; Ph$_3$PO), 6.65 (d, J = 8.0, 1.0H, 4-CH of -C$_6$H$_3$SO$_3$- in 30), 6.35(d, J = 8.0, 1.0H, 4-CH of -C$_6$H$_3$SO$_3$- in 30), 2.76(bs, 22H), 2.30(bs, 4 H), 2.19 (m, 2.3H), 2.11(s, 3.8H, 5-CH$_3$ of -C$_6$H$_3$SO$_3$- in 30), 1.30-1.70 (m, 43H, CH$_2$CH$_2$CH$_3$ in 24 and 30; -(CH$_2$)$_5$- in piperidine and 1-n-propylpiperidinium), 0.81(m, 3.0H, CH$_2$CH$_2$CH$_3$ in 30), 0.70(m, 0.4H, CH$_2$CH$_2$CH$_3$ in 24). 31P NMR (CDCl$_3$): δ 28.9 (3.2%, Ph$_3$PO), 2.7 (78.3%, 30), 2.2 (18.5%, 24).

With 10 Equivalents of Piperidine. A valved NMR tube was loaded with 24 (49 mg, 0.1 mmol) and CDCl$_3$ (0.5 mL) was added via vacuum transfer at -196 °C. After flushed with N$_2$ gas, the tube was sealed and warmed to 25 °C and shaken to produce a clear colorless
solution. Via a microsyringe, piperidine (100 µL, 1.0 mmol) was added quickly after opening the valve of the sealed tube. The NMR tube was resealed immediately and subjected to a freeze-pump-thaw cycle. The tube was flushed with N₂ and warmed to 25 °C to produce a clear colorless solution. ¹H and ³¹P NMR spectra established that 30 had not formed. The solution was heated to 68 °C for 24 hours, 48 hours and 72 hours. ¹H and ³¹P NMR spectra were obtained for each time interval. The integration of ³¹P NMR spectra established that after 24 hours at 68 °C, 48.7% 30 and 8.3% Ph₃PO had formed. It was observed that after 48 hours at 68 °C, 74.2% 30 and 8.5% Ph₃PO had formed; after 72 hours, 83.2% 30 and 8.8% Ph₃PO had formed. ¹H and ³¹P NMR data from the 72 hour experiment are as follows: ¹H NMR (CDCl₃): δ 7.20-7.90 (m, 33.1H, 2,6-CH of (C₆H₅)₃P=N-, 6-CH of -C₆H₃SO₂-, 4-CH of (C₆H₅)₃P=N-, and 3,5-CH of (C₆H₅)₃P=N- in 24 and 30; Ph₃PO), 6.59 (d, J = 8.0, 1.0H, 4-CH of -C₆H₃SO₂- in 30), 6.30(d, J = 8.0, 1.0H, 4-CH of -C₆H₃SO₂- in 30), 3.30(bs, 1.7H), 2.69(bs, 60H), 2.24(bs, 4.8H), 2.10(s, 3.0H, 5-CH₃ of -C₆H₃SO₂- in 30), 1.30-1.70 (m, 105.1H, CH₂CH₂CH₃ in 24 and 30; - (CH₂)₅- in piperidine and 1-n-propylpiperidinium), 0.76(t, J = 6.8, 3.0H, CH₂CH₂CH₃ in 30), 0.64(t, J = 7.6, 0.3H, CH₂CH₂CH₃ in 24). ³¹P NMR (CDCl₃): δ 28.8 (8.8%, Ph₃PO), 2.1 (8.1%, 24), 1.7 (83.1%, 30).

With 20 Equivalents of Piperidine. A valved NMR tube was loaded with 24 (49 mg, 0.1 mmol) and CDCl₃ (0.5 mL) was added via vacuum transfer at -196 °C. After flushed with N₂ gas, the tube was sealed and warmed to 25 °C and shaken to produce a clear colorless solution. Via a microsyringe, piperidine (200 µL, 2.0 mmol) was added quickly after opening the valve of the sealed tube. The NMR tube was resealed immediately and subjected to a freeze-pump-thaw cycle. The tube was flushed with N₂ and warmed to 25
oC to produce a clear colorless solution. ¹H and ³¹P NMR spectra established that 30 had not formed. The solution was heated to 68 °C for 24 hours, 48 hours and 72 hours. ¹H and ³¹P NMR spectra were obtained for each time interval. The integration of ³¹P NMR spectra established that after 24 hours at 68 °C, 72.2% 30 and 11.6% Ph₃PO had formed. It was observed that after 48 hours at 68 °C, 86.8% 30 and 12.9% Ph₃PO had formed; after 72 hours, 88.0% 30 and 12.0% Ph₃PO had formed. ¹H and ³¹P NMR data from the 72 hour experiment are as follows: ¹H NMR (CDCl₃): δ 7.20-7.90 (m, 34.3H, 2,6-CH of -(C₆H₅)₃P=N-, 6-CH of -C₆H₃SO₃-, 4-CH of (C₆H₅)₃P=N-, and 3,5-CH of (C₆H₅)₃P=N- in 24 and 30; Ph₃PO), 6.49 (d, J = 8.0, 1.0H, 4-CH of -C₆H₃SO₃- in 30), 6.20(d, J = 8.0, 1.0H, 4-CH of -C₆H₃SO₃- in 30), 3.21(bs, 1.7H), 2.58(bs, 60H), 2.17(bs, 5.3H), 2.10(s, 3.0H, 5-CH₃ of -C₆H₃SO₃- in 30), 1.30-1.70 (m, 141.5H, CH₂CH₂CH₃ in 24 and 30; -(CH₂)₃- in piperidine and 1-n-propylpiperidinium), 0.67(t, J = 7.6, 0.3H, CH₂CH₂CH₃ in 30). ³¹P NMR (CDCl₃): δ 28.6 (12.0%, Ph₃PO), 1.3 (88.0%, 30).

Generation of [2-(Ph₃P=NH)-5-CH₃C₆H₅SO₃ⁿPr][BF₄](35) by Protonation of 2-(Ph₃P=N)-5-CH₃C₆H₅SO₃ⁿPr (7) with [PyH][BF₄]. A valved NMR tube was charged with 2-(Ph₃P=N)-5-MeC₆H₅SO₃ⁿPr (24) (49 mg, 0.1 mmol) and pyridinium tetrafluoroborate (16.7 mg, 0.1 mmol), and dry CDCl₃ (0.5 mL) was added by vacuum transfer at -196 °C. The resulting suspension was flushed with N₂ and warmed to 25 °C while being shaken. After 30 minutes, ¹H, ³¹P, ¹¹B, and ¹⁹F NMR spectra were recorded. ¹H and ³¹P NMR spectra showed that 2-(Ph₃P=N)-5-MeC₆H₅SO₃ⁿPr was completely protonated to generate [2-(Ph₃P=NH)-5-MeC₆H₅SO₃ⁿPr][BF₄] (35) and release free pyridine. ¹H NMR (CDCl₃): δ 8.61 (d, J = 3.6, 2H, 2,6-CH of pyr) 7.80 (m, 6H, 2,6-CH...
of (C₆H₅)₃P=N-), 7.71 (m, 5H, 6-CH of -C₆H₃SO₃-, 4-CH of (C₆H₅)₃P=N-, and 4-CH of pyr), 7.29 (m, 2H, 3,5-CH of pyr), 7.13 (d, J = 8.4, 1H, 4-CH of -C₆H₃SO₃-), 6.77 (d, J = 8.4, 1H, 3-CH of -C₆H₃SO₃-), 4.00 (t, J = 6.4, 2H, CH₂CH₂CH₃), 2.28 (s, 3H, 5-CH₃ of -C₆H₃SO₃-), 1.63 (m, 2H, CH₂CH₂CH₃), 0.85 (t, J = 7.6, 3H, CH₂CH₂CH₃). ³¹P NMR (CDCl₃): δ 25.5 (broad).

³¹F NMR (CDCl₃): δ -152.8.

¹¹B NMR (CDCl₃): δ -1.1.

Generation 2-(Ph₃P=NH)-5-CH₃C₆H₃SO₃ Zwitterion (12) by Deprotection of [2-(Ph₃P=NH)-5-CH₃C₆H₃SO₃][BF₄](35).

Without Additional Pyridine. The NMR tube containing 35 generated from 24 by reaction with [PyrH][BF₄] in CDCl₃ was spinned at 25 °C for 19 hours, 24 hours, 48 hours and 96 hours. ¹H and ³¹P NMR spectra were obtained for each time interval. ¹H and ³¹P NMR spectra showed the deprotection had occurred to generate 2-(Ph₃P=NH)-5-MeC₆H₃SO₃ Zwitterion (36). ³¹P NMR spectra established that after 19 hours, 21.6% 36 had formed; after 24 hours, 27.1% 36 had formed; after 48 hours 43.4% 36 had formed; after 96 hours, 63.5% 36 had formed. It needs to note that for an unknown reason, along with time, ³¹P chemical shifts had gradually shifted to downfield from δₚ 25.5 ppm to δₚ 32.2 ppm. ¹H and ³¹P NMR data from the 96 hour experiment are as follows: ¹H NMR (CDCl₃): δ 10.19 (bs, 1.5H, (C₆H₅)₃P=NH-), 8.96 (d, J = 6.4, 3.0H, 2,6-CH of 1-propylpyridinium), 8.62 (d, J = 4.0, 2H, 2,6-CH of pyr), 8.43 (m, 1.4H, 4-CH of 1-propylpyridinium), 8.02 (t, J = 7.2, 3.0H, 3,5-CH of 1-propylpyridinium), 7.70-7.90 (m, 24.0H), 7.55-7.66 (m, 16.0H), 7.42 (m, 3.0H), 7.20 (d, J = 8.4, 1H, 4-CH of -C₆H₃SO₃- in 35), 6.85 (d, J = 8.4, 1H, 3-CH of -C₆H₃SO₃- in 35), 6.79 (d, J = 8.0, 1.5H, 4-CH of -C₆H₃SO₃- in 36), 6.38 (d, J = 8.0, 1H, 3-CH of -C₆H₃SO₃- in 36), 4.59 (t, J = 7.6, 3.0H, CH₂CH₂CH₃ in 1-propylpyridinium),
4.00 (t, $J = 6.8$, 2H, $CH_2CH_2CH_3$ in 35), 2.31 (s, 3H, 5-CH$_3$ of -C$_6$H$_5$SO$_3$ in 35), 2.28 (s, 4.5H, 5-CH$_3$ of -C$_6$H$_5$SO$_3$ in 36), 2.0 (m, 3.0H, $CH_2CH_2CH_3$ in 1-propylpyridinium), 1.63 (m, 2H, $CH_2CH_2CH_3$ in 35), 0.93 (t, $J = 7.2$, 4.5H, $CH_2CH_2CH_3$ in 1-propylpyridinium), 0.85 (t, $J = 7.2$, 3H, $CH_2CH_2CH_3$ in 35). 31P NMR (CDCl$_3$): δ 32.2 (34.4%, 35), 31.5 (63.5%, 36), 29.1 (2.1%, unknown).

With 1.5 equivalents of additional pyridine. A valved NMR tube was charged with 2-(Ph$_3$P=N)-5-MeC$_6$H$_5$SO$_3$Pr (24) (49 mg, 0.1 mmol) and pyridinium tetrafluoroborate (16.7 mg, 0.1 mmol), and dry CDCl$_3$ (0.5 mL) was added by vacuum transfer at -196 °C. The resulting suspension was flushed with N$_2$ and warmed to 25 °C while being shaken. The NMR tube was uncapped. Quickly, pyridine (15 μL, 0.15 mmol) was added. Immediately, the NMR tube was resealed and shaken. The resulting suspension was subjected to a cycle of freeze-pump-thaw and flushed with N$_2$. After 30 minutes, 1H, 31P, 11B, and 19F NMR spectra were recorded. 1H and 31P NMR spectra showed the protonation was complete with partial deprotection, generating 96.2% of 3-n-propoxysulfonyltoluene-4-triphenylphosphiniminium tetrafluoroborate (35) and 3.8% of 36. Characteristically, the phosphazenio proton (P=NH) resonated at $\delta_H = 9.40$ ppm in a broad singlet. 11B and 19F NMR data showed that the anion [BF$_4$] was innocent during the experiment. The NMR tube was heated to 44 °C for 4 and 24 hours. 1H and 31P NMR spectra were collected at each time interval. 1H and 31P NMR spectra showed the deprotection had occurred. 31P NMR spectra established that after 4 hours, 86.1% 36 had formed; after 24 hours, 97.9% 36 had formed. In both cases, the phosphazenio proton (P=NH) resonated at $\delta_H = 10.11$ ppm in a broad singlet, 0.71 ppm downfield shifted relative to that of 35. 1H, 31P, 19F, and 11B NMR data from root temperature experiment are as follows: 1H NMR (CD$_2$Cl$_2$): δ 9.40 (bs, 1H, P=NH), 8.59
was stirred at 25 °C. After stirring for 5 minutes, pyridine (0.45 mL, 5.60 mmol) was added via a syringe to the two solids resulting in a clear solution with small amount of white precipitate which was stirred at 25 °C. After strirring for 5 minutes, pyridine (0.45 mL, 5.60 mmol) was added

2-((C₆H₅)₃P=N)-5-CH₃C₆H₅SO₃ (36). (a) By deprotection of n-propyl 2-(triphenylphosphiniminino)-5-methylbenzenesulfonate (24).

In a dry 100 mL round bottom flask under N₂ equipped with a H₂O condenser, 24 (1.83 g, 3.73 mmol) and pyridinium tetrafluoroborate (0.62 g, 3.73 mmol) were added. Dichloromethane (40 mL) was added via a syringe to the two solids resulting in a clear solution with small amount of white precipitate which was stirred at 25 °C. After strirring for 5 minutes, pyridine (0.45 mL, 5.60 mmol) was added.
syringed into the stirring solution. The clear light green CH₂Cl₂ solution was refluxed for 16 hours. After cooling the reaction to 25 °C, a clear light green solution was observed and the volatiles were removed under vacuum. The resulting gelatinous residue was trituated with Et₂O (40 mL) to afford a tough off-white solid. The solid was separated by column chromatography using silica gel (180 g) and CH₂Cl₂. The column was eluted with CH₂Cl₂ (700 mL), followed by 95:5 CH₂Cl₂-MeOH (1500 mL) and 8:2 CH₂Cl₂-MeOH (1500 mL). The fractions (100 mL) were analyzed by UV-Vis, and those that contained the product were combined and dried under vacuum, affording a white solid. The solid was dissolved in 40 mL CH₂Cl₂ and precipitated with 120 mL Et₂O. Filtration of the precipitate afforded 36 (1.60 g, 96%) as a white solid. (b)Via one-pot synthesis.

To a clear brown solution of 17 (6.09 g, 23.9 mmol) in toluene (80 mL) in a 300 mL Kjeldahl flask PPh₃ (6.57 g, 25.0 mmol) was added dropwise at 25 °C. Effervescence was observed immediately after addition of PPh₃. The solution was stirred for 2 hours and became a clear yellow solution. Removal of the solvent under vacuum afforded a yellow viscous material which was redissolved with CH₂Cl₂ (40 mL). The resulting clear yellow solution was transferred via cannula over to a suspension of pyridinium tetrafluoroborate ([PyrH][BF₄]) (3.98 g, 23.9 mmol) in CH₂Cl₂ (40 mL). The Kjeldahl flask was rinsed with CH₂Cl₂ (40 mL) and the rinsing solution was transferred to the reaction flask via cannula. Pyridine (2.9 mL, 35.8 mmol) was added to the white suspension in CH₂Cl₂ and the reaction mixture was refluxed for 12 hours. After cooling the reaction to 25 °C, a clear pale green solution was observed and the volatiles were removed under vacuum. The resulting viscous residue was treated with CH₂Cl₂ (20 mL) and diethyl ether (100 mL) followed by filtration to give a white solid. The solid was separated by column
chromatography using silica gel (160 g) and CH$_2$Cl$_2$. The column was eluted with CH$_2$Cl$_2$-MeOH 95:5 (2000 mL). The fractions (100 mL) were analyzed by UV-Vis, and those that contained the product were combined and dried under vacuum, affording a white foam. The foam was treated with CH$_2$Cl$_2$ (40 mL) and diethyl ether (80 mL) to afford a white precipitate. Filtration of the precipitate followed by diethyl ether washes (3 x 20 mL) afforded 36 (8.95 g, 84%) as a white powder. 1H NMR (CD$_2$Cl$_2$): δ 10.27 (d, J = 10.0, 1H, (C$_6$H$_5$)$_3$P=NH-), 7.92 (m, 6H, 2,6-CH of (C$_6$H$_5$)$_3$P=NH-), 7.82 (m, 3H, 4-CH of (C$_6$H$_5$)$_3$P=NH-), 7.74 (s, 1H, 6-CH of -C$_6$H$_3$SO$_3$-), 7.67 (m, 6H, 3,5-CH of (C$_6$H$_5$)$_3$P=NH-), 6.82 (dd, J = 8.0, 1.2, 1H, 4-CH of -C$_6$H$_3$SO$_3$-), 6.44 (d, J = 8.0, 1H, 3-CH of -C$_6$H$_3$SO$_3$-), 2.24 (s, 3H, 5-CH$_3$ of -C$_6$H$_3$SO$_3$-). 31P NMR (CD$_2$Cl$_2$): δ 31.6. 13C NMR (CD$_2$Cl$_2$): δ 139.3 (d, J = 8.5), 137.2 (d, J_{PC} = 3.1, para-CH of (C$_6$H$_5$)$_3$P=NH-), 135.8, 135.5 (d, J_{PC} = 10.9, ortho-CH of (C$_6$H$_5$)$_3$P=NH-), 134.1 (d, J = 1.5), 132.2, 132.0 (d, J_{PC} = 13.9, meta-CH of (C$_6$H$_5$)$_3$P=NH-), 130.8, 122.5 (d, J_{PC} = 102.2, ipso C of (C$_6$H$_5$)$_3$P=NH-), 121.0 (d, J = 3.9), 22.2.

Crystal data and structure refinement for 36.

<table>
<thead>
<tr>
<th>Identification code</th>
<th>CCDC 867295</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C${31}$H${28}$N$_3$O$_3$P$_5$S</td>
</tr>
<tr>
<td>Formula weight</td>
<td>525.57</td>
</tr>
<tr>
<td>Temperature</td>
<td>99.95(10) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P 21/n</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>$a = 10.3622(7)$ Å, $\alpha = 90^\circ$. $b = 17.9827(18)$ Å, $\beta = 95.113(4)^\circ$. $c = 14.6795(6)$ Å, $\gamma = 90^\circ$.</td>
</tr>
<tr>
<td>Volume</td>
<td>2724.5(3) Å3</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.281 Mg/m3</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.210 mm$^{-1}$</td>
</tr>
</tbody>
</table>
Single Pot Synthesis of 2-(CH$_3$(C$_6$H$_5$)$_2$P=NH)-5-CH$_3$C$_6$H$_3$SO$_3$ (37). To a clear brown solution of 17 (3.65 g, 14.3 mmol) in toluene (40 mL) in a 200 mL Kjeldahl flask PMePh$_2$ (2.8 mL, 15.0 mmol) was added dropwise at 25 °C. Effervescence was observed immediately after addition of PMePh$_2$. The solution was stirred for 2 hours and became a clear yellow solution.

Removal of the solvent under vacuum afforded a yellow viscous material which was redissolved with CH$_2$Cl$_2$ (40 mL). The resulting clear yellow solution was transferred via cannula over to a suspension of pyridinium tetrafluoroborate ([PyrH][BF$_4$]) (2.39 g, 14.3 mmol) in CH$_2$Cl$_2$ (40 mL). The Kjeldahl flask was rinsed with CH$_2$Cl$_2$ (40 mL) and the rinsing solution was transferred to the reaction flask via cannula. Pyridine (1.8 mL, 21.5 mmol) was added to the white suspension in CH$_2$Cl$_2$ and the reaction mixture was refluxed for 12 hours. After cooling the reaction to 25 °C, a clear pale green solution was observed and the volatiles were removed under vacuum. The resulting viscous residue
was treated with CH₂Cl₂ (20 mL) and diethyl ether (100 mL) followed by filtration to
give a white solid. The solid was separated by column chromatography using silica gel
(160 g) and CH₂Cl₂. The column was eluted with CH₂Cl₂-MeOH 95:5 (2000 mL). The
fractions (100 mL) were analyzed by UV-Vis, and those that contained the product were
combined and dried under vacuum, affording a white foam. The foam was treated with
CH₂Cl₂ (40 mL) and diethyl ether (80 mL) to afford a white precipitate. Filtration of the
precipitate followed by diethyl ether washes (3 x 20 mL) afforded 37 (3.86g, 70%) as a
white powder. ¹H NMR (CD₃OD): δ 7.97 (m, 4H, 2,6-C₆H₄ of CH₃(C₆H₅)₂P=NH-), 7.78
(m, 2H, 4-CH of CH₃(C₆H₅)₂P=NH-), 7.66 (m, 5H, 6-CH of C₆H₃SO₃- and 3,5-CH of
CH₃(C₆H₅)₂P=NH-), 6.96 (dd, J = 8.0, 1.2, 1H, 4-CH of -C₆H₃SO₃-), 6.59 (d, J = 8.0, 1H,
3-CH of -C₆H₃SO₃-), 2.72 (d, J₉H = 14.0, 3H, CH₃P), 2.21 (s, 3H, 5-CH₃ of -C₆H₃SO₃-).
³¹P NMR (CD₃OD): δ 39.0. ¹³C NMR (CD₃OD): δ 136.3 (d, J₉PC = 7.7), 135.0 (d, J₉PC =
3.1, para-CH of CH₃(C₆H₅)₂P=NH-), 134.2, 132.3 (d, J₉PC = 11.6, ortho-CH of
CH₃(C₆H₅)₂P=NH-), 132.0, 131.5, 129.9 (d, J₉PC = 13.9, meta-CH of CH₃(C₆H₅)₂P=NH-),
128.4, 122.2 (d, J₉PC = 101.5, ipso C of CH₃(C₆H₅)₂P=NH-), 120.5 (d, J = 3.9), 19.2, 9.3
H, 5.15; N, 3.67.

Crystal data and structure refinement for 37

<table>
<thead>
<tr>
<th>Identification code</th>
<th>CCDC 867296</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C₂₁H₂₄N₄O₄P₅S</td>
</tr>
<tr>
<td>Formula weight</td>
<td>417.44</td>
</tr>
<tr>
<td>Temperature</td>
<td>99.95(10) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P -1</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 7.9985(4) Å, α = 81.985°, b = 9.9206(10) Å, β = 81.187°, c = 13.1626(9) Å, γ = 74.604°</td>
</tr>
<tr>
<td>Volume</td>
<td>989.72(13) Å³</td>
</tr>
</tbody>
</table>
Z
Density (calculated) 1.401 Mg/m³
Absorption coefficient 0.272 mm⁻¹
F(000) 440
Crystal size 0.36 x 0.22 x 0.21 mm³
Theta range for data collection 3.25 to 27.56°
Index ranges -10≤h≤10, -12≤k≤12, -17≤l≤17
Reflections collected 18333
Independent reflections 4576 [R(int) = 0.0267]
Completeness to theta = 27.56° 99.8 %
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 1.00000 and 0.90148
Refinement method Full-matrix least-squares on F²
Data / restraints / parameters 4576 / 0 / 349
Goodness-of-fit on F² 1.028
Final R indices [I>2sigma(I)] R1 = 0.0315, wR2 = 0.0772
R indices (all data) R1 = 0.0396, wR2 = 0.0806
Largest diff. peak and hole 0.423 and -0.368 e.Å⁻³

Single Pot Synthesis of 2-(((CH₃)₂C₆H₅P=NH)-5-CH₃C₆H₃SO₃ (38).

To a clear brown solution of 17 (2.37 g, 9.26 mmol) in toluene (40 mL) in a 200 mL Kjeldahl flask PMe₂Ph (1.5 mL, 11.1 mmol) was added dropwise at 25 °C. Effervescence was observed immediately after addition of PMe₂Ph. The solution was stirred for 2 hours and became a clear yellow solution. Removal of the solvent under vacuum afforded a yellow viscous material which was redissolved with CH₂Cl₂ (40 mL). The resulting clear yellow solution was transferred via cannula over to a suspension of [PyrH][BF₄] (1.55 g, 9.26 mmol) in CH₂Cl₂ (40 mL). The Kjeldahl flask was rinsed with CH₂Cl₂ (40 mL) and the rinsing solution was transferred to the reaction flask via cannula. Pyridine (1.2 mL, 14.0 mmol) was added to the white suspension in CH₂Cl₂ and the reaction mixture was stirred at 25 °C for 48 hours. A clear pale green solution was observed and the volatiles were removed under vacuum. The resulting viscous residue was treated diethyl ether (4 x 60 mL)

77
followed by filtration to give a light yellow solid. The solid was separated by column chromatography using silica gel (160 g) and CH$_2$Cl$_2$. The column was eluted with CH$_2$Cl$_2$-MeOH 95:5 (500 mL), CH$_2$Cl$_2$-MeOH 90:10 (1000 mL), CH$_2$Cl$_2$-MeOH 80:20 (1000 mL). The fractions (100 mL) were analyzed by UV-Vis, and those that contained the product were combined and dried under vacuum, affording a white solid. The solid was treated with CH$_2$Cl$_2$ (20 mL) and diethyl ether (100 mL) to afford a white precipitate. Filtration of the precipitate followed by diethyl ether washes (3 x 20 mL) afforded 38 (3.86 g, 70%) as a white powder. 1H NMR (CD$_2$Cl$_2$): δ 8.83 (d, 2J$_{PH}$ = 7.6, 1H, P=N), 7.97 (m, 2H, 2,6-C_6H$_5$ of (CH$_3$)$_2$C$_6$H$_5$P=NH$-$), 7.82 (m, 1H, 4-C_6H$_5$ of (CH$_3$)$_2$C$_6$H$_5$P=NH$-$), 7.77 (s, 1H, 6-C_6H$_3$SO$_3$-$), 7.71 (m, 2H, 3,5-$C_6H_3SO_3$-$), 6.97 (dd, J = 8.0, 1.6, 1H, 4-CH of -C$_6$H$_3$SO$_3$-$), 6.59 (dd, J = 8.0, 1.2, 1H, 3-CH of -C$_6$H$_3$SO$_3$-$), 2.72 (d, J_{PH} = 13.6, 6H, (CH$_3$)$_2$P), 2.30 (s, 3H, 5-C_6H$_3$SO$_3$-$). 31P NMR (CD$_2Cl_2$): δ 43.6. 13C NMR (CD$_2Cl_2$): δ 138.9 (d, J_{PC} = 6.2), 135.0 (d, J_{PC} = 3.1, para-CH of (CH$_3$)$_2$C$_6$H$_5$P=NH$-$), 134.8 (d, J_{PC} = 1.6), 131.9 (d, J_{PC} = 3.1), 131.3 (d, J_{PC} = 11.6, ortho-CH of (CH$_3$)$_2$C$_6$H$_5$P=NH$-$), 130.8, 130.2 (d, J_{PC} = 13.2, meta-CH of (CH$_3$)$_2$C$_6$H$_5$P=NH$-$), 128.7, 123.2 (d, J_{PC} = 99.9, ipso C of (CH$_3$)$_2$C$_6$H$_5$P=NH$-$), 120.7 (d, J = 3.8), 20.4, 11.8 (d, J_{PC} = 65.8). Anal. Calcd for C$_{15}$H$_{18}$NO$_3$PS: C, 55.72; H, 5.61; N, 4.33. Found: C, 55.60; H, 5.38; N, 4.06.

Single Pot Synthesis of 2-(C$_6$H$_5$CH$_2$(C$_6$H$_5$)$_2$P=NH)-5-Chloro-1,2,4-benzenetricarboxylic Acid (39). To a white suspension of P(C$_6$H$_5$CH$_2$)Ph$_2$ (2.08 g, 7.53 mmol) in toluene (20 mL) in a 300 mL Kjeldahl flask, added dropwise a yellow solution of 17 (1.83 g, 7.17 mmol) in toluene (20 mL) at 25 °C. The combined mixture became a clear yellow solution immediately. After
stirring for 15 minutes effervescence was observed. The solution was stirred for 4 hours and it remained a clear yellow solution. Removal of the solvent under vacuum afforded a yellow viscous material which was redissolved with CH₂Cl₂ (20 mL). The resulting clear yellow solution was transferred via cannula over to a suspension of pyridinium tetrafluoroborate ([PyrH][BF₄]) (1.29 g, 7.17 mmol) in CH₂Cl₂ (20 mL). The Kjeldahl flask was rinsed with CH₂Cl₂ (2x20 mL) and the rinsing solution was transferred to the reaction flask via cannula. Pyridine (0.9 mL, 10.8 mmol) was added to the white suspension in CH₂Cl₂ and the reaction mixture was refluxed for 12 hours. After cooling the reaction to 25 °C, a clear yellow solution was observed and the volatiles were removed under vacuum. The resulting viscous residue was washed with diethyl ether (4 x 40 mL) to give a yellow gum. The gum was purified by column chromatography using silica gel (80 g) and CH₂Cl₂. The column was eluted with CH₂Cl₂ (200 mL), CH₂Cl₂-MeOH 98:2 (500 mL), CH₂Cl₂-MeOH 95:5 (500 mL), CH₂Cl₂-MeOH 90:10 (500 mL), and CH₂Cl₂-MeOH 80:20 (500 mL). The fractions (100 mL) were analyzed by UV-Vis, and those that contained the product were combined and dried under vacuum, affording a white foam. The foam was treated with CH₂Cl₂ (100 mL) and diethyl ether (300 mL) to afford a white precipitate. Filtration of the precipitate followed by diethyl ether washes (40 mL) afforded 39 (2.17 g, 66%) as a white powder. ¹H NMR ((CD₃)₂SO): δ 9.66 (d, JₚᵥH = 10.4, 1H, -P=NH-), 7.97 (m, 4H, 2,6-CH of -(C₆H₅)₂P=NH-), 7.82 (m, 2H, 4-CH of -(C₆H₅)₂P=NH-), 7.70 (m, 4H, 3,5-CH of -(C₆H₅)₂P=NH-), 7.54 (s, 1H, -CH of C₆H₃SO₃), 7.20-7.28 (m, 3H, 2,6- and 4-CH of -C₆H₃CH₂P=NH-), 7.10 (m, 3,5-CH of -C₆H₃CH₂P=NH-), 6.91 (dd, J = 8.0, 1.6, 1H, 4-CH of -C₆H₃SO₃-), 6.64 (d, J = 8.0, 1H, 3-CH of -C₆H₃SO₃-), 5.00 (d, JₚᵥH = 14.0, -CH₂P=NH-), 2.21 (s, 3H, 5-CH₃ of -C₆H₃SO₃-).
1H NMR (CD$_2$Cl$_2$): δ 9.68 (d, $J_{PH} = 10.4$, 1H, $P=NH$-), 7.71-7.85 (m, 7H, 6-CH of -C$_6$H$_3$SO$_3$-, 3,5-CH of -(C$_6$H$_5$)$_2$P=NH-, and 2,6-CH of -C$_6$H$_5$CH$_2$P=NH-), 7.62 (, m, 4H, 2,6-CH of -C$_6$H$_5$CH$_2$P=NH), (m, 2H, 4-CH of -(C$_6$H$_5$)$_2$P=NH-), 7.28 (m, 1H, 4-CH of -C$_6$H$_5$CH$_2$P=NH), 7.20 (t, $J = 7.6$, 3,5-CH of -(C$_6$H$_5$)$_2$P=NH-), 6.79 (dd, $J = 8.4$, 2.0, 1H, 4-CH of -C$_6$H$_3$SO$_3$-, 6.34 (d, $J = 8.4$, 1H, 3-CH of -C$_6$H$_3$SO$_3$-), 4.27 (d, $J_{PH} = 14.0$, -C$_2$H$_2$P=NH-), 2.23 (s, 3H, 5-CH of -C$_6$H$_3$SO$_3$-). 31P NMR ((CD$_3$)$_2$SO): δ 35.9. 31P NMR (CD$_2$Cl$_2$): δ 36.1. 13C NMR (CD$_3$OD): δ 137.0 (d, $J_{PC} = 7.8$), 135.6 (d, $J_{PC} = 3.1$, para-CH of -(C$_6$H$_5$)$_2$P=NH-), 133.1 (d, $J_{PC} = 10.8$, ortho-CH of -(C$_6$H$_5$)$_2$P=NH-), 132.7, 132.4, 131.1, 131.0 (d, $J_{PC} = 3.1$), 130.4 (d, $J_{PC} = 10.8$, meta-CH of -(C$_6$H$_5$)$_2$P=NH-), 129.3 (d, $J_{PC} = 3.1$), 128.5, 128.4, 128.0 (d, $J_{PC} = 10.0$, ipso C of -C$_6$H$_5$CH$_2$P=NH-), 120.5 (d, $J_{PC} = 96.8$, ipso C of -(C$_6$H$_5$)$_2$P=NH-), 119.5 (d, $J_{PC} = 3.9$), 30.9 (d, $J_{PC} = 56.5$, -CH$_2$P=NH-), 20.5. Anal. Calcd for C$_{26}$H$_{24}$NO$_3$PS: C, 67.66; H, 5.24; N, 3.03. Found: C, 67.86; H, 5.33; N, 2.91.

Single Pot Synthesis of 2-((C$_6$H$_5$CH$_2$)$_3$P=NH)-5-MeC$_6$H$_5$SO$_3$ (40)

To a 200 mL pear-shaped flask containing a clear brown solution of 17 (2.76 g, 10.8 mmol) in toluene (10 mL) chilled to 0 °C for 15 minutes, a solution of P(CH$_2$C$_6$H$_5$)$_3$ (3.60 g, 13.0 mmol) in toluene (30 mL) was added via cannula transfer by aid of rinsing with toluene (10 mL), resulting in a yellow solution. The mixture was allowed to return to 25 °C after stirred at 0 °C for 15 minutes. Effervescence was observed gradually after addition of the P(CH$_2$C$_6$H$_5$)$_3$ solution. The reaction mixture was stirred for 4 hours until no effervescence was observed. A yellow solution was obtained and the solvent was removed under vacuum to afford a yellow frothy solid. The solid was dissolved in CH$_2$Cl$_2$ (20 mL). The resulting
yellow solution was transferred via cannula to a 300 mL Kjeldahl flask containing a suspension of [PyH][BF$_4$] (1.81 g, 10.8 mmol) in CH$_2$Cl$_2$ (20 mL). The 200 mL pear-shaped flask was rinsed with CH$_2$Cl$_2$ (3 x 20 mL) and the rinsing solutions were transferred to the reaction flask via cannula. Gradually, the yellow reaction mixture turned to red solution with some seeable white solid. The reaction mixture was stirred for 1 hour and the white solid almost disappeared. Pyridine (1.3 mL, 16.2 mmol) was added to the resulting reaction solution. The reaction was stirred at 25 °C for 72 hours. The resulting brown solution was pumped down under vacuum giving a glutinous residue, which was treated with CH$_2$Cl$_2$ (15 mL) and Et$_2$O (75 mL). A brown oily insoluble precipitate was observed. Decantation of the liquid layer afforded a gelatinous solid. Treatment with Et$_2$O (75 mL) and decantation of the ether layer were performed. The resulting viscous solid was pumped down to a brown foam. The frothy solid was separated by column chromatography using silica gel (150g) and CH$_2$Cl$_2$. The column was eluted with CHCl$_3$ (100 mL), CHCl$_3$-MeOH 98:2 (1500 mL), CHCl$_3$-MeOH 95:5 (500 mL), and CHCl$_3$-MeOH 90:10 (500 mL). The fractions (100 mL) were analyzed by UV-Vis, and those that contained the product were combined and dried under vacuum, affording a brown foamed solid. The brown solid was treated with CHCl$_3$ (20 mL) and Et$_2$O (80 mL) to give a white precipitate with some viscous brown chunks. The chunks were broken down to a fine powder by trituration. The resulting suspension was filtered and washed with Et$_2$O (2 x 50 mL) affording a light brown solid (5.85 g). The light brown solid was triturated in a mixture of CHCl$_3$ (10 mL) and MeOH (20 mL). A powdery precipitate from a red solution was observed. The precipitate was filtered and washed with Et$_2$O (30 mL), yielding 40 as a white powder (2.00 g). The red filtrate was
evaporated to a gum which was triturated in a mixture of CHCl₃ (5 mL) and MeOH (10 mL). A powdery precipitate from a red solution was observed. The precipitate was filtered and washed with Et₂O (20 mL), yielding 40 as a white powder (1.20 g).

Combination of the two harvests afforded 40 as a white powder in an overall yield of 3.20 g (60%). ¹H NMR (CD₂Cl₂): δ 7.90 (d, J = 6.4, 1H, (C₆H₅CH₂)₃P=NH-), 7.82 (s, 1H, 6-CH of -C₆H₃SO₃⁻), δ 7.38 (m, 6H, meta-CH and 3H, para-CH of (C₆H₅CH₂)₃P=NH-), 7.27 (m, 6H, ortho-CH of (C₆H₅CH₂)₃P=NH-), 6.81 (d, J = 7.8, 1H, 4-CH of -C₆H₃SO₃⁻), 5.64 (d, J = 7.8, 1H, 3-CH of -C₆H₃SO₃⁻), 5.68 (d, JₚH = 14.4, 6H, CH₂ of (C₆H₅CH₂)₃P=NH-), 2.28 (s, 3H, 5-CH₃ of -C₆H₃SO₃⁻). ³¹P NMR (CD₂Cl₂): δ 48.9. ¹³C NMR (CD₂Cl₂): δ 140.8 (d, JₚC = 5.4), 136.1, 131.0 (d, JₚC = 4.7), 130.8, (d, JₚC = 6), 130.6, (d, JₚC = 5.4), 129.6 (d, JₚC = 3.1), 128.7, 128.6 (d, JₚC = 3.9), 127.2 (d, JₚC = 7.0), 123.5 (d, JₚC = 2.3), 29.9 (d, JₚC = 54.2), 20.4. Anal. Calcd for C₂₈H₂₈NO₃PS • 0.9 CHCl₃: C, 58.14; H, 4.88; N, 2.35. Found: C, 57.97; H, 4.83; N, 2.36.
CHAPTER THREE
SYNTHESIS AND REACTIVITY OF OF
TRIPHENYLPHOSPHINIMINE-SULFONATE PALLADIUM
METHYL PYRIDINE COMPLEX

3.1 Introduction

In the synthesis of P^SO palladium alkyl complexes, two methods are used. First, the zwitterionic phosphonium-sulfonate directly reacts with a dimethyl metal precursor. In the presence of a base like pyridine, replacement of tmela ligand by the P^SO ligand followed by methane elimination generates the desired complexes. For instance, combination of zwitterion benzene-2-(di-o-anisylphosphonium)-1-sulfonate with (tmela)PdMe2 or (tmela)NiMe2 in the presence of excess pyridine can form P^SO palladium/nickel methyl pyridine complexes accompanied by methane elimination (Scheme 3.1).10c, 17b, 53

Scheme 3.1 P^SO zwitterion reacts with Pd/Ni precursors

Ar = o-anisyl
M = Pd, Ni

The other method to make P^SO palladium complexes involves using anionic phosphine-sulfonate to coordinate with a metal precursor. The deprotonation of
zwitterionic phosphonium-sulfonate is typically realized using an amine base like Et₃N or Hünig base. In practice, the zwitterionic phosphonium-sulfonate was *in situ* deprotonated with the amine base to its anionic ligand, which can undergo complexation with a palladium source. As shown in Scheme 3.2, benzene-2-(di-o-anisylphosphonium)-1-sulfonate is deprotonated with amines and interacts with (cod)PdMeCl to form phosphine-sulfonate palladium methyl chloride complexes. The anionic palladium chloride complex can be further converted to a neutral palladium methyl lutidine complex in the presence of a large amount of lutidine and K₂CO₃ (Scheme 3.3). Lutidine can be used for deprotonation of the zwitterionic phosphonium-sulfonate species and coordination to the metal center. Thus, a combination of di-o-anisylphosphonium-sulfonate with excess lutidine followed by the introduction of (cod)PdMeCl generates the desired complex (Scheme 3.4).
In this thesis research, ortho- phosphinimine-arenesulfonate Pd(II) complexes have been synthesized and studied. The modular nature of phosphinimine synthesis allows for the creation of a diverse ligand library where steric and electronic properties can be manipulated with ease.54 Neutral phosphinimines are believed to be stronger donor ligands than phosphines due to the delocalization of electron lone pairs about the N=P double bond. The steric properties of phosphinimines are different than phosphines since the steric bulk is slightly removed from the metal center. A series of phosphinimine aryl sulfonate (NPSO) alkyl esters have been synthesized by simple azide oxidation (Staudinger reaction) of 2-azido aryl sulfonate esters with triaryl, diaryl(alkyl), aryl(dialkyl) and tri(alkyl)phosphines. Deprotection routes to liberate the sulfonate anion of the NPSO ligand have been explored and led to the formation of the desired zwitterionic ligands.25a, 32, 55 NPSO-based palladium complexes are synthesized and their thermal behavior and ethylene reactivity are investigated.
3.2 Results and Discussion

Attempted Zwitterion Complexation

For investigation of the reactivity of the synthesized zwitterionic PN^SO ligand, toluene-4-triphenylphosphiniminium-3-sulfonate (36) and the metal precursor (cod)PdMeCl was combined at 1:1 ratio for NMR acquisition. After 24 hours, it did not undergo complexation (Scheme 3.5). In comparison to the phosphonium-sulfonate zwitterion (pK_a = 2.7), phosphiniminium-sulfonate zwitterion 36 (estimated pK_a = 8-10) is apparently too weak an acid to be deprotonated via methane elimination. Deprotonation of the phosphiniminium-sulfonate zwitterions with a strong base is necessary for coordination.

Generation and Synthesis of Sodium Phosphinimine-sulfonates

For deprotonation of phosphiniminium-sulfonate zwitterions, bases with pK_a values higher than phosphiniminium-sulfonate (pK_a = 8-10) such as patassium tert-butoxide (tBuOK, pK_a = 17), sodium hexamethyldisilazide (NaN(TMS)_2, pK_a = 25), and sodium hydride (NaH, pK_a = 35) were screened. In an attempted NMR reaction, combination of zwitterion 36 and tBuOK in THF-d_8 generated a turbid mixture containing some chunks. The mixture was not suitable for NMR acquisition. Then
zwitterion 8 was combined with NaN(TMS)$_2$ in THF-d$_8$. This resulted in a clear yellowish solution. The phosphinio proton peak at $\delta_H = 10.25$ ppm reminiscent of the zwitterionic structure clearly disappeared from 1H NMR spectrum. 31P NMR showed a singlet at 0.0 ppm, about 31.0 ppm downfield shifted compared with the zwitterion. 1H and 31P NMR spectra supported the structure of sodium toluene-4-phosphinimine-3-sulfonate (4). (Scheme 3.6).

Based on these data, sodium 2-(triphenylphosphiniminino)-5-methylbenzenesulfonate (4) was synthesized successfully by reacting the corresponding zwitterion (36) with NaN(TMS)$_2$ in THF at room temperature (Scheme 3.7).

This method works to deprotonate the zwitterion, but one disadvantage is that the hexamethyldisilazane residue is usually observed on the 1H NMR spectrum. Alternately,
deprotonation using NaH as a base was performed. The reaction was done in benzene and stirred for 4 hours. In this way, neat sodium 2-(triphenylphosphiniminino)-5-methylbenzenesulfonate (4) could be prepared from the zwitterion 36 in high yield (89%, 2.09 grams) (Scheme 3.8).

Scheme 3.8 Synthesis of sodium phosphinimine-sulfonate: NaH as a base

Synthesis of Triphenylphosphinimine-sulfonate Palladium Methyl Pyridine Complexes

Scheme 3.9 Synthesis of Complex 41
Zwitterion 36 was deprotonated with NaN(TMS)$_2$ in THF to generate compound 4. In CH$_2$Cl$_2$, 4 reacted with (cod)PdMeCl in the presence of 1.5 equivalents of pyridine to form the desired palladium methyl pyridine complex species 41 (Scheme 3.9).

Complex 41 was fully characterized by interpretation of 1H, 31P, and 13C NMR spectra and 2D NMR spectra including HMQC and HMBC. On the 1H NMR spectra of 41, a high intensity sharp singlet $\delta_H = 0.19$ ppm in the upfield region demonstrates the presence of a methyl on palladium. The pyridine ligand coordinated to palladium gave a set of 3 typical peaks including a doublet of doublets at $\delta_H = 8.38$ ppm, a triplet of triplets

<table>
<thead>
<tr>
<th>Position</th>
<th>$\delta_C (J)$</th>
<th>$\delta_H (J)$</th>
<th>HMQC</th>
<th>HMBC</th>
<th>NOSEY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>133.6d (1.6)</td>
<td>7.59-7.67m</td>
<td>CH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>25.1</td>
<td>2.21d (1.2)</td>
<td>CH$_3$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>148.1d (1.6)</td>
<td>C</td>
<td>H-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>135.3d (2.3)</td>
<td>6.97dd (8.0, 2.0)</td>
<td>CH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>131.6d (4.6)</td>
<td>6.85dd (8.0, 2.0)</td>
<td>CH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>147.0d (10.0)</td>
<td>C</td>
<td>H-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>137.4d (2.3)</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>133.3d (101.4)</td>
<td>C</td>
<td>H-9; H-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>139.4d (10.1)</td>
<td>8.01dd (12.0, 7.2)</td>
<td>CH</td>
<td>H-12</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>133.0 (13.2)</td>
<td>7.52d (7.6, 3.2)</td>
<td>CH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>137.5d (3.1)</td>
<td>7.59-7.67m</td>
<td>CH</td>
<td>H-9</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.0d (1.5)</td>
<td>0.19s</td>
<td>CH$_3$</td>
<td>H-9; H-13</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>156.8</td>
<td>8.38dd (6.8, 1.6)</td>
<td>CH</td>
<td>H-14; H-15</td>
<td>H-12</td>
</tr>
<tr>
<td>14</td>
<td>129.7</td>
<td>7.26 td (6.4, 1.2)</td>
<td>CH</td>
<td>H-13</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>142.2</td>
<td>7.72tt (8.0, 1.6)</td>
<td>CH</td>
<td>H-13</td>
<td></td>
</tr>
</tbody>
</table>
at $\delta_H = 7.72$ ppm, and a triplet of doublets at $\delta_H = 7.26$ ppm. Compared to free pyridine, an obvious change is that the chemical shift of the 2 and 6 position protons have increased by 0.25 ppm, while other protons showed similar chemical shifts. The combination of other 6 aromatic signals at 6.85-8.01 ppm and the singlet at 2.21 ppm showed the presence of triphenylphosphiniminium-sulfonate ligand. The 31P NMR showed a singlet at 31.7 ppm, downfield shifted by 33.3 ppm compared to that in sodium salt. All peaks are sharp and well split. This has been an apparent contrast to its precursor, sodium triphenylphosphiniminium-sulfonate, which had a set of all broadened peaks in CD$_2$Cl$_2$. 13C NMR chemical shifts have been completely assigned by aid of 2D NMR including HMQC and HMBC (Table 3.1).

In the complex 41, the relative positions between the methyl group and pyridine can form two types of isomers, cis- or trans- isomers (Figure 3.1). Based on the convention used for differentiation of the geometric isomers of phosphine-sulfonate palladium complexes, the cis-isomer defines that the labile ligand pyridine orients itself on the side of the sulfonate group, whereas the trans-isomer defines that the labile ligand pyridine orients itself opposite to the side of the sulfonate group. The differentiation of

![cis-41](image1.png) ![trans-41](image2.png)

Figure 3.1 Two possible isomers of 41. Double arrows show possible NOESY correlations.

on the side of the sulfonate group, whereas the trans-isomer defines that the labile ligand pyridine orients itself opposite to the side of the sulfonate group. The differentiation of
cis-41 from trans-41 was realized using NOESY. On a NOESY spectrum of cis-41, the methyl group is expected to have 2 correlation, one with the 2,6-protons of PPh₃, the other with the 2,6-protons of pyridine. On a NOESY spectrum of trans-41, only one correlation which is the methyl with the 2,6-protons of pyridine can be seen. Our experiment showed the scenario of the cis-41. The NOESY correlations are listed in Table 3.1.

In the preparation of 41, aliquots of reaction mixtures were taken for NMR study. ¹H NMR clearly showed that 20% bispyridine palladium methyl chloride (Py₂PdMeCl) could be observed. Based on this important observation, a mechanism can be proposed that the complex 41 forms via an intermediate Py₂PdMeCl. As is shown in Scheme 3.10, ligand exchange between 2 equivalents of pyridine and the cod converts (cod)PdMeCl into Py₂PdMeCl as an intermediate. The phosphinimine-sulfonate ligand species 4 displaces a pyridine and the chloride in Py₂PdMeCl to produce complex 41.

Scheme 3.10 Proposed mechanism for formation of 41

\[
\begin{align*}
\text{(cod)PdMeCl} + \text{Py} & \rightarrow \text{Py}_2\text{PdMeCl} \\
\text{Py}_2\text{PdMeCl} + \text{Ph₃PPh} & \rightarrow \text{41}
\end{align*}
\]

By this mechanism, complex 41 was synthesized from a reaction between sodium salt (4) and Py₂PdMeCl in benzene at room temperature (Scheme 3.11). Similarly, triphenylphosphinimine-sulfonate palladium methyl 4-tert-butylpyridine complex (42)
was synthesized from a reaction between sodium salt (4) and (4-tBuPy)\textsubscript{2}PdMeCl in benzene at room temperature (Scheme 3.11). The reaction is neat and this is a reliable method to prepare phosphinimine-sulfonate palladium alkyl complexes. The advantages of this method for the synthesis of palladium methyl complexes using are: 1) instead of maintaining a cold condition at -20 °C, the reaction is run at room temperature; 2) the one-step reaction makes the stoichiometry more controllable; this improves the yield significantly from 55% to 86%; 3) In reactions using (cod)PdMeCl as a metal precursor, product quality is an issue. This could be due to the use of CH\textsubscript{2}Cl\textsubscript{2} as a solvent, which leads to side reactions like formation of phosphinimine-sulfonate palladium pyridine chloride. Other impurities are zwitterions and unreacted intermediate Py\textsubscript{2}PdMeCl. When using Py\textsubscript{2}PdMeCl as a metal precursor, since the reaction is run in benzene, pure products can be obtained.

\textit{Variable Temperature }1H NMR of 42

Variable temperature 1H NMR has been studied for complex 42 using an array of temperatures, 20, -10, -30, -50, -60, -70, -90 °C. According to NMR spectra, coalescence occurs at -60 °C. Significant differences have been observed for 2,6-protons on PPh\textsubscript{3} and
2,6-protons of Pd(BuPy). At 20 °C, the 2,6-protons of PPh₃ show one apparent triplet at 8.01 ppm, whereas at -90 °C, they are split into three apparent triplets, one at 8.69 ppm, one at 7.83 ppm, and one at 7.76 ppm. The difference of NMR behavior of PPh₃ between the solution and solid structures results from conformational interchange, which is similar to that for 2,6-MeO groups in P^SO ligand.¹¹ Scheme 3.2 shows the two conformers of 42.

Scheme 3.12 Conformational interchange of 42.

![Scheme 3.12](image)

X-ray Crystallography of 42

For understanding the solid structure of 42, X-ray crystallography study was conducted. For X-ray diffraction, single crystals of 42 were grown by slow diffusion of pentane into a benzene solution of 42. The temperature for growing single crystals was at 25 °C. Crystals were inspected carefully for their suitability for X-ray crystallography.
Figure 3.2 ORTEP plot of 42.

ORTEP plots generated from X-Ray crystallographic data, have confirmed the structure of 42, which was assigned from interpretation of NMR spectral data (Figure 3.2).

Thermal Behavior of Triphenylphosphinimine-sulfonate Palladium Methyl Pyridine Complexes

Orthopalladation is a known reaction of palladium complexes containing a phosphinimine donor.\(^6^0\) In a phosphinimine supported palladium complex, palladium abstracts an *ortho* hydrogen from either a P attached arene ring to form a 5-membered *exo* orthopalladated species or an N-C linked arene ring to form a 5-membered *endo* orthopalladated species (Scheme 3.13).\(^6^0^g\) In general, low temperature and chlorinated
solvents favor \textit{exo} orthopalladation and high temperature and non-chlorinated solvents favor \textit{endo} orthopalladation. Thus, the \textit{endo} orthopalladated species can be converted from the \textit{exo} orthopalladated species when heated in toluene.60g

To understand how or if orthopalladation occurs in phosphinimine-sulfonate palladium complex, we studied the thermal behavior of complexes 41 and 42. The experiment was carried out under different conditions including NMR solvents, temperature, and time. NMR solvents include halogenated solvents CDCl\textsubscript{3} and CD\textsubscript{2}Cl\textsubscript{2} and non-halogenated solvents benzene-d\textsubscript{6} and toluene-d\textsubscript{8}. Due to poor solubility in non-halogenated solvents, palladium pyridine complexes 41 was heated in CDCl\textsubscript{3}. Palladium t-butylpyridine complex 42 is soluble in benzene and toluene. 42 was heated in 4

\begin{scheme}
\centering
\includegraphics[width=\textwidth]{Scheme3.13.png}
\caption{Endo/Exo orthopalladation}
\end{scheme}

\begin{scheme}
\centering
\includegraphics[width=\textwidth]{Scheme3.14.png}
\caption{Thermal behavior of 41 and 42}
\end{scheme}

41, \(R = \text{H} \); 42, \(R = \text{tBu} \)
different solvents, CDCl$_3$, CD$_2$Cl$_2$, C$_6$D$_6$, and toluene-d$_8$. As shown in scheme 3.14, endo-orthopalladated species 43 and 44 are formed from the corresponding palladium complexes 41 and 42.

In our investigation, orthopalladation was determined using 31P NMR. Based on 31P NMR spectra, the orthopalladated products 43 and 44 are primary decomposition pathways. Other components present in the heating mixture include the starting complex 41 or 42, palladium chloride complex, zwitterion, Ph$_3$PO, and an unknown intermediate. In CDCl$_3$ at room temperature, 41 remained unchanged after 2 hours and reacted to form 3.68% of orthopalladated product 43 after 24 hours. When heated to 68 °C, 41 reacted to form 71.41% and 76.52% of orthopalladated product 43 after 2 and 24 hours, respectively.

For complex 42, when dissolved in CDCl$_3$ and heated to 70 °C for 2 and 24 hours, 28.19% and 51.21% orthopalladated products were observed; when dissolved in CD$_2$Cl$_2$ and heated to 46 °C for 2 and 24 hours, 0% and 1.64% orthopalladated products were observed; when dissolved in C$_6$D$_6$ and heated to 68 °C for 2 and 24 hours, 2.97% and 28.61% orthopalladated products were observed; when dissolved in toluene-d$_8$ and heated to 70 °C for 2 and 24 hours, 7.80% and 35.71% orthopalladated products were observed; when dissolved in toluene-d$_8$ and heated to 80 °C for 2 and 24 hours, 37.08% and 100% orthopalladated products were observed. The comprehensive data demonstrate that solvent, temperature, and time are determinants to govern orthopalladation behavior. In general, chlorinated solvents, high temperature, and extended time of heating promote the orthopalladation process.
The 1H NMR spectral data from these heating experiments of 42 has also provided information to allow us to elaborate the mechanism by which orthopalladation occurs. In the very upfield regions of 1H NMR spectra, we observed signals of CH$_4$, CDH$_3$, and C$_2$H$_6$. In CDCl$_3$ and CD$_2$Cl$_2$, methane appeared with a singlet at 0.21 ppm, monodeuterated methane with a triplet at 0.19 ppm, ethane with a singlet at 0.85–0.86 ppm. In C$_6$D$_6$ and C$_6$D$_5$CD$_3$, methane appeared with a singlet at 0.16–0.17 ppm, ethane with a singlet at 1.00–1.02 ppm. The presence of CH$_4$ suggests that orthopalladation occur via elimination of a CH$_4$ molecule. Elimination of CH$_4$ can be either a free radical or ionic mechanism. However, the fact of formation of C$_2$H$_6$ proves the former, because the coupling of two methyl radicals generates C$_2$H$_6$. During the heating process, thermal homolysis cleaved the Pd-CH$_3$ bond and generated the palladium and methyl radicals. From the appearance, it seems that the methyl radical abstracted an ortho-H from the benzene ring on the phosphorus to have caused the elimination of CH$_4$ and coupling of palladium radical and phenyl radical to have formed the orthopalladated product. But the fact that only ortho-H can be removed demonstrated that the palladium radical has attacked the benzene ring before the ortho-H was abstracted. Therefore, orthopalladation occurs via the homolytic aromatic substitution (HAS). In this mechanism (Scheme 3.15), the palladium radical substituted the ortho-H of a benzene
ring on phosphorus to form the orthopalladated production. Coupling of a methyl radical and a hydrogen radical afforded CH₄. Monodeuterated methane results from H/D exchange.

For determination of the structure of 44, a separate reaction of heating complex 42 has allowed isolation of 47 mg of 44. Single crystals suitable for X-ray diffraction were obtained by diffusion of pentane into a benzene solution of 44. The temperature for growing single crystals is at room temperature. Crystals were inspected carefully for their suitability for X-ray crystallography. As is shown in Figure 3.4, the crystal structure of
44 has proven orthopalladion at one of the 2,6-positions of the phosphiniminobenzene ring.

![ORTEP plot of 44](image)

Figure 3.4 ORTEP plot of 44

Ethylene Reactivity of Triphenylphosphinimine-sulfonate Palladium Methyl Pyridine Complexes

For the understanding of its catalytic properties, 42 was chosen for the ethylene reactivity test. Because of poor solubility in toluene, 41 was not tested for ethylene reactivity. In the experiments, toluene was the solvent, ethylene pressure was 5 atm (76 psi), and temperatures were 25 °C and 80 °C. After 6 hours, clear, yellowish solutions with some black materials were obtained. For quenching the catalyst, methanol was added to the solutions and the mixtures were stirred overnight. Volatiles were removed to result in white solid residues. Then the residues were tested with 1H NMR. 1H NMR spectra for both temperatures indicated presence of alkanes, suggesting oligomerization of ethylene occur during the catalytic test. Along with alkanes, we obtained the zwitterionic ligand (36) and free 4-tert-butylpyridine. Figure 3.5 is the 1H NMR for ethylene reactivity of 42 at 80 °C. As labeled with z, peaks at 10.27d, 7.86m, 7.83m,
6.75d, 6.33d, and 2.20s prove the existence of 36. Peaks, labeled with p, resonating 8.49m and 1.29s stand for free 4-tert-butylpyridine. Peaks, labeled with a, having chemical shifts 1.24m, 1.20m, and 0.86m are typical for alkane compounds.

Figure 3.5 1H NMR for ethylene reactivity of 42 at 80 °C

Ut supra, 42 can be converted to its orthopalladated species 44 at this experimental condition. To exclude possible participation of 44 in the catalytic process, we tested 44 for its ethylene reactivity. 44 was *in situ* generated in a J. Young NMR tube by heating a solution of 5 mg of 42 in toluene-d$_8$. 10 equivalents of ethylene gas were introduced into the tube by vacuum transfer. After 6 hours, 1H NMR did not show any change. These experiments demonstrate that 42 is the only catalyst having promoted ethylene oligomerization.
3.3 Conclusions

Sodium triphenylphosphinimine sulfonate is the ligand form which can be generated from its zwitterionic form through deprotonation using a strong base such as NaN(TMS)_2 and NaH. In order to obtain a neat complex, we have attempted complexation of the ligand with different palladium precursors, such as (COD)PdMeCl and (Py)_2PdMeCl, of which the latter works ideally. In our investigations, we understood that (Py)_2PdMeCl is an intermediate involved in complexation using (COD)PdMeCl as a precursor. The thermal behavior study shows that the triphenylphosphinimine sulfonate palladium methyl pyridine complexes decompose at high temperature to their orthopalladated species. The catalytic reactivity study shows that triphenylphosphinimine sulfonate palladium methyl pyridine complexes can oligomerize ethylene to alkanes.

3.4 Experimental Section

General Procedures. All manipulations were performed under N_2 or vacuum using standard Schlenk or high vacuum techniques or in N_2-filled gloveboxes unless otherwise specified. N_2 was purified by passage through columns containing activated molecular sieves and Q-5 oxygen scavenger. Pentane, hexanes, toluene, benzene, and dichloromethane were purified by passage through columns of activated 4 Å molecular sieves. Diethyl ether and tetrahydrofuran were distilled from Na/benzophenone ketyl. CDCl_3 and CD_2Cl_2 were dried over CaH_2 for 24 hours, degassed by freeze-pump-thaw cycles, and vacuum transferred to a storage vessel. Piperidine was obtained from Aldrich and distilled before using. All other solvents were purchased from Aldrich and used...
without further purification. 1H, 13C, 31P, and 2D NMR spectra were recorded in Teflon valve sealed tubes on Varian 400 and 500 spectrometers at ambient probe temperature unless otherwise indicated. 1H and 13C chemical shifts are reported versus SiMe$_4$ and were determined by reference to the residual 1H and 13C solvent peaks. 31P chemical shifts were referenced to external 85% aqueous H$_3$PO$_4$. All the ligands and their precursors bear a sulfonated toluidine parental structure which has an atom-labeling scheme as follows:

\[
\begin{array}{c}
\text{SO}_2\text{OX} \\
\text{X} = \text{ONa} ; \text{O-Pd} \\
\text{Y} = \text{P=N} ; \text{P=N-Pd}
\end{array}
\]

Attempted Reaction of (C$_6$H$_5$)$_3$P =NH)-5-CH$_3$C$_6$H$_3$SO$_3$ (36) and (COD)PdMeCl. A valved NMR tube was loaded with toluene-4-triphenylphosphiniminium-3-sulfonate 36 (25.7 mg, 0.057 mmol) and (COD)PdMeCl (15.1 mg, 0.057 mmol) and CD$_2$Cl$_2$ (0.5 mL) was added via vacuum transfer at -196 °C. After flushed with N$_2$ gas, the tube was sealed and warmed to 25 °C and shaken to result in a clear colorless solution. After sitting for 30 min and 24 hours at room temperature, 1H and 31P NMR spectra were acquired. From the two time intervals, 1H and 31P NMR spectra indicated that the zwitterion 36 and (COD)PdMeCl were unchanged and no free COD were observed. They established that no products had formed.

Generation of 2-((C$_6$H$_5$)$_3$P=NH)-5-CH$_3$C$_6$H$_3$SO$_3$Na (4) by Deprotonation of (Ph$_3$P=NH)-5-CH$_3$C$_6$H$_3$SO$_3$ (36) with NaN(TMS)$_2$ in THF-d$_8$. A valved NMR tube was loaded with 36 (22.4 mg, 0.05 mmol) and NaN(TMS)$_2$ (9.2 mg, 0.05 mmol) and THF-d$_8$
(0.5 mL) was added via vacuum transfer at -196 °C. After flushed with N₂ gas, the tube was sealed and warmed to 25 °C and shaken to result in a clear yellowish to greenish solution. \(^1\)H and \(^{31}\)P NMR spectra established that 4 had formed.\(^1\)H NMR (THF-d₈): \(\delta\) 8.00 (m, 6 H, 2,6-\(\text{C}_6\text{H}_5\) of \((\text{C}_6\text{H}_5)_3\text{P} = \text{N} -\)), 7.74 (s, 1H, 6-\(\text{CH}\) of \(-\text{C}_6\text{H}_3\text{SO}_3^-\)), 7.24-7.40 (m, 9H, 3,5-\(\text{CH}\) of \((\text{C}_6\text{H}_5)_3\text{P} = \text{N} -\) and 4-\(\text{CH}\) of \((\text{C}_6\text{H}_5)_3\text{P} = \text{N} -\)), 6.53 (dd, \(J = 2.4, 7.6\), 1H, 4-\(\text{CH}\) of \(-\text{C}_6\text{H}_3\text{SO}_3^-\)), 6.31 (d, \(J = 7.6\), 1H, 3-\(\text{CH}\) of \(-\text{C}_6\text{H}_3\text{SO}_3^-\)), 2.01 (s, 3H, 5-\(\text{CH}_3\) of \(-\text{C}_6\text{H}_3\text{SO}_3^-\)), 0.95 (bs, 1H, NH in \(\text{HN(TMS)}_2\)), 0.05 (s, 18H, \(\text{CH}_3\) in \(\text{HN(TMS)}_2\)). \(^{31}\)P NMR (THF-d₈): \(\delta\) -1.8.

\[\text{2-}((\text{C}_6\text{H}_5)_3\text{P} = \text{N})\text{-}5\text{-CH}_3\text{C}_6\text{H}_3\text{SO}_3\text{Na} (4). \]

\(a.\) Using NaN(TMS)₂ as a Base. A 100 mL Kjehdahl flask containing 36 (0.90 g, 2.00 mmol) and NaN(TMS)₂ (0.37 g, 2.00 mmol) was cooled down with ice bath for 15 minute and charged with THF (50 mL). After 15 minutes, the mixture was warmed up to 25 °C and stirred for 1 hour. A clear slightly yellow solution was obtained. The volume of the solution was reduced to around 10 mL and pentane (30 mL) was added. The mixture was stirred for 30 minutes to result in a white suspension. The suspension stood until 2 layers could be clearly observed. The liquid layer was syringed out. The remaining solid layer was washed with pentane (30 mL) once. After decantation of the solvent, the residue was pumped down to dryness under high vacuum for 2 hours, yielding 4 (0.57 g, 60%) as an amber solid.

\(b.\) Using NaH as a Base. To a flask loaded with \((\text{Ph}_3\text{P} = \text{NH})\text{-}5\text{-CH}_3\text{C}_6\text{H}_3\text{SO}_3\) (36, 2.23 g, 5.00 mmol) and NaH (0.18 g, 7.50 mmol), THF (60 mL) was added while stirring. The turbid mixture was stirred for 4 hours to give a clear slightly yellow solution, which was filtered through Celite. Removal of THF afforded a yellow solid, which was stirred in
pentane (40 mL) for 30 minutes. The resulting suspension was filtered off and the collected solid was washed with pentane (2x10 mL) yielding 4 (2.09 g, 89%) as a pale yellow powder. 1H NMR (CD$_2$Cl$_2$): δ 7.75 (bs, 6H, 2,6-CH of (C$_6$H$_5$)$_3$P=N-), 7.45 (bs, 1H, 6-CH of -C$_6$H$_3$SO$_3$-), 7.24 (bs, 9H, 3,5-CH of (C$_6$H$_5$)$_3$P=N- and 4-CH of (C$_6$H$_5$)$_3$P=N-), 6.60 (bd, $J = 6.4$, 1H, 4-CH of -C$_6$H$_3$SO$_3$-), 6.34 (bd, $J = 7.2$, 1H, 3-CH of -C$_6$H$_3$SO$_3$-), 1.98 (bs, 3H, 5-CH$_3$ of -C$_6$H$_3$SO$_3$-). 1H NMR (THF-d$_8$): δ 7.99 (m, 6H, 2,6-C of (C$_6$H$_5$)$_3$P=N-), 7.73 (bs, 1H, 6-CH of -C$_6$H$_3$SO$_3$-), 6.73-7.48 (m, 9H, 3,5-C of (C$_6$H$_5$)$_3$P=N- and 4-CH of (C$_6$H$_5$)$_3$P=N-), 6.52 (d, $J = 7.5$, 1H, 3-CH of -C$_6$H$_3$SO$_3$-), 2.03 (s, 3H, 5-CH$_3$ of -C$_6$H$_3$SO$_3$-). 31P NMR (CD$_2$Cl$_2$): δ 7.82 (bs). 31P NMR (THF-d$_8$): δ -1.64. 13C NMR (THF-d$_8$):146.4 (2-C), 138.0 (d, $J_{PC} = 22.0$, 1-C), 133.0 (d, $J_{PC} = 9.9$, ortho-CH of (C$_6$H$_5$)$_3$P=N-), 132.0 (d, $J_{PC} = 98.7$, ipso C of (C$_6$H$_5$)$_3$P=N), 130.8 (para-CH of (C$_6$H$_5$)$_3$P=N-), 129.6 (overlapping of 4- and 6-C), 128.2 (d, $J_{PC} = 12.2$, meta-CH of (C$_6$H$_5$)$_3$P=N-), 123.9 (5-C), 122.0 (3-C), 19.7 (5-CH$_3$).

[2-(Ph$_3$P=N)-5-MeC$_6$H$_3$SO$_3$]Pd(Py)Me (41). a. *Using in situ Generated Ligand.* A 125 mL Schlenk tube containing zwitterion toluene-4-triphenylphosphininium-3-sulfonate 36 (0.45 g, 1.0 mmol) and NaN(TMS)$_2$ (0.18 g, 1.0 mmol) was chilled with an ice bath for 15 minutes and charged with THF (20 mL). After 15 minutes, the mixture was warmed up to 25 °C and stirred for 1 hour. A clear slightly yellow solution was obtained. The solution was pumped down for 2 hours to result in a yellowish solid. The solid was redissolved in CH$_2$Cl$_2$ (15 mL) to generate a yellow solution, which was cooled down to -20 °C with an isopropanol-dry ice cold bath for 15 minutes. A solution of
(COD)PdMeCl (0.27 g, 0.1 mmol) in CH₂Cl₂ (5 mL) was introduced via cannula transfer. The reaction was stirred for 30 minutes at -20 °C and warmed up to room temperature for a 1 hour stirring to result in a dark orange solution. The solvent was removed from the reaction mixture to give a yellow solid. The solid was treated with a combination of CH₂Cl₂ (20 mL) and diethyl ether (60 mL), giving a yellow precipitate. The precipitate was collected onto a fritted funnel and washed with CH₂Cl₂-Et₂O 1:4 (20 mL) and Et₂O (3x20 mL). The resulting yellow solid dissolved into CH₂Cl₂ (20 mL) to give a yellow solution. Filtration of the solution through Celite and evaporation of the resulting filtrate furnished 41 as a slightly yellow solid (0.33 g, 55%).

b. Using Isolated Ligand. A flask containing sodium 2-(triphenylphosphiniminino)-5-methylbenzenesulfonate (4) (0.23 g, 0.5 mmol) and bispyridinepalladium (II) methyl chloride (Py₂PdMeCl) (0.16 g, 0.5 mmol) was charged with benzene (30 mL) while stirring. Shortly, an initially observed clear greenish solution turned turbid. The reaction proceeded for 2 hours, resulting in an off-white suspension. The precipitate was collected onto a celite layer and washed with benzene (2x10 mL). The collected solid revealed greenish color and was washed down into a flask with CH₂Cl₂ (3x20 mL). Evaporation of the filtrate afforded a yellowish residue, which was further treated with Et₂O (20 mL) to give a white suspension. The suspension was filtered and washed with Et₂O (2x10 mL) yielding 41 (0.28 g, 86%) as a greenish solid. ¹H NMR (CD₂Cl₂): δ 8.38 (dd, J = 6.8, 1.6, 2H, 2,6-CH of (C₅H₅N)Pd), 8.01 (dd, Jₚₜ = 12.0, Jₜₜ = 7.2, 6H, 2,6-CH of (C₆H₅)₃P=N-), 7.72 (tt, J = 8.0, 1.6, 1H, 4-CH of (C₅H₅N)Pd), 7.59-7.67 (m, 4H, 6-CH of -C₆H₃SO₃- and 4-CH of (C₆H₅)₃P=N-), 7.52 (td, Jₚₜ = 7.6, Jₜₜ = 3.2, 6H, 3,5-CH of (C₆H₅)₃P=N-), 7.26 (td, J = 6.4, 1.2, 2H, 3,5-CH of (C₅H₅N)Pd), 6.97 (dd, J = 8.0, 2.0, 1H, 4-CH of -
C₆H₃SO₃⁻), 6.85 (dd, J = 8.0, 2.0, 1H, 3-CH of -C₆H₃SO₃⁻), 2.21 (d, J = 1.2, 3H, 5-CH₃ of -C₆H₃SO₃⁻), 0.19 (s, 3H, Pd(CH₃)). ³¹P NMR (CDCl₃): δ 31.8. ¹³C NMR (CD₂Cl₂): δ 156.8, 148.1d (1.6), 147.0d (10.0), 142.2, 139.4d (10.1), 137.5d (3.1), 137.4d (2.3), 135.3d (2.3), 133.6d, 133.3d (101.4), 133.0 (13.2), 131.6d (4.6), (1.6), 129.7, 25.1, 0.0d (1.5). 2D NMR data are as shown in Table 3.1.

[2-(Ph₃P=Ｎ)-5-MeC₆H₃SO₃]Pd(4-'BuPy)Me (42).

a. Using in situ Generated Ligand. A 125 mL Schlenk tube containing zwitterion 36 (0.24 g, 0.50 mmol) and NaN(TMS)₂ (0.09 g, 0.50 mmol) was chilled with an ice bath for 15 minutes and charged with benzene (30 mL). After 15 minutes, the mixture was warmed up to 25 °C and stirred for 1 hour. A clear slightly yellow solution was obtained. A solution of (4-'Bu)₂PdMeCl (0.21 g, 0.5 mmol) in benzene (10 mL) was introduced via cannula transfer. The reaction was stirred for 2 hours to result in a yellow solution. Filtration of the solution through Celite and evaporation of the resulting filtrate furnished a yellow solid. The solid was treated with a combination of benzene (5 mL) and pentane (20 mL) and resulting in a white precipitate. The precipitate was collected onto a fritted funnel and washed with pentane (2x10 mL), yielding 42 (0.34 g, 97%) as a white solid.

b. Using Isolated Ligand. A flask containing sodium 2-(triphenylphosphiniminino)-5-methylbenzenesulfonate (4) (0.23 g, 0.5 mmol) and bis(4-tert-butylpyridine)palladium (II) methyl chloride (4-'BuPy₂PdMeCl) (0.21 g, 0.5 mmol) was charged with benzene (30 mL) while stirring. Shortly, an initially observed clear greenish solution turned to a clear
yellowish solution. The reaction proceeded for 2 hours, resulting in a clear yellow solution. The yellow solution was filtered through Celite along with 2x10 mL benzene rinsing. Evaporation of the filtrate afforded a yellowish solid residue, which was further treated with benzene (10 mL) and pentane (30 mL) to give a yellowish precipitate. The precipitate was filtered onto a Buchner funnel top and washed with pentane (3x10 mL) yielding 42 (0.28 g, 80%) as a greenish solid. 1H NMR (CDCl$_3$): δ 8.24 (dd, $J = 5.2, 1.6$, 2H, 2,6-CH of (CH$_3$)$_3$C(C$_5$H$_5$N)Pd), 8.03 (m, 6H, 2,6-CH of

<table>
<thead>
<tr>
<th>Position</th>
<th>δ_C (J)</th>
<th>δ_H (J)</th>
<th>HMQC</th>
<th>HMBC</th>
<th>NOSEY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>142.8d (9.9)</td>
<td></td>
<td>CH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>133.1</td>
<td>C</td>
<td></td>
<td>H-4; H-6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>127.3</td>
<td>6.89dd (8.0, 2.0)</td>
<td>CH</td>
<td>H-9</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>131.2</td>
<td>6.78dd (8.0, 2.0)</td>
<td>CH</td>
<td>H-2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>144.0</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>130.2</td>
<td>7.76s</td>
<td>CH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>21.5</td>
<td>2.19s</td>
<td>CH$_3$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>125.9d(106.3)</td>
<td>CH</td>
<td>H-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>135.5d (9.8)</td>
<td>8.03m</td>
<td>CH</td>
<td>H-11</td>
<td>H-12</td>
</tr>
<tr>
<td>10</td>
<td>129.1d (12.1)</td>
<td>7.50m</td>
<td>CH</td>
<td>H-8</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>133.4</td>
<td>7.58m</td>
<td>CH</td>
<td>H-9</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>-4.0</td>
<td>0.15s</td>
<td>CH$_3$</td>
<td>H-9; H-3</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>152.3</td>
<td>8.24dd (5.2, 1.6)</td>
<td>CH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>122.7</td>
<td>7.14 dd (5.2, 1.6)</td>
<td>CH</td>
<td>H-13</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>162.4</td>
<td>C</td>
<td>H-13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>35.7</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>31.0</td>
<td>1.24s</td>
<td>CH$_3$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(C₆H₅)₃P=N-), 7.76 (s, 1H, 6-CH), 7.58 (m, 3H, 4-CH of (C₆H₅)₃P=N-), 7.5 (m, 3H, 4-CH of (C₆H₅)₃P=N-), 7.14 (dd, J = 5.2, 1.6, 2H, 3,5-CH of 4-(CH₃)₃C(C₅H₅)Pd), 6.89 (dd, J = 8.0, 2.0, 1H, 3-CH), 6.78 (dd, J = 8.0, 2.0, 1H, 4-CH), 2.19 (s, 3H, 5-CH₃), 1.24 (s, 9H, 4-(CH₃)₃C(C₅H₅)Pd), 0.15 (s, 3H, CH₃Pd). 3¹P NMR (CDCl₃): δ 31.3. ¹³C NMR (CDCl₃): δ 162.4, 152.3, 144.0, 142.8 (d, JPC = 9.9), 135.5 (d, JPC = 9.8, ortho-CH of (C₆H₅)₃P=N-), 133.4 (para-CH of (C₆H₅)₃P=N-), 133.1, 131.2, 130.2, 130.4 (d, JPC = 106.3, ipso C of (C₆H₅)₃P=N-), 129.1 (d, JPC = 12.1, meta-CH of (C₆H₅)₃P=N-), 127.3, 122.7, 35.7, 34.0, 21.5, -4.0. 2D NMR data are as shown in Table 3.2.

VT NMR Experiments of [2-(Ph₃P=N)-5-
MeC₆H₃SO₃]Pd(4′BuPy)Me (42). A valved NMR tube was loaded with 42 (20.0 mg, 28.4 μmol) and CD₂Cl₂ (0.5 mL) was added via vacuum transfer at -196 °C. After flushed with N₂ gas, the tube was sealed and warmed to 25 °C and shaken to result in a yellow solution. ¹H and ³¹P NMR spectra were acquired at temperatures 10, -10, -30, -50, -60, -70, and -90 °C. ¹H NMR (CD₂Cl₂, 10 °C): δ 8.22 (d, J = 5.2, 2H, 2,6-CH of 4-¹BuPy), 8.01 (m, 6H, 2,6-CH of (C₆H₅)₃P=N-), 7.62 (t, J = 6.0, 3H, 4-CH of (C₆H₅)₃P=N-), 7.58 (s, 1H, 6-CH), 7.52 (m, 6H, 3,5-CH of (C₆H₅)₃P=N-), 7.23 (d, J = 5.2, 2H, 3,5-CH of 4-¹BuPy), 6.97 (d, J = 6.80, 1H, 3-CH), 6.84 (d, J = 6.8, 1H, 4-CH), 2.20 (s, 3H, 5-CH₃), 1.25 (s, 9H, ¹Bu), 0.15 (s, 3H, CH₃Pd). ³¹P NMR (CDCl₃): δ 31.6. ¹H NMR (CD₂Cl₂, -10 °C): δ 8.19 (d, J = 5.2, 2H, 2,6-CH of 4-¹BuPy), 8.00 (bs, 6H, 2,6-CH of (C₆H₅)₃P=N-), 7.63 (m, 4H, 4-CH of (C₆H₅)₃P=N- and 6-CH), 7.52 (m, 6H, 3,5-CH of (C₆H₅)₃P=N-), 7.23 (d, J = 5.2, 2H, 3,5-CH of 4-¹BuPy), 6.99 (d, J = 6.80, 1H, 3-CH), 6.88 (d, J = 6.8, 1H, 4-CH), 2.19 (s, 3H, 5-CH₃), 1.24 (s, 9H, ¹Bu), 0.13 (s, 3H, CH₃Pd).
31P NMR (CDCl$_3$): δ 31.7. 1H NMR (CD$_2$Cl$_2$, -30 °C): δ 8.17 (d, J = 5.2, 2,6-CH of 4-^1BuPy), 7.41-8.10 (broadened by coalescence, 16H, 6-CH and (C$_6$H$_5$)$_3$P=N-), 7.23 (d, J = 5.2, 2H, 3,5-CH of 4-^1BuPy), 6.99 (d, J = 6.80, 1H, 3-CH), 6.85 (d, J = 6.8, 1H, 4-CH), 2.18 (s, 3H, 5-CH$_3$), 1.23 (s, 9H, ^1Bu), 0.11 (s, 3H, CH$_3$Pd). 31P NMR (CDCl$_3$): δ 31.8. 1H NMR (CD$_2$Cl$_2$, -50 °C): δ 8.15 (d, J = 5.2, 2,6-CH of 4-^1BuPy), 7.44-7.96 (broadened by coalescence, 16H, 6-CH and (C$_6$H$_5$)$_3$P=N-), 7.21 (d, J = 5.2, 2H, 3,5-CH of 4-^1BuPy), 7.00 (d, J = 6.80, 1H, 3-CH), 6.85 (d, J = 6.8, 1H, 4-CH), 2.15 (s, 3H, 5-CH$_3$), 1.20 (s, 9H, ^1Bu), 0.08 (s, 3H, CH$_3$Pd). 31P NMR (CDCl$_3$): δ 31.9. 1H NMR (CD$_2$Cl$_2$, -60 °C): δ 8.40-8.80 (broadened by coalescence), 8.07 (d, J = 5.2, 2.6-CH of 4-^1BuPy), 7.44-7.86 (broadened by coalescence), 7.41 (s, 3H, 6-CH), 7.15 (d, J = 5.2, 2H, 3,5-CH of 4-^1BuPy), 6.94 (d, J = 6.80, 1H, 3-CH), 6.77 (d, J = 6.8, 1H, 4-CH), 2.06 (s, 3H, 5-CH$_3$), 1.21 (s, 9H, ^1Bu), 0.00 (s, 3H, CH$_3$Pd). 31P NMR (CDCl$_3$): δ 32.0. 1H NMR (CD$_2$Cl$_2$, -70 °C): δ 8.70 (bm, 2H, (C$_6$H$_5$)$_3$P=N-), 8.11 (d, J = 5.2, 2H, 2,6-CH of 4-^1BuPy), 7.60-7.95 (bm, 10H, (C$_6$H$_5$)$_3$P=N-), 7.32-7.52 (m, 6H, 6-CH and (C$_6$H$_5$)$_3$P=N-), 7.21 (d, J = 5.2, 2H, 3,5-CH of 4-^1BuPy), 7.00 (d, J = 6.80, 1H, 3-CH), 6.82 (d, J = 6.8, 1H, 4-CH), 2.12 (s, 3H, 5-CH$_3$), 1.17(s, 9H, ^1Bu), 0.06 (s, 3H, CH$_3$Pd). 31P NMR (CDCl$_3$): δ 32.0. 1H NMR (CD$_2$Cl$_2$, -90 °C): δ 8.67 (m, 2H, (C$_6$H$_5$)$_3$P=N-), 8.09 (d, J = 5.2, 2,6-CH of 4-^1BuPy), 7.85 (m, 2H, (C$_6$H$_5$)$_3$P=N-), 7.77 (m, 1H, (C$_6$H$_5$)$_3$P=N-), 7.67 (bm, 6H, (C$_6$H$_5$)$_3$P=N-), 7.38-7.46 (bm, 5H, (C$_6$H$_5$)$_3$P=N and 6-CH), 7.21 (d, J = 5.2, 2H, 3,5-CH of 4-^1BuPy), 7.00 (d, J = 6.80, 1H, 3-CH), 6.82 (d, J = 6.8, 1H, 4-CH), 2.10 (s, 3H, 5-CH$_3$), 1.15(s, 9H, ^1Bu), 0.03 (s, 3H, CH$_3$Pd). 31P NMR (CDCl$_3$): δ 32.0.
Crystal data and structure refinement for 42

Empirical formula: C35 H37 N2 O3 P Pd S

Formula weight: 703.10

Temperature: 100.0 K

Wavelength: 0.71073 Å

Crystal system: Orthorhombic

Space group: P b c n

Unit cell dimensions:
- \(a = 17.86211(17) \, \text{Å}\) \(\alpha = 90°\)
- \(b = 17.52994(15) \, \text{Å}\) \(\beta = 90°\)
- \(c = 21.0147(2) \, \text{Å}\) \(\gamma = 90°\)

Volume: 6580.15(11) \, \text{Å}^3

Z: 8

Density (calculated): 1.419 Mg/m³

Absorption coefficient: 0.713 mm⁻¹

F(000): 2896

Crystal color, habit: yellow prism

Crystal size: 0.23 x 0.14 x 0.13 mm³

Theta range for data collection: 3.21 to 29.16°

Index ranges:
- 0 <= h <= 24
- 0 <= k <= 24
- 0 <= l <= 28

Reflections collected: 8871

Independent reflections: 8871 \([R(\text{int}) = 0.0000]\)

Completeness to theta = 29.16°: 99.8 %

Absorption correction: Semi-empirical from equivalents

Max. and min. transmission: 1.0000 and 0.9103

Refinement method: Full-matrix least-squares on F²

Data / restraints / parameters: 8871 / 0 / 344

Goodness-of-fit on F²: 1.079

Final R indices [I>2sigma(I)]: R1 = 0.0435, wR2 = 0.0957

R indices (all data): R1 = 0.0649, wR2 = 0.1041

Largest diff. peak and hole: 1.719 and -1.173 e.Å⁻³

Thermal Behavior of [2-(Ph₃P=N)-5-MeC₆H₃SO₃]Pd(Py)Me (41): Formation of [2-((C₆H₄)Ph₂P=N)-5-MeC₆H₃SO₃]Pd(Py) (43). In CDCl₃, at 25 °C. A valved NMR tube was loaded with 41 (15.0 mg, 23 μmol) and CDCl₃ (0.5 mL) was added via vacuum transfer at -196 °C. After flushed with N₂ gas, the tube was sealed and warmed to 25 °C and shaken to result in a greenish solution. ¹H and ³¹P NMR spectra established that 43 had not formed. The solution sat at room temperature for 2 hours and 24 hours. ¹H and
31P NMR spectra were obtained for each time interval. 1H and 31P NMR spectra established that 43 had not formed. In CDCl$_3$, at 68 °C. A valved NMR tube was loaded with 41 (15.0 mg, 23 μmol) and CDCl$_3$ (0.5 mL) was added via vacuum transfer at -196 °C. After flushed with N$_2$ gas, the tube was sealed and warmed to 25 °C and shaken to result in a greenish solution. 1H and 31P NMR spectra established that 43 had not formed. The solution was heated to 68 °C for 2 hours and 24 hours. 1H and 31P NMR spectra were obtained for each time interval. After 2 hours, the integration of 31P NMR spectra established that decomposition of 41 had proceeded to a significant degree and revealed a mixture with multiple phosphorous compounds, 43 (δ_p 46.7, 71.41%), [2-(Ph$_3$P=N)-5-MeC$_6$H$_3$SO$_3$]Pd(Py)Cl (abbreviated as Pd-Cl) (δ_p 35.3, 7.95%), unknown intermediate (δ_p 33.5, 1.80%), 41 (δ_p 31.5, 6.05%), zwitterion 36 (δ_p 30.9, 9.38%), and Ph$_3$PO (δ_p 28.3, 1.65%). After 24 hours, the integration of 31P NMR spectra established that decomposition of 41 had completed and revealed a mixture containing 43 (δ_p 46.7, 76.52%), Pd-Cl (δ_p 35.3, 5.08%), zwitterion 36 (δ_p 30.9, 16.4%), and Ph$_3$PO (δ_p 28.3, 1.99%). 1H NMR shows presence of multiple components including 43, Pd-Cl, (Py)$_2$PdCl$_2$, and 36. 1H and 31P NMR data from the 24 hour experiment are as follows:

1H NMR (CDCl$_3$): δ 10.35 (d, J = 12.0, 0.17 H, 36), 8.97 (d, J = 4.8, 2 H, 2,6-CH of Py of 43), 8.84 (d, J = 5.2, 0.51H, (Py)$_2$PdCl$_2$), 8.30 (d, J = 8.0, Pd-Cl), 7.80-8.00 (m, 7.83 H), 7.65 (m, 3.57H), 7.54 (m, 4.48H), 7.42 (t, J = 8.0, 2H, 3,5-CH of PdPy of 43), 7.34 (t, J = 7.6, (Py)$_2$PdCl$_2$), 6.90-7.10 (m, 3.02H), 6.78 (d, 0.31H), 6.56 (dd, J = 8.4, 2.4, 1H, 4-CH of 43), 6.35-6.40 (m, 1.19H), 6.27 (d, J = 6.8, 3-CH of 43), 2.22 (s, 1.03H, 36), 2.18 (s, 41), 2.14 (s, 3H, 5-CH$_3$ in 43), 0.85 (s, 0.21H, C$_2$H$_6$), 0.21(s, 0.76H, CH$_4$). 31P NMR
(CDCl$_3$): δP 46.7 (43, 76.52%), 35.3 (Pd-Cl, 5.08%), 30.9 (36, 16.4%), and δP 28.3 (Ph$_3$PO, 1.99%).

Thermal Behavior of [2-(Ph$_3$P=N)-5-MeC$_6$H$_3$SO$_3$]Pd(4-tBuPy)Me (42): Formation of [2-(C$_6$H$_4$)Ph$_2$P=N)-5-MeC$_6$H$_3$SO$_3$]Pd(4-tBuPy) (44). In CDCl$_3$ at 70 °C. A valved NMR tube was loaded with 42 (15.0 mg, 21 μmol) and CDCl$_3$ (0.5 mL) was added via vacuum transfer at -196 °C. After flushed with N$_2$ gas, the tube was sealed and warmed to 25 °C and shaken to result in a greenish solution. 1H and 31P NMR spectra established that 44 had not formed. The solution was heated to 68 °C for 2 and 24 hours. 1H and 31P NMR spectra were obtained for each time interval. After 2 hours, 31P NMR spectra established that decomposition of 42 had proceeded to a significant degree and revealed a mixture with multiple phosphorous compounds, 44 (δP 46.5, 28.19%), [2-(Ph$_3$P=N)-5-MeC$_6$H$_3$SO$_3$]Pd(4-tBuPy)Cl (abbreviated as tBuPd-Cl) (δP 35.1, 5.84%), unknown intermediate (δP 33.3, 1.57%), 42 (δP 31.3, 40.56%), zwitterion 36 (δP 30.9, 21.17), and Ph$_3$PO (δP 28.9, 2.66%). After 24 hours, 31P NMR spectra established that decomposition of 42 had completed and revealed a mixture containing 44 (δP 46.4, 51.21%), tBuPd-Cl (δP 35.1, 2.82%), zwitterion 36 (δP 30.9, 42.02%), and Ph$_3$PO (δP 28.3, 3.95%). 1H NMR shows presence of multiple components including 44, tBuPd-Cl, 36, and Ph$_3$PO. 1H and 31P NMR data from the 24 hour experiment are as follows: 1H NMR (CDCl$_3$): δ 10.33 (d, J = 12.0, 0.12H, 36), 8.72 (d, J = 4.0, 2H, 2,6-CH of Py of 44), 8.58 (d, J = 4.0, 0.87H, tBuPd-Cl), 8.04 (m, 0.26H), 7.72-7.90 (m, 6.56 H), 7.67 (t, J = 6.4, 1.47H), 7.50-7.60 (m, 4.52H), 7.38-7.42 (m, 4.28H), 7.22-7.3 (m, 2.32H), 7.20 (d, J = 12.0, 0.87H, tBuPd-Cl), 7.02 (d, J = 5.2, 0.20H), 6.80-6.90 (m, 2.30H), 6.65 (d, J = 5.6, 0.58H), 6.45 (d, J = 6.8, 0.84H), 6.23 (d, J = 6.4, 2H), 2.12 (s, 2.43H, 36), 2.03(s, 2.51H, 42), 1.25 (s, 7.28H),
^{1}H and ^{31}P NMR spectra confirmed that 44 had not formed. The solution was heated to 46 °C for 2, 24, 72, and 120 hours. ^{1}H and ^{31}P NMR spectra were obtained for each time interval. After 2 hours, ^{31}P NMR spectra established that decomposition of 42 had proceeded to a significant degree and revealed a mixture containing multiple phosphorous compounds, [2-(Ph$_3$P=N)-5-MeC$_6$H$_3$SO$_3$]Pd(4-1BuPy)Cl (1BuPd-Cl) (δ$_P$ 35.2, 4.63%), unknown intermediate (δ$_P$ 33.5, 10.76%), 42 (δ$_P$ 31.5, 84.61%). The orthopalladated species [2-((C$_6$H$_4$)Ph$_2$P=N)-5-MeC$_6$H$_3$SO$_3$]Pd(4-1BuPy) (44) had not formed at this stage. After 24 hours, ^{31}P NMR spectra established that decomposition of 42 proceeded further, revealing a mixture that contains 44 (δ$_P$ 47.0, 1.64%), 1BuPd-Cl (δ$_P$ 35.2, 8.94%), unknown intermediate (δ$_P$ 33.5, 35.81%), zwitterion 36 (δ$_P$ 32.1, 3.38%), starting complex 42 (δ$_P$ 31.6, 47.09%), and Ph$_3$PO (δ$_P$ 28.2, 0.82%). The orthopalladated species 44 formed in insignificant amount.

After 72 hours, ^{31}P NMR spectra established that decomposition of 42 proceeded further, revealing a mixture that contains 44 (δ$_P$ 47.0, 7.64%), 1BuPd-Cl (δ$_P$ 35.2, 9.52%), unknown intermediate (δ$_P$ 33.5, 26.69%), zwitterion 36 (δ$_P$ 32.1, 4.45%), starting complex 42 in overlapping with an unknown (δ$_P$ 31.7 and 31.6, 48.78%), and Ph$_3$PO (δ$_P$ 27.1, 2.92%). After 120 hours, ^{31}P NMR spectra established that decomposition of 42 had not completed, revealing a mixture that contains 44 (δ$_P$ 47.0, 10.0%), 1BuPd-Cl (δ$_P$ 35.2, 7.43%), unknown intermediate (δ$_P$ 33.5, 11.74%), starting complex 42 in overlapping...
with an unknown (δ\textsubscript{P} 31.7 and 31.6, 51.24%), and Ph\textsubscript{3}PO (δ\textsubscript{P} 27.1, 12.05%). Zwitterion was not observed. 1H NMR spectrum of the 120 hour experiment was too complicated to be interpreted. Due to serious overlapped peaks, it had been difficult to assign integration numbers to each peak. Only chemical shifts of some observable proton peaks are listed here. 1H NMR (CDCl\textsubscript{3}): δ 10.33d, 8.80d, 8.66d, 8.60d, 6.82d, 6.44d, 2.24s, 2.15s, 1.37s, 1.31s, 1.25s, 0.85s, 0.17s. 31P NMR (CDCl\textsubscript{3}): δ\textsubscript{P} 47.0 (44, 10.0%), 35.2 (tBuPd-Cl, 7.43%), 33.5 (11.74%), 31.7 and 31.6 (51.24%), and δ\textsubscript{P} 27.1 (Ph\textsubscript{3}PO, 12.05%). In C\textsubscript{6}D\textsubscript{6} at 68 °C. A valved NMR tube was loaded with 42 (15.0 mg, 21 μmol) and C\textsubscript{6}D\textsubscript{6} (0.5 mL) was added via vacuum transfer at -196 °C. After flushed with N\textsubscript{2} gas, the tube was sealed and warmed to 25 °C and shaken to result in a greenish solution. 1H and 31P NMR spectra established that 44 had not formed. The solution was heated to 68 °C for 2 and 24 hours. 1H and 31P NMR spectra were obtained for each time interval. After 2 hours, 31P NMR spectra established that decomposition of 42 had proceeded to an insignificant degree and revealed a mixture containing multiple phosphorous compounds, 44 (δ\textsubscript{P} 45.4, 2.97%), unknown intermediate (δ\textsubscript{P} 34.6, 0.74%), and 42 (δ\textsubscript{P} 30.8, 96.30%). After 24 hours, 31P NMR spectra established that decomposition of 42 had proceeded to a significant degree and revealed a mixture containing a mixture containing multiple phosphorous compounds, 44 (δ\textsubscript{P} 45.4, 28.61%), unknown intermediate (δ\textsubscript{P} 34.6, 1.38%), 42 (δ\textsubscript{P} 30.8, 69.42%) and Ph\textsubscript{3}PO (δ\textsubscript{P} 24.7, 0.58%). 1H and 31P NMR data from the 24 hour experiment are as follows: 1H NMR (CDCl\textsubscript{3}): 8.63 (d, J = 6.8, 0.93H), 8.56(d, J = 4.0, 1.35H), 8.40(s, 1.15H), 8.29 (m, 5.84H), 8.18 (d, J = 6.8, H = 2.37), 7.91 (m, 2H), 6.70-7.20 (m, 14.96H), 6.83 (d, J = 6.4, 1.23H), 6.78 (m, 1.49H), 6.64 (d, J = 8.0, 1.1H), 6.55 (d, 0.60 H), 6.47(d, J = 6.4, 1.40H), 6.36 (d, J = 6.8, 2H), 1.87 (s, 2.93H), 1.85(s, 1.61H), 1.00 (s, 4.19H),
0.79s and 0.78s (3.95H), 0.58(s, 3H), 0.15(s, 0.61H, CH₄). 31P NMR (C₆D₆): δP 45.4 (44, 28.61%), 34.6 (unknown, 1.38%), 30.8 (53, 69.42%), and 24.7 (Ph₃PO, 0.58%).

In C₆D₆CD₃ at 70°C. A valved NMR tube was loaded with 42 (5 mg, 7.5 μmol) and toluene-d₈ (0.5 mL) was added via vacuum transfer at -196°C. After flushed with N₂ gas, the tube was sealed and warmed to 25°C and shaken to result in a solution. 1H and 31P NMR spectra established that 44 had not formed. After 2 hours, 31P NMR spectra established that decomposition of 42 had proceeded to an insignificant degree and revealed a mixture containing multiple phosphorous compounds, 44 (δP 50.4, 7.80%), unknown intermediate (δP 39.6, 2.96%), and 42 (δP 35.8, 87.9%). After 24 hours, 31P NMR spectra established that decomposition of 42 had proceeded further, revealing a mixture containing multiple phosphorous compounds, 44 (δP 50.4, 35.72%), unknown intermediate (δP 39.6, 3.25%), and 42 (δP 35.8, 57.92%). 1H and 31P NMR data from the 24 hour experiment are as follows: 1H NMR (C₆D₅CD₃): 8.84 (d, $J = 5.6$, 0.15H), 8.58 (d, $J = 4.8$, 0.55H), 8.49 (d, $J = 4.0$, 0.48H), 8.39 (s, 0.49H), 8.23 (m, 3.26H), 8.15 (d, $J = 5.2$, H = 1.14), 7.90 (m, 1.22H), 6.90-7.30 (m, 12.68H), 6.72-6.85 (m, 2.03H), 6.55-6.65 (m, 1.39), 6.35-6.52 (m, 2.48H), 1.92s and 1.89s (2.78H), 1.01(s, 3H), 0.62-0.92 (m, 10.65H), 0.46 (s, 1.65H), 0.17(s, 0.41H, CH₄). 31P NMR (C₆D₆): δP 50.4 (44, 35.42%), 39.6 (unknown, 3.25%), 35.8 (53, 57.99%). In C₆D₆CD₃ at 25°C.

A valved NMR tube was loaded with 42 (10.0 mg, 14 μmol) and C₆D₅CD₃ (0.5 mL) was added via vacuum transfer at -196°C. After flushed with N₂ gas, the tube was sealed and warmed to 25°C and shaken to result in a greenish solution. 1H and 31P NMR spectra established that 44 had not formed. The solution sat at room temperature for 6 and 48 hours, 1H and 31P NMR spectra established that 44 had not formed. In C₆D₆CD₃ at 80°C.
A valved NMR tube was loaded with 42 (5 mg, 7.5 μmol) and toluene-d₈ (0.5 mL) was added via vacuum transfer at -196 °C. After flushed with N₂ gas, the tube was sealed and warmed to 25 °C and shaken to result in a solution. ¹H and ³¹P NMR spectra established that 44 had not formed. The solution was heated to 80 °C for 2, 6, and 24 hours. ¹H and ³¹P NMR spectra were obtained for each time interval. The integration of ³¹P NMR spectra established that after 2 hours at 80 °C, 42 and 44 coexisted in the solution and 37.08% of the starting 42 had been converted to 44; after 6 hours, 42 was almost completely consumed and 44 was present in the solution only and 98.5.0% of the starting 42 had been converted to 44; after 6 hours, 42 was completely consumed and it showed 100% 44 on the ³¹P NMR. ¹H and ³¹P NMR data from the 24 hour experiment are as follows: ¹H NMR (toluene-d₈): δ 8.55 (d, J = 6.8, 2 H, 2,6-C₇H₄ of 4-ᵗBuPy), 8.41 (s, 1H, 6-C₇H₄ of -C₆H₃SO₃-), 7.89 (m, 4H, 2,6-C₇H₄ of −Ph₂P=N−), 7.60-7.78 (m, 20H), 6.95-7.22 (m, 45H), 6.70-6.85 (m, 3H), 6.55 (d, J = 6.8, 2H, 3,5-C₇H₄ of 4-ᵗBuPy), 6.50 (d, J = 6.0, 6.38 (s, 2H), 1.89 (s, 3H, 5-Me), 0.84 (s, 9H, ¹Bu), 0.18 (s, 0.83H, CH₄). ³¹P NMR (toluene-d₈): δ 50.2 (44). In C₆D₆CD₃ at 80 °C in 8 hours without Internal Standard. A valved NMR tube was loaded with 42 (3.0 mg, 4.2 μmol) and toluene-d₈ (0.5 mL) was added via vacuum transfer at -196 °C. After flushed with N₂ gas, the tube was sealed and warmed to 25 °C and shaken to result in a solution. ¹H and ³¹P NMR spectra established that 44 had not formed. The solution was heated to 80 °C for 8 hours. ¹H and ³¹P NMR spectra were obtained. The integration of ³¹P NMR spectra established that after 8 hours at 80 °C, after 6 hours, 42 was completely consumed up and it showed 100% 44 on the ³¹P NMR. ¹H and ³¹P NMR data from the 24 hour experiment are as follows: ¹H NMR (toluene-d₈): δ 8.54 (d, J = 6.8, 2 H, 2,6-C₇H₄ of 4-ᵗBuPy), 8.44 (s, 1H, 6-C₇H₄ of -C₆H₃SO₃-
7.90 (m, 4H, 2,6-CH of -Ph2P=N-), 7.60-7.78 (m, 20H), 6.95-7.22 (m, 45H), 6.70-6.85 (m, 3H), 6.55 (d, J = 6.8, 2H, 3,5-CH of 4-tBuPy), 6.50 (d, J = 6.0, 6.38 (s, 2H), 1.89 (s, 3H, 5-Me), 6.50 (d, J = 6.0, 6.38 (s, 2H), 1.89 (s, 3H, 5-Me), 0.84 (s, 9H, tBu), 0.18 (s, 0.83H, CH4). 31P NMR (toluene-d8): δ 50.2 (44). In C6D6CD3 at 80 °C in 16 hours with Ph3PO as Internal Standard. A valved NMR tube was loaded with 42 (3.0 mg, 4.2 μmol) and Ph3PO (3.0 mg, 10.8 μmol) and toluene-d8 (0.5 mL) was added via vacuum transfer at -196 °C. After flushed with N2 gas, the tube was sealed and warmed to 25 °C and shaken to result in a solution. 1H and 31P NMR spectra established that 44 had not formed. The solution was heated to 80 °C for 16 hours. 1H and 31P NMR spectra were obtained. 31P NMR spectra established that 42 was completely converted to 44. 1H NMR (toluene-d8): δ 8.56 (d, J = 6.8, 2 H, 2,6-CH of 4-tBuPy), 8.41 (s, 1H, 6-CH of -C6H3SO3-), 7.89 (m, 4H, 2,6-CH of -Ph2P=N-), 7.60-7.78 (m, 14H), 6.95-7.22 (m, 40H), 6.70-6.80 (m, 3H), 6.53 (d, J = 6.8, 3H), 6.37 (s, 2H), 1.90 (s, 3H, 5-Me), 0.85 (s, 9H, tBu), 0.18 (s, 0.58H, CH4). 31P NMR (toluene-d8): δ 50.2 (44, 44.2%), 28.7 (Ph3PO, 100%).

[2-((C6H4)Ph2P=N)-5-MeC6H3SO3]Pd(4-tBuPy) (44) A solution of [2-(Ph3P=N)-5-MeC6H3SO3]Pd(4-tBuPy)Me (42) (0.28 mmol, 0.20 g) in toluene (20 mL) was heated to 80 °C for 15 hours, resulting a solution with black solid. The reaction mixture was filtered through Celite to give a yellow solution. Evaporation of the solution yielded 44 as a yellow powder (47 mg, 24%). 1H NMR (toluene-d8): δ 8.56 (d, J = 6.8, 2 H, 2,6-CH of 4-tBuPy), 8.40 (s, 1H, 6-CH of -C6H3SO3-), 7.90 (m, 4H, 2,6-CH of -Ph2P=N-), 6.70-6.85 (m, 3H), 6.55 (d, J = 6.8, 2H, 3,5-CH of 4-tBuPy), 6.50 (d, J
= 6.0, 2H), 6.37 (s, 2H), 1.89 (s, 3H, 5-Me), 0.84 (s, 9H, tBu). 31P NMR (toluene-d$_8$): δ 50.2.

Crystal data and structure refinement for 44

- **Empirical formula**: C43 H23 N2 O3 P Pd S
- **Formula weight**: 785.06
- **Temperature**: 99.9(1) K
- **Wavelength**: 0.71073 Å
- **Crystal system**: Triclinic
- **Space group**: P - 1
- **Unit cell dimensions**:

 $a = 9.3572(6)$ Å \hspace{1cm} \alpha = 87.010(6)^\circ$
 $b = 11.8341(8)$ Å \hspace{1cm} \beta = 87.005(6)^\circ$
 $c = 18.5228(14)$ Å \hspace{1cm} \gamma = 69.223(6)^\circ$
- **Volume**: 1913.9(2) Å3
- **Z**: 2
- **Density (calculated)**: 1.362 Mg/m3
- **Absorption coefficient**: 0.622 mm$^{-1}$
- **F(000)**: 792
- **Crystal color, habit**: colorless plate
- **Crystal size**: 0.21 x 0.05 x 0.01 mm3
- **Theta range for data collection**: 3.26 to 27.56°
- **Index ranges**: $-12 \leq h \leq 12$, $-15 \leq k \leq 15$, $-24 \leq l \leq 24$
- **Reflections collected**: 30705
- **Independent reflections**: 8824 [R(int) = 0.0622]
- **Completeness to theta = 27.56°**: 99.8 %
- **Absorption correction**: Semi-empirical from equivalents
- **Max. and min. transmission**: 1.000 and 0.888
- **Refinement method**: Full-matrix least-squares on F2
- **Data / restraints / parameters**: 8824 / 6 / 410
- **Goodness-of-fit on F2**: 1.084
- **Final R indices [I>2sigma(I)]**: R1 = 0.0502, wR2 = 0.1071
- **R indices (all data)**: R1 = 0.0694, wR2 = 0.1151
- **Largest diff. peak and hole**: 1.507 and -1.183 e.Å$^{-3}$

Ethylene Reactivity of 42. At room temperature. To a high-pressure glass reactor, 42 (10.3 mg, 0.015 mmol) was loaded in a glovebox. Under positive N$_2$ gas, toluene (20 mL) was added. After a brief evacuation, ethylene gas (5 atm) was introduced. The mixture was stirred for 6 hours at room temperature to result in a turbid suspension. MeOH was
added and the mixture turned clear with some black residues. The mixture was filtered through Celite. The obtained filtrate was pumped down to afford a white powder (32 mg). 1H and 31P NMR spectra were obtained for the white powder. 1H NMR (CDCl$_3$): δ 10.59 (d, 0.62H, 36), 7.6-8.0 (m, 10.7), 6.80 (m, 1.01H, 36), 6.38 (m, 0.89H, 36), 2.23 (s, 3H, 36), 1.25-1.35 (m, 5.85H, alkanes), 0.88 (m, 2.26H, alkanes). 1P NMR (CDCl$_3$): δ31.0 (36).

At 80 °C. To a high-pressure glass reactor, 42 (10.3 mg, 0.015 mmol) was loaded in a glovebox. Under positive N$_2$ gas, toluene (20 mL) was added. After a brief evacuation, ethylene gas (5 atm) was introduced. The mixture was heated to 80 °C and stirred for 6 hours to result in a turbid suspension. MeOH was added and the mixture turned clear with some black residues. The mixture was filtered through Celite. The obtained filtrate was pumped down. 1H and 31P NMR spectra were obtained for the residues. 1H NMR (CDCl$_3$): δ 10.14 (d, 0.89H, 36), 8.68 (d, 0.73H, tBuPy), 8.09 (s, 1.11H) 7.6-8.0 (m, 15.8H), 6.80 (dd, 1.00 H, 36), 6.38 (d, 1.00H, 36), 2.23 (s, 3H, 36), 1.36 (s, 3.69H, tBuPy), 1.29 (s, 2.76H, alkanes), 1.25 (bs, 4.29H, alkanes), 0.85 (t, 1.77H, alkanes), 0.06 (s, 0.46H, 44), 1P NMR (CDCl$_3$): δ43.9 (44), 31.3 (36).
CHAPTER FOUR
SYNTHESIS AND REACTIVITY OF
ALKYL-BASED PHOSPHINIMINE-SULFONATE PALLADIUM
METHYL PYRIDINE COMPLEXES

4.1 Introduction

In chapter three, our initial work indicates triphenylphosphinimine sulfonate palladium methyl pyridine complex can catalyze oligomerization of ethylene to form alkanes. Our study of the thermal behavior shows that orthopalladation occurs when the complex is heated to 80 °C. Our study also shows that the orthopalladated product itself does not catalyze the oligomerization process. Therefore, orthopalladation can be regarded as a pathway of deactivation of the catalyst. Orthopalladation occurs on the 2 position of a phosphiniminobenzene ring. To avoid orthopalladation, we have synthesized alkyl analogues such as methyl diphenyl, dibutylphenyl, and tributylphosphinimine sulfonate palladium methyl pyridine complexes. Their thermal behavior and catalytic properties are investigated.
4.2 Results and Discussion

Synthesis of Methylidiphenyl, Di-n-butylphenyl, and Tri-n-butylphosphinimine-sulfonate Palladium Methyl 4-tert-Butylpyridine Complexes

The synthesis of alkyl-based phosphinimine-sulfonate palladium complexes methylidiphenylphosphinimine-sulfonate palladium methyl 4-tert-butylpyridine (45), di-n-butylphenylphosphinimine-sulfonate palladium methyl 4-tert-butylpyridine (46), and tri-n-butylphosphinimine-sulfonate palladium methyl 4-tert-butylpyridine (47) started with the corresponding zwitterions methylidiphenylphosphiniminium-sulfonate (37), di-n-butylphenylphosphinimine-sulfonate (48) and tri-n-butylphosphinimine-sulfonate (49) (48 and 49 were synthesized by following the procedure described in chapter two). The zwitterions were deprotonated with NaH to generate their sodium salts (50, 51, and 52), which reacted with bis(4-tert-butylpyridine)palladium methyl chloride at room temperature to form the desired complexes 45, 46, and 47 (Scheme 4.1).

Scheme 4.1 Synthesis of 45-47

![Synthesis Scheme](image)

37, \(R = R' = \text{Me}, R'' = \text{Ph} \)
48, \(R = R' = \text{nBu}, R'' = \text{Ph} \)
49, \(R = R' = R'' = \text{nBu} \)
50, \(R = R' = \text{Me}, R'' = \text{Ph} \)
51, \(R = R' = \text{nBu}, R'' = \text{Ph} \)
52, \(R = R' = R'' = \text{nBu} \)
45, \(R = R' = \text{Me}, R'' = \text{Ph} \)
46, \(R = R' = \text{nBu}, R'' = \text{Ph} \)
47, \(R = R' = R'' = \text{nBu} \)

Methyldiphenylphosphinimine-sulfonate palladium methyl 4-tert-butylpyridine (45) was characterized by interpretation of \(^1H\), \(^{31}P\), and \(^{13}C\) NMR spectra and 2D NMR spectra including HMQC and HMBC. On the \(^1H\) NMR spectrum of 45, a high intensity sharp
singlet $\delta_H = -6.0$ ppm in the upfield region demonstrates the presence of a methyl on palladium. Palladium 4-tert-butylpyridine gave a set of AB signals including a doublet at $\delta_H = 8.20$ ppm and a doublet at $\delta_H = 7.13$ ppm with a coupling constant $J_{AB} = 6.8$ Hz.

Compared to free pyridine, an obvious change is that the 2 and 6

![Chemical structure](image)

Table 4.1 1D and 2D NMR Spectral Data of 45 (δ_C and δ_H in ppm; J in Hz)

<table>
<thead>
<tr>
<th>Carbon</th>
<th>δ_C (J)</th>
<th>δ_H (J)</th>
<th>HMQC</th>
<th>HMBC</th>
<th>NOSEY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>142.5d (9.1)</td>
<td></td>
<td>C</td>
<td>H-3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>132.7</td>
<td></td>
<td>C</td>
<td>H-3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>126.3d (5.3)</td>
<td>6.78dd (8.0, 2.0)</td>
<td>CH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>131.0d (2.3)</td>
<td>6.88dd (8.0, 2.0)</td>
<td>CH</td>
<td>H-6</td>
<td>H-8</td>
</tr>
<tr>
<td>5</td>
<td>143.6</td>
<td></td>
<td>C</td>
<td>H-4</td>
<td>H-6</td>
</tr>
<tr>
<td>6</td>
<td>128.8</td>
<td>7.75s</td>
<td>CH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>20.4</td>
<td>2.26s</td>
<td>CH$_3$</td>
<td>H-4</td>
<td>H-6</td>
</tr>
<tr>
<td>8</td>
<td>14.2d (68.3)</td>
<td>2.35d (13.2)</td>
<td>CH$_3$</td>
<td></td>
<td>H-4 H-10’ H-18</td>
</tr>
<tr>
<td>9</td>
<td>131.7d (109.3)</td>
<td></td>
<td>C</td>
<td>H-11</td>
<td></td>
</tr>
<tr>
<td>9’</td>
<td>129.6d (91.8)</td>
<td></td>
<td>C</td>
<td>H-11’</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>133.4d (10.6)</td>
<td>8.24m</td>
<td>CH</td>
<td></td>
<td>H-18</td>
</tr>
<tr>
<td>10’</td>
<td>133.0 d (9.9)</td>
<td>7.95m</td>
<td>CH</td>
<td></td>
<td>H-18’</td>
</tr>
<tr>
<td>11</td>
<td>128.8d (11.4)</td>
<td>7.60m</td>
<td>CH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11’</td>
<td>128.5d (12.9)</td>
<td>7.60m</td>
<td>CH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>132.6</td>
<td>7.67m</td>
<td>CH</td>
<td>H-10</td>
<td></td>
</tr>
<tr>
<td>12’</td>
<td>132.6</td>
<td>7.67m</td>
<td>CH</td>
<td>H-10’</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>151.2</td>
<td>8.21d (5.2)</td>
<td>CH</td>
<td>H-14</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>122.0</td>
<td>7.23d (5.2)</td>
<td>CH</td>
<td>H-13</td>
<td>H-17</td>
</tr>
<tr>
<td>15</td>
<td>162.0</td>
<td>C</td>
<td>H-13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-------</td>
<td>-----</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>34.8</td>
<td>C</td>
<td>H-14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>29.9</td>
<td>CH₃</td>
<td>H-14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 18 | -6.0 | CH₃ | H-8
| | | | H-10
| | | | H-10’|

position protons are shifted to upfield by 0.30 ppm, 3 and 5 position protons are shifted upfield by 0.13 ppm. The combination of 3 groups of multiplets at 8.27, 7.85-7.95, and 7.50-7.70 ppm, 2 doublets of doublets at 6.84 and 6.73 ppm, a doublet at 2.33 ppm and a singlet at 2.25 ppm showed the presence of methylidiphenylphosphinimine-sulfonate ligand. The 31P NMR showed a singlet at 34.7 ppm, downfield shifted for 33.3 ppm compared to its sodium salt. All peaks are sharp and well split. This is in contrast to its precursor, sodium triphenylphosphinimine-sulfonate, which had a set of broadened peaks in CD$_2$Cl$_2$. 13C NMR chemical shifts have been completely assigned by aid of some 2D NMR including HMQC and HMBC (Table 4.1).

In complex 45, the relative positions between the methyl group and pyridine can form two types of isomers, cis- or trans- isomers (Figure 4.1). Based on the convention used for differentiation of the geometric isomers of phosphine-sulfonate palladium complexes,
the cis-isomer defines that the labile ligand pyridine orients itself on the side of the sulfonate group, whereas the trans-isomer defines that the labile ligand pyridine orients itself opposite to the side of the sulfonate group. The differentiation of cis-45 from trans-45 was realized using NOESY. In the NOESY spectrum of cis-45, the methyl group is expected to have 3 correlations, one with methyl group of PPh2Me, one with the 2,6-protons of PPh2Me, and the other with the 2,6-protons of pyridine. In the NOESY spectrum of trans-45, only one correlation between the methyl and the 2,6-protons of pyridine can be seen. Our experiment showed the scenario of the cis-45. The NOESY correlations are listed in Table 4.1.

Di-n-butylphenylphosphinimine-sulfonate palladium methyl 4-tert-butylpyridine (46) was characterized by interpretation of 1H, 31P, and 13C NMR spectra. On the 1H NMR spectrum of 46, a high intensity sharp singlet δH = 0.47 ppm in the very upfield region demonstrates the presence of a methyl on palladium. Palladium 4-tert-butylpyridine gave a set of AB signals including a doublet at δH = 8.34 ppm and a doublet at δH = 7.17 ppm with a coupling constant JAB = 6.4 Hz. Compared to free pyridine, an obvious change is that the 2 and 6 position protons are shifted upfield by 0.16 ppm, while the 3 and 5 position protons are shifted upfield by 0.08 ppm. The combination of a multiplet at 7.97, a multiplet at 7.55, a singlet at 7.89, 2 doublets of doublets at 6.89 and 6.72 ppm, a doublet at 2.33 ppm and a singlet at 2.26 ppm showed the presence of the backbone of the di-n-butylphenylphosphinimine-sulfonate ligand. The two n-butyl groups are magnetically inquivalent, showing a complex pattern of multiplets in the upfield region from 1.00 to 2.75 ppm. The 31P NMR showed a singlet at 39.9 ppm, downfield shifted for 19.4 ppm compared to its sodium salt. All peaks are sharp and well split. This
is in contrast to its precursor, sodium di-n-butylphenylphosphinimine-sulfonate, which had a set of broadened peaks.

Tri-n-butylphosphinimine-sulfonate palladium methyl 4-tert-butylpyridine (47) was characterized by interpretation of 1H, 31P, and 13C NMR spectra. On the 1H NMR spectrum of 47, a high intensity sharp singlet $\delta$$_H$ = 0.62 ppm in the upfield region demonstrates the presence of a methyl on palladium. Palladium 4-tert-butylpyridine gave a set of AB signals including a doublet at $\delta$$_H$ = 8.39 ppm and a doublet at $\delta$$_H$ = 7.29 ppm with a coupling constant J_{AB} = 4.8 Hz. Compared to free pyridine, an obvious change is that the 2 and 6 position protons are shifted upfield by 0.11 ppm, 3 and 5 position protons are shifted downfield by 0.04 ppm. The combination of 2 doublets of doublets at 7.29 and 7.04 ppm, a singlet at 2.26 ppm and a series of multiplets in the aliphatic region showed the presence of the backbone of the tri-n-butylphosphinimine-sulfonate ligand. Three n-butyl groups are magnetically inquavalent, showing a complex pattern of multiplets in the upfield from 1.00 to 2.75 ppm. The 31P NMR showed a singlet at 44.8 ppm, downfield shifted for 18.3 ppm compared to its sodium salt. All peaks are sharp and well split. This is in contrast to its precursor, sodium ti-n-butylphosphinimine-sulfonate, which had a set of broadened peaks.

Thermal Behavior of Methyldiphenyl, Di-n-butylphenyl, and Tri-n-butylphosphinimine-sulfonate Palladium Methyl 4-tert-Butylpyridine Complexes

Orthopalladation is a known reaction of palladium complexes containing a phosphinimine donor. In a phosphinimine supported palladium complex, palladium abstracts an ortho hydrogen from either a P attached arene ring to form a 5-membered
exo orthopalladated species or a N-C linked arene ring to form a 5-membered endo orthopalladated species. To understand how orthopalladation occurs in phosphinimine-sulfonate palladium complexes, we studied the thermal behavior of complexes 45, and 46.

The experiment was carried out under different conditions including NMR solvents, temperatures, and time. NMR solvents included halogenated solvents CDCl₃/CD₂Cl₂ and non-halogenated solvents benzene-d₆/toluene-d₈. Complex 45 was heated in toluene-d₈ and 46 in benzene-d₆. As shown in scheme 4.2, endo-orthopalladated

Scheme 4.2 Thermal behavior of 45 and 46

Table 4.2 Percentages of Orthopalladation

<table>
<thead>
<tr>
<th>Complex</th>
<th>Solvent</th>
<th>Temperature(°C)</th>
<th>Time (h)</th>
<th>Orthopalladation(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>C₆D₅CD₃</td>
<td>25</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>48</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>72</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td>6.0</td>
</tr>
<tr>
<td>46</td>
<td>C₆D₆</td>
<td>80</td>
<td>2</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>48</td>
<td>0</td>
</tr>
</tbody>
</table>

45, R = Me, R' = Ph
46, R = R' = nBu
53, R = Me, R' = Ph
54, R = R' = nBu
species 53 and 54 are formed from the corresponding palladium complexes 45 and 46. Table 4.2 summarizes experimental results of integration percentages of peaks on 31P NMR spectra. Complex 45, when standing up to 72 hours at room temperature, did not undergo orthopalladation; but when heated to 80 °C, generated 6.0%, 13.7%, 16.2%, and 59% orthopalladated products in 2, 6, 10, and 26 hours respectively. Complex 46, when heated to 80 °C for 48 hours, did not undergo orthopalladation despite 2.1% orthopalladation being observed for the 2 hour timepoint. Apparently, increasing the content of alkyl groups in the phosphine motif can sharply shut down the process of orthopalladation.

Ethylene Reactivity of Methyldiphenyl, Di-n-butylphenyl, and Tri-n-butylphosphinimine-sulfonate Palladium Methyl 4-tert-Butylpyridine Complexes

For understanding of catalytic properties, 45-47 were reacted with ethylene at the catalytic amount. In the experiments, toluene was the solvent, ethylene pressure was 5 atm, and temperature was 80 °C. After 6 hours, the reactions resulted a solution with black materials, which indicated generation of Pd⁰. The reactions were quenched with methanol. The 1H NMR spectra of the obtained residues did not show apparent formation of polyethylene or alkenes or alkanes. Instead, zwitterions 37, 48, and 49 and free 4-tert-butylpyridine were observed on 1H NMR spectra. 31P NMR demonstrated also the formation of corresponding zwitterions.

These palladium complexes have shown interesting reactivities. Under nitrogen atmosphere, they are converted to orthopalladated products. Orthopalladation occurs at the 2- or 6-position of a phosphiniminobenzene ring. Thus, it shows a trend that the presence of benzene rings in the PN^SO ligand leads to greater orthopalladated product,
as is observed by 31P NMR. According to the 24-hour profiling, percentages of orthopalladation can be arranged in a decreasing order: $42 > 45 > 46$ (47 does not undergo orthopalladation). Under ethylene atmosphere, complexes 42 and 45-47 appear to have different reactivities. In the 4 reactions, black materials have been observed, suggesting formation of Pd0 and PN$^\text{SO}$ ligand for the 4 complexes. After quenching with methonal, 1H and 31P NMR spectral data were acquired for understanding the reactivities, which is discussed below. Orthopalladated products were not observed in the 4 reactions. But the reactivities toward ethylene are different. Based on the 1H NMR spectra, only the all-aryl-based ligand Ph$_3$-PN$^\text{SO}$ supported complex 42 has promoted formation of alkanes (δ_H 1.24, 1.20, 0.86 ppm).

These facts can be rationalized by aid of schemes. Scheme 4.3a summarizes the differentiated reactivities of complexes 42, 45-47 in N$_2$ and C$_2$H$_4$ atmospheres at the same temperature, 80 °C. Under N$_2$ atmosphere, orthopalladation dominates the reactivity. Under C$_2$H$_4$ atmosphere, however, orthopalladation does not occur and ligand regeneration dominates the reactivity. Scheme 4.3b can explain how the orthopalladation pathway is prohibited and ligand regeneration along with ethylene oligomerization is preferred under C$_2$H$_4$ atmosphere. According to this mechanism, the reactions involve two routes, orthopalladation (A) and ethylene association (B). Under high pressure, A is a slow process and B is a fast one. Therefore route B dominates the whole reactivity. Along with route B, association of C$_2$H$_4$ can be via two paths, either B1 or B2. Via path B1, a C$_2$H$_4$ molecule replaces a pyridine molecule to give an intermediate, [PN$^\text{SO}$]Pd(C$_2$H$_4$)Me. The intermediate complex takes route C, in the case of starting
complex 42, to allow ethylene insertion to Pd-Me bond to form complex [PN^SO]Pd-^nPr.

Following cycles of ethylene association and insertion to complex [PN^SO]Pd-^nPr result

Scheme 4.3 Complexes 42, 45-46: Reactivities and mechanism

a. Reactivities of complexes 43, 45-46

b. Proposed mechanism

in ethylene oligomerization (route D), giving alkane products. The intermediate complex can also take route E1, where another C_2H_4 molecule replaces the sulfonate donor forming the non-chelate bisethylenepalladium complex, OS^PN-Pd(C_2H_4)_2Me.
Bisethylenepalladium complex can undergo ligand regeneration step (F) giving PN^SO ligand and Pd^0. Via path B2, a molecule replaces sulfonate donor forming non-chelate palladium methyl ethylene pyridine complex, OS^PN-Pd(C_2H_4)(Py)Me. This complex takes route E2 accepting association by another C_2H_4 molecule to form the above mentioned bisethylenepalladium complex, OS^PN-Pd(C_2H_4)_2Me. This merges into route F to regenerate PN^SO ligand and form Pd^0. Route F is available for all starting complexes, 42, 45-47.

Routes A, C, and F are ethylene independent, whereas routes B1, B2, E1, and E2 are ethylene dependent. Too much C_2H_4 yields Pd^0 via B1-E1-F or B2-E2-F path. Absence of C_2H_4 yields orthopalladation products via A path. It suggests that an intermediate C_2H_4 atmosphere is needed to promote the ethylene polymerization reactivity. Path B-C-D is available for starting complex 42. Compared with the other three complexes 45-47, 42 has a maximum number of phenyl groups on the P atom. This suggests that steric factor plays an important role in ethylene oligomer/polymer chain growth. This reflects the importance of steric factor recognized in ethylene polymerization by the α-diimine palladium complexes. 47a

4.3 Conclusions

Phosphinimine-sulfonate palladium methyl complexes are thermally instable and subject to orthopalladation. Structural elucidation shows that phosphinimine-sulfonate palladium methyl complexes form endo-orthopalladated bicyclo compounds, in which the palladium-carbon bond lies on the P side, not the N side of the phosphazene functionality. Orthopalladation can be affected by factors including structure, temperature, solvent, and
time. Mechanistically, orthopalladation requires the presence of ortho aryl protons on the P side. Alkyl protons are not involved in orthopalladation. Decreased number of benzene rings on the P side can sharply alleviate the orthopalladation process. While the replacement of phenyl groups with alkyl groups alleviates orthopalladation, ethylene reactivity is not improved.

4.4 Experimental Section

General Procedures. All manipulations were performed under N₂ or vacuum using standard Schlenk or high vacuum techniques or in N₂-filled drybox unless otherwise specified. N₂ was purified by passage through columns containing activated molecular sieves and Q-5 oxygen scavenger. Pentane, hexanes, toluene, benzene, and dichloromethane were purified by passage through columns of activated 4 Å molecular sieves. Diethyl ether and tetrahydrofuran were distilled from Na/benzophenone ketyl. CDCl₃ and CD₂Cl₂ were dried over CaH₂ for 24 hours, degassed by freeze-pump-thaw cycles, and vacuum transferred to a storage vessel. Piperidine was obtained from Aldrich and distilled before using. All other solvents were purchased from Aldrich and used without further purification. ¹H, ¹³C, ³¹P, and 2D NMR spectra were recorded in Teflon valve sealed tubes on Varian 400 and 500 spectrometers at ambient probe temperature unless otherwise indicated. ¹H and ¹³C chemical shifts are reported versus SiMe₄ and were determined by reference to the residual ¹H and ¹³C solvent peaks. ³¹P chemical shifts were referenced to external 85% aqueous H₃PO₄. All the ligands and their precursors bear a sulfonated toluidine parental structure which has an atom-labeling scheme as follows:
[[(2-MePhP=N)-5-MeC₆H₅SO₃]Pd(4-tBuPy)Me (45). A flask containing sodium 2-
(methylidiphenylphosphiniminino)-5-
methylbenzenesulfonate (50) (0.20 g, 0.5 mmol) and bis(4-
 tert-butylpyridinepalladium (II) methyl chloride (4-
tBuPy₂PdMeCl) (0.21 g, 0.5 mmol) was charged with benzene (30 mL) while stirring.
Shortly, an initially observed clear greenish solution turned to a clear yellowish solution.
The reaction proceeded for 2 hours, resulting in a clear yellow solution. The yellow
solution was filtered through Celite along with 2x10 mL benzene rinsing. Evaporation of
the filtrate afforded a yellowish solid residue, which was further treated with pentane (30
mL) to give a yellowish precipitate. The precipitate was filtered onto a Buchner funnel
top and washed with pentane (3x10 mL) yielding 45 (0.26 g, 95
%) as a greenish solid.
¹H NMR (CD₂Cl₂): 8.24 (m, 2H, 2,6-CH of the front benzene ring in -(C₆H₅)₂P=N-), 8.21
(d, J = 5.2, 2H, 2,6-CH of (4-(CH₃)₃CC₃H₄N)Pd), 7.95 (m, 2H, 2,6-CH of the back
benzene ring in -(C₆H₅)₂P=N-), 7.75 (s, 1H, 6-CH of -C₆H₅SO₃-), 7.67 (m, 2H, 4-CH of -
(C₆H₅)₂P=N-), 7.60 (m, 4H, 3,5-CH -(C₆H₅)₂P=N-), 7.23 (d, J = 5.2, 2H, 3,5-CH of (4-
(CH₃)₃C(C₅H₄N))Pd), 6.88 (dd, J = 8.0, 2.0, 1H, 4-CH of -C₆H₅SO₃-), 6.78 (dd, J = 8.0,
2.0, 1H, 3-CH of -C₆H₅SO₃-), 2.35 (d, JₚH = 13.2, 3H, -CH₃P=N-), 2.26 (s, 3H, 5-CH₃ of
-C₆H₅SO₃-), 1.26 (s, 9H, 4-(CH₃)₃C(C₅H₄N))Pd), 0.27 (s, 3H, PdCH₃). ³¹P NMR
(CD₂Cl₂): δ 34.5. ¹³C NMR (CD₂Cl₂): 162.0, 151.2, 143.6, 142.5 (d, JₚC = 9.1), 133.4 (d,
JₚC = 10.6), 133.0 (d, JₚC = 9.9), 132.7, 132.6, 131.7 (d, JₚC = 109.3), 131.0 (d, JₚC = 2.3),
129.6 (d, $J_{PC} = 91.8$), 128.8, 128.8 (d, $J_{PC} = 11.4$), 128.5 (d, $J_{PC} = 12.9$), 126.3 (d, $J_{PC} = 5.3$), 122.0, 34.8, 29.9, 20.4, 14.2 (d, $J_{PC} = 68.3$), -6.0. The assignments of 13C NMR and 2D NMR data are as shown in Table 4.1.

$[(2-^{6}Bu_2PhP=N-5-MeC_6H_5SO_3)Pd(4-^{4}BuPy)Me]$ (46). A flask containing sodium toluene-4-di-n-butylphenylphosphinimine-3-sulfonate (51) (0.75 g, 1.75 mmol) and bis(4-tert-butylpyridinepalladium (II) methyl chloride (4-4BuPy$_2$PdMeCl) (0.21 g, 0.43 mmol) was charged with benzene (30 mL) while stirring. Shortly, an initially observed clear greenish solution turned to a clear yellowish solution. The reaction proceeded for 2 hours, resulting in a clear yellow solution. The yellow solution was filtered through Celite along with 2x10 mL benzene rinsing. Evaporation of the filtrate afforded a yellowish solid residue, which was further treated with pentane (30 mL) to give a yellowish precipitate. The precipitate was filtered onto a Buchner funnel top and washed with pentane (3x10 mL) yielding 46 (0.54 g, 47%) as a greenish solid. 1H NMR (CDCl$_3$): 8.34 (d, J = 6.4, 2H, 2,6-CH of 4-4BuPy), 7.97 (m, 2H, 2,6-CH of PhPN), 7.88 (s, 1H, 6-CH of -C$_6$H$_5$SO$_3$-), 7.45-7.62 (m, 3H, 3,4,5-CH of –PhPN-), 7.18 (d, J = 6.4, 2H, 3,5-CH of 4-4BuPy), 6.89 (dd, J = 8.0, 2.0, 1H, 4-CH of -C$_6$H$_5$SO$_3$-), 6.72 (dd, J = 8.0, 2.0, 1H, 3-CH of -C$_6$H$_5$SO$_3$-), 2.60 (m, 2H, α-CH_2 of front 8Bu), 2.46 (m, 2H, α-CH_2 of back 8Bu), 2.26 (s, 3H, 5-CH_3 of -C$_6$H$_5$SO$_3$-), 2.06(m, 2H, β-CH_2 of front 8Bu), 1.70 (m, 2H, β-CH_2 of back 8Bu), 1.45-1.60 (m, 4H, γ-CH_2 of front and back 8Bu), 1.26 (s, 9H, 4-(CH$_3$)$_3$C(C$_5$H$_4$N))Pd), 0.94 (3H, Me of front 8Bu), 0.78 (3H, Me of back 8Bu), 0.47 (s, 3H, PdCH$_3$). 31P NMR (CDCl$_3$): δ 39.9. 13C NMR (CDCl$_3$): 161.8, 151.2, 143.1, 142.8 (d, $J_{PC} = 8.3$), 132.4,
132.1 (d, $J_{PC} = 9.6$), 130.9, 130.2, 129.5, 128.7 (d, $J_{PC} = 11.4$), 126.7 (d, $J_{PC} = 3.0$), 122.0, 34.8, 30.1, 26.9 (d, $J_{PC} = 69.0$), 26.08 (d, $J_{PC} = 60.0$), 24.8, 23.9, 20.6, 13.4 (d, $J_{PC} = 18.2$), -6.8.

$[(2-n^3Bu_3P=N)-5-MeC_6H_5SO_3]Pd(4-tBuPy)(CH_3)$ (47). A flask containing sodium 2-(methylidiphenylphosphiniminino)-5-methylbenzenesulfonate (52) (0.32 g, 0.75 mmol) and bis(4-tert-butylpyridinepalladium (II) methyl chloride (4-$t^1BuPy_2PdMeCl$) (0.43 g, 0.75 mmol) was charged with benzene (30 mL) while stirring. Shortly, an initially observed clear greenish solution turned to a clear yellowish solution. The reaction proceeded for 2 hours, resulting in a clear yellow solution. The yellow solution was filtered through Celite along with 2x10 mL benzene rinsing. Evaporation of the filtrate afforded a yellowish solid residue, which was further treated with pentane (30 mL) to give a yellowish precipitate. The precipitate was filtered onto a Buchner funnel top and washed with pentane (3x10 mL) yielding 47 (0.36 g, 74%) as a greenish solid. 1H NMR (CD$_2$Cl$_2$): 8.39 (dd, $J = 4.8, 1.6, 2H$, 2,6-CH of (4-(CH$_3$)$_3$CC$_6$H$_4$N)Pd), 7.71 (s, 1H, 6-CH of -C$_6$H$_5SO_3$), 7.29 (d, $J = 4.8, 1.6, 2H$, 3,5-CH of (4-(CH$_3$)$_3$C(C$_6$H$_4$N))Pd), 7.04 (dd, $J = 8.0, 2.0, 1H$, 4-CH of -C$_6$H$_5SO_3$), 2.31 (s, 3H, 5-CH_3 of -C$_6$H$_5SO_3$), 2.21 (m, 3H, Ha of α-methylene of n^3Bu), 2.02 (m, 3H, Hb of α-methylene of n^3Bu), 1.83 (m, 3H, Ha of β-methylene of n^3Bu), 1.67 (m, 3H, Hb of β-methylene of n^3Bu), 1.44 (m, 3H, Hb of β-methylene of n^3Bu), 0.95 (t, $J = 7.6, 9H$, Me of n^3Bu), 0.62 (s, 3H, PdMe). 31P NMR (CD$_2$Cl$_2$): δ 44.8. 13C NMR (CD$_2$Cl$_2$): 162.2, 151.0, 131.0, 128.6, 127.6, 122.1, 34.8, 29.9, 12.9 (d, $J_{PC} = 60.7$), 24.5 (d, $J_{PC} = 56.4$), 24.1, 20.4, 13.3, -8.0.
(2-\textsuperscript{\textcircled{\textbf{Bu}_2}PhP=NH)-5-MeC\textsubscript{\textcircled{\textbf{Bu}_2}C}_6H\textsubscript{5}SO\textsubscript{3} (48). To a clear brown solution of n-propyl 2-azido-5-methylbenzenesulfonate (3.87 g, 15.2 mmol) in toluene (40 mL) in a 200 mL Kjeldahl flask P(\textsuperscript{\textcircled{\textbf{Bu}}}Ph (4.1 mL, 16.7 mmol) was added dropwise at 25 °C. Effervescence was observed immediately after addition of P(\textsuperscript{\textcircled{\textbf{Bu}}}Ph. The solution was stirred for 2 hours and a clear yellow solution resulted. Removal of the solvent under vacuum afforded a yellow viscous material which was redissolved with CH\textsubscript{2}Cl\textsubscript{2} (40 mL). The resulting clear yellow solution was transferred via cannula over to a suspension of pyridinium tetrafluoroborate ([PyrH][BF\textsubscript{4}]) (2.39 g, 14.3 mmol) in CH\textsubscript{2}Cl\textsubscript{2} (40 mL). The Kjeldahl flask was rinsed with CH\textsubscript{2}Cl\textsubscript{2} (40 mL) and the rinsing solution was transferred to the reaction flask via cannula. Pyridine (1.8 mL, 21.5 mmol) was added to the white suspension in CH\textsubscript{2}Cl\textsubscript{2} and the reaction mixture was refluxed for 12 hours. After cooling the reaction to 25 °C, a clear pale green solution was observed and the volatiles were removed under vacuum. The resulting viscous residue was treated with CH\textsubscript{2}Cl\textsubscript{2} (20 mL) and diethyl ether (100 mL) followed by filtration to give a white solid. The solid was separated by column chromatography using silica gel (160 g) and CH\textsubscript{2}Cl\textsubscript{2}. The column was eluted with CH\textsubscript{2}Cl\textsubscript{2}-MeOH 95:5 (2000 mL). The fractions (100 mL) were analyzed by UV-Vis, and those that contained the product were combined and dried under vacuum, affording a white foam. The foam was treated with CH\textsubscript{2}Cl\textsubscript{2} (40 mL) and diethyl ether (80 mL) to afford a white precipitate. Filtration of the precipitate followed by diethyl ether washes (3 x 20 mL) afforded \textbf{37} (1.54g, 22%) as a white powder. 1H NMR (CDCl\textsubscript{3}): δ 9.51 (d, J = 9.6, 1H, NH), 7.95 (m, 2H, 2,6-CH of \textsuperscript{\textcircled{\textbf{Bu}_2}C}_6H\textsubscript{5}P), 7.81 (s, 1H, 6-CH of -C\textsubscript{6}H\textsubscript{5}SO-), 7.72 (m, 1H, 4-CH of \textsuperscript{\textcircled{\textbf{Bu}_2}C}_6H\textsubscript{5}P), 6.86 6.86(dd, J = 8.0, 1.2, 1H, 4-CH of -
C₆H₅SO₃⁻), 6.36 (d, J = 8.0, 1H, 3-CH of -C₆H₅SO₃⁻), 2.69 (m, 2H, α-methylene of front \(^n\)Bu), 2.59 (m, 2H, α-methylene of back \(^n\)Bu), 2.20 (s, 3H, 5-CH₃ of -C₆H₅SO₃⁻), 1.59 (m, 4H, β-methylene of \(^n\)Bu), 1.39 (m, 4H, γ-methylene of \(^n\)Bu), 0.82 (t, J = 7.2, 6H, Me of \(^n\)Bu), \(^{31}\)P NMR (CDCl₃): δ 46.0. \(^{13}\)C NMR (CDCl₃): δ 136.3 (d, \(J_{PC} = 7.6\)), 135.0 (d, \(J_{PC} = 3.1\), para-CH of \(^n\)Bu₂C₆H₅P), 133.4, 132.1, 132.0 (d, \(J_{PC} = 10.6\), ortho-CH of \(^n\)Bu₂C₆H₅P), 130.8, 130.2 (d, \(J_{PC} = 12.2\), meta-CH of \(^n\)Bu₂C₆H₅P), 129.5, 120.6(d, \(J_{PC} = 91.9\), ipso C of C₆H₅P), 117.8 (d, J = 3.0), 23.7, 23.5 (d, \(J_{PC} = 14.0\)), 23.14, 22.9 (d, \(J_{PC} = 4.6\)), 20.5, 13.2.

(2-\(^n\)Bu₃P=NH)-5-MeC₆H₅SO₃ (49). To a 200 mL pear-shaped flask containing a clear brown solution of n-propyl 2-azido-5-methylbenzenesulfonate, 20 (2.95 g, 11.4 mmol) in toluene (10 mL) chilled to 0 °C for 15 minutes, a solution of P(n-C₄H₉)₃ (2.42 g, 12.0 mmol) in toluene (30 mL) was added via cannula transfer by aid of rinsing with toluene (10 mL), resulting in a yellow solution. The mixture was allowed to return to 25 °C and stirred for 15 minutes. Effervescence was observed gradually after addition of the P(n-C₄H₉)₃ solution. The reaction mixture was stirred for 4 hours until no effervescence was observed. A yellow solution was obtained and the solvent was removed under vacuum to afford a yellow frothy solid. The solid was dissolved in CH₂Cl₂ (20 mL). The resulting yellow solution was transferred via cannula to a 300 mL Kjeldahl flask containing a suspension of [PyH][BF₄] (1.92 g, 11.4 mmol) in CH₂Cl₂ (20 mL). The 200 mL pear-shaped flask was rinsed with CH₂Cl₂ (3 x 20 mL) and the rinsing solutions were transferred to the reaction flask via cannula. Gradually, the yellow reaction mixture turned red with white precipitate present. The
reaction mixture was stirred for 1 hour and the white solid almost disappeared. Pyridine (1.7 mL, 17.1 mmol) was added to the resulting reaction solution. The reaction was stirred at 25 °C for 36 hours. The resulting brown solution was pumped down under vacuum giving a glutinous residue, which was treated with CH₂Cl₂ (15 mL) and Et₂O (75 mL). A brown oily insoluble precipitate was observed. Decantation of the liquid layer afforded a gelatinous solid. Treatment with Et₂O (75 mL) and decantation of the ether layer were performed. The resulting viscous solid was pumped down to a brown foam. The frothy solid was separated by column chromatography using silica gel (150 g) and CHCl₃. The column was eluted with CHCl₃ (100 mL), CHCl₃-MeOH 98:2 (1500 mL), CHCl₃-MeOH 95:5 (500 mL), and CHCl₃-MeOH 90:10 (500 mL). The fractions (100 mL) were analyzed by UV-Vis, and those that contained the product were combined and dried under vacuum, affording a brown oil. The brown oil was treated consequentially with CHCl₃/Et₂O (20 mL/80 mL), hexane (30 mL), and benzene (3x30 mL) to give an off-white precipitate (4.00 g). The resulting solid was washed with Et₂O (2 x 50 mL) yielding **49** as a white powder (2.50 g, 57%). ¹H NMR (dmsod₆): δ 8.63 (d, J = 6.4, 1H, NH), 7.53 (s, 1H, 6-CH of -C₆H₅SO₃⁻), 7.16 (d, J = 7.8, 1H, 4-CH of -C₆H₅SO₃⁻), 7.09 (d, J = 7.8, 1H, 3-CH of -C₆H₅SO₃⁻), 2.51 (m, 6H, (CH₃CH₂CH₂CH₂)₃P=NH⁻), 2.30 (s, 3H, 5-CH₃ of -C₆H₅SO₃⁻), 1.53 (m, 6H, (CH₃CH₂CH₂CH₂)₃P=NH⁻), 1.42 (m, 6H, (CH₃CH₂CH₂CH₂)₃P=NH⁻), 0.90 (m, 9H, (CH₃CH₂CH₂CH₂)₃P=NH⁻). ³¹P NMR (dmsod₆): δ 56.7. ¹³C NMR (dmsod₆): δ 140.8 (d, Jₚc = 5.4), 136.1, 131.0 (d, Jₚc = 4.7), 130.8, (d, Jₚc = 6), 130.6, (d, Jₚc = 5.4), 129.6 (d, Jₚc = 3.1), 128.7, 128.6 (d, Jₚc = 3.9), 127.2 (d, Jₚc = 7.0), 123.5 (d, Jₚc = 2.3), 29.9 (d, Jₚc = 54.2), 20.4.
(2-MePh₂P=Ν)-5-MeC₆H₃SO₃Na (50). To a flask loaded with 37 (1.00 g, 2.60 mmol) and NaH (94 mg, 3.90 mmol), THF (50 mL) was added while stirring. The turbid mixture was stirred for 4 hours to give a clear slightly yellow solution, which was filtered through Celite. Removal of THF afforded a yellow solid, which was stirred in pentane (40 mL) for 30 minutes. The resulting suspension was filtered off and the collected solid was washed with pentane (2x10 mL) yielding 50 (0.97 g, 91%) as a pale yellow powder. \(^1\)H NMR (THF-\(d_8\)): δ 7.85 (m, 4H, 2, 6-CH of Ph₂PN), 7.67 (s, 1H, 6-CH of -C₆H₃SO₃⁻), 7.20-7.41 (m, 6H, 3,4,5-CH of Ph₂PN), 6.44 (d, \(J = 8.0\), 1H, 4-CH of -C₆H₃SO₃⁻), 6.20 (d, \(J = 8.0\), 1H, 4-CH of -C₆H₃SO₃⁻), 2.19 (d, \(J = 13.2\), 3H, MePN), 2.00 (s, 3H, 5-CH₃ of -C₆H₃SO₃⁻). \(^3\)P NMR (THF-\(d_8\)): δ 10.2. \(^1\)³C NMR (THF-\(d_8\)): 147.0, 137.8, 132.3 (d, \(J_{PC} = 9.1\)), 131.3, 130.7, 129.5, 128.8 (d, \(J_{PC} = 166.2\)), 128.3 (d, \(J_{PC} = 11.2\)), 124.4, 123.1 (d, \(J_{PC} = 12.2\)), 19.5, 15.4 (d, \(J_{PC} = 82.7\)).

(2-"n"Bu₂PhP=Ν)-5-MeC₆H₃SO₃Na (51). To a flask loaded with 48 (1.54 g, 3.42 mmol) and NaH (0.12 g, 5.14 mmol), THF (50 mL) was added while stirring. The turbid mixture was stirred for 4 hours to give a clear slightly yellow solution, which was filtered through Celite. Removal of THF afforded a yellow solid, which was stirred in pentane (40 mL) for 30 minutes. The resulting suspension was filtered off and the collected solid was washed with pentane (2x10 mL) yielding 51 (1.47 g, 95%) as a pale yellow powder. \(^1\)H NMR (THF/benzene-\(d_6\)): δ 7.71 (s, 1H, 6-CH of -C₆H₃SO₃⁻), 7.71 (broad, 2H, 2,6-CH of PhPN), 7.59 (m, 4-CH of PhPN), 7.07 (broad, 2H, 3,5-CH of PhPN), 6.52 (bd, \(J = 8.0\), 1H, 4-CH of -C₆H₃SO₃⁻), 6.29 (bd, \(J = 8.0\), 1H, 4-
CH of -C₆H₃SO₃⁻), 2.20-2.50 (m, α-methylene of "Bu), 1.94(s, 3H, 5-CH₃ of -C₆H₃SO₃⁻), 1.45(m, 6H, β-methylene of "Bu), 1.32(m, 3H, γ-methylene of "Bu), 0.63 (t, J = 7.6,9H, Me of "Bu). 31P NMR (THF-d₈): δ 20.1. ¹³C NMR (THF-d₈): 161.8, 151.7, 146.6(d, J_PC = 7.6), 143.8. 122.1,30.2, 26.3 (d, J_PC = 61.5), 24.5(d, J_PC = 41.5), 15.3.

(2."Bu₃P=N)-5-MeC₆H₃SO₃Na (52). A flask loaded with 49 (1.58 g, 3.68 mmol) and NaH (0.32 g, 5.52 mmol), THF (50 mL) was added while stirring. The turbid mixture was stirred for 4 hours to give a clear slightly yellow solution, which was filtered through Celite. Removal of THF afforded a yellow solid, which was stirred in pentane (40 mL) for 30 minutes. The resulting suspension was filtered off and the collected solid was washed with pentane (2x10 mL) yielding 52 (1.33 g, 89%) as a pale yellow powder. ¹H NMR (THF-d₈): δ 7.71 (s, 1H, 6-CH of -C₆H₃SO₃⁻), 6.80 (dd, J = 8.0, 2.0, 1H, 4-CH of -C₆H₃SO₃⁻), 6.56 (dd, J = 8.0, 2.0, 1H, 4-CH of -C₆H₃SO₃⁻), 2.17(s, 3H, 5-CH₃ of -C₆H₃SO₃⁻), 2.00 (m, 6H, α-methylene of "Bu), 1.45(m, 6H, β-methylene of "Bu), 1.32(m, 3H, γ-methylene of "Bu), 0.83 (t, J = 7.6,9H, Me of "Bu). ³¹P NMR (THF-d₈): δ 26.5. ¹³C NMR (THF-d₈): 161.8, 151.7, 146.6(d, J_PC = 7.6), 143.8. 122.1,30.2, 26.3 (d, J_PC = 61.5), 24.5(d, J_PC = 41.5), 15.3.

Thermal Behavior of [2-(MePh₂P=N)-5-MeC₆H₃SO₃]Pd(4-'BuPy)Me (45). Formation of [2-((C₆H₄)PhMeP=N)-5-MeC₆H₃SO₃]Pd(4-'BuPy) (53). In C₆D₅CD₃ at 25 °C. A valved NMR tube was loaded with 45 (5.0 mg, 7.1 μmol) and C₆D₅CD₃ (0.5 mL) was added via vacuum transfer at -196 °C. After flushed with N₂ gas, the tube was sealed and warmed to 25 °C and shaken to result in a greenish solution. ¹H and ³¹P NMR spectra established that 53 had not formed. The solution sat at room temperature for 2, 6, 24, 48,
and 72 hours, 1H and 31P NMR spectra established that 53 had not formed. In $C_6D_5CD_3$ at 80 °C. A valved NMR tube was loaded with 45 (5 mg, 7.1 μmol) and toluene-d_8 (0.5 mL) was added via vacuum transfer at -196 °C. After flushed with N$_2$ gas, the tube was sealed and warmed to 25 °C and shaken to result in a solution. 1H and 31P NMR spectra established that 53 had not formed. The solution was heated to 80 °C for 2, 6, 10, and 24 hours. 1H and 31P NMR spectra were obtained for each time interval. The integration of 31P NMR spectra established that after 2 hours at 80 °C, 45 and 53 coexisted in the solution and 5.98% of the starting 45 had been converted to 53; after 6 hours, 45 and 53 coexisted in the solution and 13.68% of the starting 45 had been converted to 53; after 10 hours, 45 and 53 coexisted in the solution and 16.20% of the starting 45 had been converted to 53; after 24 hours, 45 and 53 coexisted in the solution and 58.96% of the starting 45 had been converted to 53. 1H and 31P NMR data from the 24 hour experiment are as follows: 1H NMR (toluene-d_8): δ 8.67 (d, J = 8.0, 2.3H, 2,6-CH of 4-tBuPy), 8.50 (d, J = 4.0, 1.12H), 8.35-8.50(m, 3.25H), 8.08 (d, J = 8.0, 1.74H), 7.78 (m, 2.34H), 6.83 (m, 2.32H), 6.77 (m, 2.36H), 6.45-6.65 (m, 7.03H), 6.39 (d, J= 8.0, 1.71H), 6.33 (d, J = 8.0, 1.81), 2.21s and 2.18s (2.45H), 2.00 (s, 2.58H), 1.94 (s, 4.51H), 0.88 (s, 9H), 0.82 (s, 4.61H), 0.53 (s, 1.91H), 0.18 (s, 0.96H).

Thermal Behavior of [2-(^9Bu_2PhP=N)-5-MeC_6H_3SO_3]Pd(4-tBuPy)Me (46): Formation of [2-((C_6H_4)9Bu_2P=N)-5-MeC_6H_3SO_3]Pd(4-tBuPy) (54). In C_6D_6 at 80 °C. A valved NMR tube was loaded with 46 (5 mg, 7.5 μmol) and toluene-d_8 (0.5 mL) was added via vacuum transfer at -196 °C. After flushed with N$_2$ gas, the tube was sealed and warmed to 25 °C and shaken to result in a solution. 1H and 31P NMR spectra established that 54 had not formed. The solution was heated to 80 °C for 2, 24, and 48 hours. 1H and 31P NMR
spectra were obtained for each time interval. The integration of 31P NMR spectra established that after 2 hours at 80 °C, 2.1% 54 existed in the solution; after 24 and 48 hours, no 54 existed in the solution. 1H NMR (benzene-d₈): δ 8.50 (s, 0.9 H, 6-CH), 8.24 (d, J = 8.0, 1.89 H, 2,6-CH of 4-tBuPy), 7.20 (m, 3.0 H), 6.91 (m, 1.2 H), 6.76 (m, 1.1 H), 6.36 (d, J = 8.0, 1.99 H, 2,6-CH of 4-tBuPy), 2.76 (m, 1.1 H), 2.54 (m, 2.9 H), 2.21 (m, 1.1 H), 2.05 (m, 1.1H), 1.95 (s, 3H), 1.35 (m, 3.3 H), 1.10 (m, 1.6 H), 1.01 (m, 2.1 H), 0.83 (t, 2.6 H), 0.76 (s, 8.6 H), 0.61 (t, 3.7 H). 31P NMR (benzene-d₈): δ 39.9.

Ethylene Reactivity of 45. To a high-pressure glass reactor, 45 (10.3 mg, 0.018 mmol) was loaded in a glovebox. Under positive N₂ gas, toluene (20 mL) was added. After a brief evacuation, ethylene gas (5 atm) was introduced. The mixture was heated to 80 °C and stirred for 6 hours to result in a turbid suspension. MeOH was added and the mixture turned clear with some black residues. The mixture was filtered through Celite. The filtrate was evaporated on rotavapor. 1H and 31P NMR spectra were obtained for the residues. 1H NMR (CDCl₃): δ 9.17 (bs, 0.48H, 37), 8.75 (d, J = 6.8, 0.66H, tBuPy), 8.09 (m, 4.25 H) 7.60-7.80 (m, 1.8H), 7.40-7.60 (m, 1.89 H), 7.56 (m, 1.66 H), 7.45 (m, 1.36 H), 7.13 (m, 1.78H, 7.05 (m, 2.70 H), 6.91 (d, J = 8.4, 1.26 H, 36), 6.42 (d, 1.00H, 36), 3.51 (s, 12H), 2.51 (d, J = 3.44H), 2.49 (d, J = 12.8, 1.22H, 36), 2.25 (s, 3H, 36), 1.46 (bs, 2.62H), 1.37 (s, 1.88 H), 1.31 (s, 8.90H, 1-tBuPy), 1.27 (s, 2.76H), 1.07 (bs, 4.22 H), 0.92 (t, 2.11H). 31P NMR (CDCl₃): δ39.1 (36).

Ethylene Reactivity of 46. To a high-pressure glass reactor, 46 (10.5 mg, 0.015 mmol) was loaded in a glovebox. Under positive N₂ gas, toluene (20 mL) was added. After a brief evacuation, ethylene gas (5 atm) was introduced. The mixture was heated to 80 °C and stirred for 6 hours to result in a turbid suspension. MeOH was added and the mixture
turned clear with some black residues. The mixture was filtered through Celite. The filtrate was evaporated on rotavapor. 1H and 31P NMR spectra were obtained for the residues. 1H NMR (CDCl$_3$): δ 9.57 (d, 0.86 H, 48), 7.95 (t, 2.74 H), 7.79 (m, 1.06 H), 7.68 (m, 1.99 H), 7.38 (s, 2.49 H), 7.14 (d, 2.44 H), 6.85 (d, 0.99 H), 6.67 (d, J = 8.0, 2.34 H), 6.48 (d, 1.0H), 3.48 (s, 2.88 H), 3.31 (s, 4.72H), 2.82 (s, 7.04 H), 2.60 (m, 3.99 H), 2.25 (s, 9.58 H), 2.17 (s, 3.71 H), 1.92 (bs, 1.45H), 1.65 (m, 4.41H), 1.42 (m, 4.14 H), 0.89 (t, J = 6.80). 1P NMR (CDCl$_3$): δ45.5 (48).

Ethylene Reactivity of 47. To a high-pressure glass reactor, 47 (10.5 mg, 0.017 mmol) was loaded in a glovebox. Under positive N$_2$ gas, toluene (20 mL) was added. After a brief evacuation, ethylene gas (5 atm) was introduced. The mixture was heated to 80 °C and stirred for 6 hours to result in a turbid suspension. MeOH was added and the mixture turned clear with some black residues. The mixture was filtered through Celite. The filtrate was evaporated on rotavapor. 1H and 31P NMR spectra were obtained for the residues. 1H NMR (CDCl$_3$): δ 8.61 (d, $J = 7.2$, 0.52 H, NH), 8.50 (d, $J = 5.6$, 0.92 H, 1BuPy), 7.85 (s, 0.98 H, 6-CH), 7.02 (d, $J = 6.4$, 1.19 H), 6.62 (d, $J = 8.4$, 1H), 2.15-2.35 (m, 9.11H), 1.45-1.55 (9.14H), 1.31-1.44 (m, 9.25H), 1.10-1.25 (m, 10.15H), 0.70-0.92 (m, 14.09H). 31P NMR (CDCl$_3$): δ56.6.
CHAPTER FIVE
CONCLUSIONS

In this dissertation research, we have successfully designed and developed new bidentate sulfonate ligands, specifically phosphinimine-sulfonates (PN^SO). We have successfully streamlined the synthesis of the corresponding palladium methyl pyridine complexes ([PN^SO]PdPyMe). We have also successfully studied the thermal behavior and ethylene reactivity of these palladium complexes.

Phosphinimine-sulfonate ligands are designed on the basis of a sulfonate donor and a phosphinimine co-donor. Presumably, PN^SO ligands have an enhanced donor strength from the sp\(^2\) nitrogen donor, the phosphinimine unit while keep the unique catalytic properties of the sulfonate donor. The ligands we synthesized are in zwitterionic forms that are air-stable and have a long shelf expectancy. The ligands can be easily generated for coordination chemistry and can coordinate with palladium precursors (cod)PdMeCl and py\(_2\)PdMeCl with ease forming stable palladium methyl pyridine complexes.

The synthetic route for PN^SO ligands includes 7 reactions, chlorination, esterification, diazotization, azidation, Staudinger reaction, protonation, and deprotonation. In addition to the success of synthesizing new bidentate sulfonate ligands, several improvements and innovations in synthetic chemistry have been achieved and deserve a highlight.
In the chlorination step, the conditions reported in a 1933 patent did not work to achieve the desired product. In our research, we have updated these conditions by applying a new reaction time, 2 hours, to this step. This is a critical update. Following the patent, when the reaction was heated for 8 hours, the desired pale-yellow solid never came out as a product. We screened reaction times and found that the 2-hour reaction time is the best condition to get the desired yellow solid. We have also successfully developed a new workup. In the patent, it is reported to harvest the product by extracting the product from diethyl ether. Our independent experiments showed that extraction was unworkable because the target sulfonate chloride decomposed on rotavapor. My independent work has proven that oven-drying at 40 °C is by no means the best way for isolation of a water-free product.

We have innovated the diazotization/azidation reaction for introduction of an azido group ortho to a sulfonate group. In literature, diazotization and azidation reactions are manipulated in a one-pot method. In our experiments, we have found that this method is rather dangerous. In the presence of a strong acid like H₂SO₄ or HCl, NaN₃ can be acidified to hydrazoic acid, HN₃. This weak acid is a toxic volatile liquid that causes severe safety issues to operators. We have designed a new method for handling the diazotization and azidation reactions. In our method, diazotization employs HBF₄ as an acid. The diazonium tetrafluoroborate is relatively stable in air based on Schiemann reaction conditions. This allowed a quick filtration in air for complete removal of the unreacted acid. The isolated diazonium salt can react with NaN₃ at a neutral condition to avoid formation of the toxic liquid HN₃. In addition, our method gives a much higher yield of azides than the one-pot method.
We have created a new methodology of protection and deprotection of the sulfonic acid group. In literature, sulfonic acids are usually protected by neopentyl or isobutyl sulfonate. The deprotecting reagents are Bu₄NI or piperidine. In our research, we have updated this chemistry by using for the first time the more labile n-propyl sulfonate esters for protection of the sulfonic acid. We have also developed a brand new deprotecting reagent, pyridinium tetrafluoroborate. Employment of pyridinium tetrafluoroborate to deblock a protecting group makes the cleavage of n-propyl sulfonate rather neat and efficient. In our case, an additional benefit has been obvious in that a tandem reaction of protonation and deprotection provides us with a facile access to air-stable zwitterion ligand library. To look into the protection and deprotection chemistry, we have proposed mechanisms for the protonation and deprotonation reactions.

We have successfully synthesized PN^SO Pd complexes 42, 45-47. We have tested their reactivities under N₂ and C₂H₄ atmospheres. These complexes have different reactivities. Under the N₂ atmosphere, 42, 45, and 46 were orthopalladated. Under the C₂H₄ atmosphere, orthopalladation was prohibited and the corresponding PN^SO ligands and Pd⁰ were regenerated. We also observed that 42 catalyzed the formation of alkanes. A mechanism has been proposed for the reactivities. PN^SO Pd complexes are promising catalyst candidates that may promote insertion polymerization.

In summary, this dissertation research has developed a new type of phosphinimine-sulfonate ligand. The new ligand sets provide bidentate chelating ligand environments for coordination to form palladium methyl complexes. Reactivity study has allowed us to examine [PN^SO]Pd complexes for their catalytic potential such as in ethylene oligomerization and polymerization. An in-depth understanding of these newly
synthesized palladium complexes derives from our proposed mechanism. For ethylene polymerization, future studies should be directed toward changing ethylene pressures and tuning ligand steric factors. To a wide view, other transition metals such as Ru(II), Ru(IV), Cu(I), Cu(II), Rh(I) should be chosen to form new PN^SO complexes for catalytic studies.

APPENDICES

NMR SPECTRA
(Ch. 2)
22 (Ch. 2)
26 (Ch. 2)
36 (Ch. 2)
38 (Ch. 2)
(Ch. 3)
\(^{1}H\) NMR, CDCl\(_3\), 68 °C, 24 h
Thermal Behavior of 41
(31P NMR, CDCl$_3$, 68 °C, 24 h)
210
42 (60 °C, Ch. 3)
42 (-90 °C, Ch. 3)
Thermal Behavior of 42
(1H NMR, CDCl$_3$, 70 °C, 24 h)
Thermal Behavior of 42
(31P NMR, CDCl$_3$, 70 °C, 24 h)
Thermal Behavior of 42
(\(^1\)H NMR, CD\(_2\)Cl\(_2\), 46 °C, 24 h)
Thermal Behavior of 42
(31P NMR, CD$_2$Cl$_2$, 46 °C, 24 h)
Thermal Behavior of 42

(1H NMR, CD$_6$, 68°C, 24 h)
Thermal Behavior of 42
(^{31}P NMR, C_6D_6, 68 °C, 24 h)
Thermal Behavior of 42
(1H NMR, C$_6$D$_5$CD$_3$, 70 °C, 24 h)
Thermal Behavior of 42
(31P NMR, C$_6$D$_5$CD$_3$, 70 °C, 24 h)
Thermal Behavior of 42
(1H NMR, C$_6$D$_5$CD$_3$, 80 °C, 24 h)
Thermal Behavior of 42
(31P NMR, C$_6$D$_5$CD$_3$, 80 °C, 24 h)
Thermal Behavior of 42
(1H NMR, C$_6$D$_5$CD$_3$, Ph$_3$POas internal standard, 80 °C, 24 h)
Thermal Behavior of 42
(31P NMR, C$_6$D$_5$CD$_3$, Ph$_3$POas internal standard, 80 °C, 24 h)
Ethylene Reactivity of 42
(1H NMR, CDCl\textsubscript{3}, 80 °C, 6 h)
Ethylene Reactivity of 42
(31P NMR, CDCl$_3$, 80 °C, 6 h)
Thermal Behavior of 1H NMR, C$_6$D$_5$CD$_3$, 80°C, 24 h
Thermal Behavior of 31P NMR, C$_6$D$_5$CD$_3$, 80°C, 24 h
Ethylene Reactivity (toluene, 80°C, 6 h) of 45

(¹H NMR, CDCl₃)
Thermal Behavior of TC

(1H NMR, C$_6$D$_5$CD$_3$, 80°C, 24 h)
Ethylene Reactivity (toluene, 80°C, 6 h) of 4,6 (H NMR, CDCl₃)
Ethylene Reactivity (toluene, 80°C, 6 h) of 47 (1H NMR, CDCl₃)
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1D NMR</td>
<td>One-dimentional nuclear magnetic resonance</td>
</tr>
<tr>
<td>2D NMR</td>
<td>Two-dimentional nuclear magnetic resonance</td>
</tr>
<tr>
<td>benzene-d$_6$</td>
<td>Deuterated benzene</td>
</tr>
<tr>
<td>C$_6$D$_6$</td>
<td>Deuterated benzene</td>
</tr>
<tr>
<td>C$_6$D$_3$CD$_3$</td>
<td>Deuterated toluene</td>
</tr>
<tr>
<td>CDCl$_3$</td>
<td>Deuterated chloroform</td>
</tr>
<tr>
<td>CD$_2$Cl$_2$</td>
<td>Deuterated dichloromethane</td>
</tr>
<tr>
<td>COD</td>
<td>E,E-1,5-cyclooctadiene</td>
</tr>
<tr>
<td>Py</td>
<td>Pyridine</td>
</tr>
<tr>
<td>DABCO</td>
<td>1,4-Diazobicyclo[2.2.2]octane</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>HMBC</td>
<td>Heteronuclear multiple bond correlation</td>
</tr>
<tr>
<td>HMQC</td>
<td>Heteronuclear multiple quantum correlation</td>
</tr>
<tr>
<td>HSQC</td>
<td>Heteronuclear single quantum correlation</td>
</tr>
<tr>
<td>M_n</td>
<td>Number average molecular weight</td>
</tr>
<tr>
<td>NHC</td>
<td>N-heterocyclic carbene</td>
</tr>
<tr>
<td>NHC$^{^*}$SO</td>
<td>NHC-sulfonate ligand</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
<tr>
<td>NOESY</td>
<td>Nuclear Overhauser effect spectroscopy</td>
</tr>
<tr>
<td>O$^{^*}$SO</td>
<td>Phenolate-sulfonate ligand</td>
</tr>
<tr>
<td>P$^{^*}$SO</td>
<td>Phosphine-sulfonate ligand</td>
</tr>
<tr>
<td>PN$^{^*}$SO</td>
<td>Phosphinimine-sulfonate ligand</td>
</tr>
<tr>
<td>TMS</td>
<td>Tetramethylsilyl</td>
</tr>
<tr>
<td>thf-d$_8$</td>
<td>Deuterated tetrahydrofuran</td>
</tr>
<tr>
<td>toluene-d$_8$</td>
<td>Deuterated toluene</td>
</tr>
</tbody>
</table>
CURRICULUM VITAE

NAME: Suisheng Shang

ADDRESS: Department of Chemistry
University of Louisville
2320 South Brook Street
Louisville, Kentucky 40292

DOB: Huaxian, Henan, China - 1966

EDUCATION & TRAINING: B.E., Nonferrous Metals Metallurgy
Central South University of Technology
1983-87

M.Med., Medicinal Chemistry
Guangxi Medical University
2003-06

M.S. & Ph.D., Chemistry
University of Louisville
2007-13

Burns, Christopher T.; Shang, Suisheng; Thapa, Rajesh; Mashuta, Mark S. Synthesis of air-stable zwitterionic 2-phosphiniminium-