Date on Master's Thesis/Doctoral Dissertation
8-2014
Document Type
Doctoral Dissertation
Degree Name
Ph. D.
Department
Mathematics
Committee Chair
Sahoo, Prasanna K.
Committee Co-Chair (if applicable)
Brown, David
Committee Member
Brown, David
Committee Member
Gill, Ryan
Committee Member
Powers, Robert
Committee Member
Riedel, Thomas
Subject
Functional equations
Abstract
Let G be an abelian group, C be the _eld of complex numbers, _ 2 G be any _xed, nonzero element and _ : G ! G be an involution. In Chapter 2, we determine the general solution f; g : G ! C of the functional equation f(x + _y + _) + g(x + y + _) = 2f(x)f(y) for all x; y 2 G. Let G be an arbitrary group, z0 be any _xed, nonzero element in the center Z(G) of the group G, and _ : G ! G be an involution. The main goals of Chapter 3 are to study the functional equations f(x_yz0) ?? f(xyz0) = 2f(x)f(y) and f(x_yz0) + f(xyz0) = 2f(x)f(y) for all x; y 2 G and some _xed element z0 in the center Z(G) of the group G. In Chapter 4, we consider some properties of the general solution to f(xy)f(x_y) = f(x)2 ?? f(y)2. We also _nd the solution to this equation when G is a 2-divisible, perfect group. We end the chapter by discussing the periodicity of the solutions to both the sine functional equation and the sine inequality.
Recommended Citation
Perkins, Allison, "Functional equations with involution related to sine and cosine functions." (2014). Electronic Theses and Dissertations. Paper 1117.
https://doi.org/10.18297/etd/1117