Date on Master's Thesis/Doctoral Dissertation


Document Type

Doctoral Dissertation

Degree Name

Ph. D.


Electrical and Computer Engineering

Committee Chair

Liu, Xiangqian

Author's Keywords

Frequency estimation; Harmonic retrieval; Perturbation


Radio frequency allocation--Mathematics; Wireless communication systems--Mathematical models; Frequency spectra--Mathematical models


Multidimensional frequency estimation is a classic signal processing problem that has versatile applications in sensor array processing and wireless communications. Eigenvalue-based two-dimensional (2-D) and N -dimensional ( N -D) frequency estimation algorithms have been well documented, however, these algorithms suffer from limited identifiability and demanding computations. This dissertation develops a framework on eigenvector-based N -D frequency estimation, which contains several novel algorithms that estimate a structural matrix from eigenvectors and then resolve the N -D frequencies by dividing the elements of the structural matrix. Compared to the existing eigenvalue-based algorithms, these eigenvector-based algorithms can achieve automatic pairing without an extra frequency pairing step, and tins the computational complexity is reduced. The identifiability, performance, and complexity of these algorithms are also systematically studied. Based on this study, the most relaxed identifiability condition for the N -D frequency estimation problem is given and an effective approach using optimized weighting factors to improve the performance of frequency estimation is developed. These results are applied in wireless communication for time-varying multipath channel estimation and prediction, as well as for joint 2-D Direction-of-arrival (DOA) tracking of multiple moving targets.