Date on Master's Thesis/Doctoral Dissertation

12-2021

Document Type

Doctoral Dissertation

Degree Name

Ph. D.

Department

Mathematics

Degree Program

Applied and Industrial Mathematics, PhD

Committee Chair

Powers, Robert

Committee Member

McMorris, Fred

Committee Member

Riedel, Thomas

Committee Member

Kong, Maiying

Author's Keywords

Mathematical consensus; discrete mathematics

Abstract

Consensus functions on finite median semilattices and finite median graphs are studied from an axiomatic point of view. We start with a new axiomatic characterization of majority rule on a large class of median semilattices we call sufficient. A key axiom in this result is the restricted decisive neutrality condition. This condition is a restricted version of the more well-known axiom of decisive neutrality given in [4]. Our theorem is an extension of the main result given in [7]. Another main result is a complete characterization of the class of consensus on a finite median semilattice that satisfies the axioms of decisive neutrality, bi-idempotence, and symmetry. This result extends the work of Monjardet [9]. Moreover, by adding monotonicity as a fourth axiom, we are able to correct a mistake from the Monjardet paper. An attempt at extending the results on median semilattices to median graphs is given, based on a new axiom called split decisive neutrality. We are able to show that majority rule is the only consensus function defined on a path with three vertices that satisfies split decisive neutrality and symmetry.

Share

COinS