Date on Master's Thesis/Doctoral Dissertation

12-2014

Document Type

Doctoral Dissertation

Degree Name

Ph. D.

Department

Industrial Engineering

Committee Chair

DePuy, Gail W.

Committee Co-Chair (if applicable)

Biles, William E.

Committee Member

Evans, Gerald W.

Committee Member

Rockaway, Thomas D.

Subject

Railroads--Management--Technological innovations; Railroads--Management--Simulation methods; Railroads--Automation

Abstract

This paper makes use of standard simulation programs in combination with the tools of applied statistics to simulate railway operations. The purpose of the use of this tool is to evaluate and compare different possible kinds of railway infrastructure, like different types of signaling procedures, different network configuration or operational procedures. A railway system is a logistic network and because of the demand for improved railway operation, much work has been undertaken lately in this scientific field. However the author postulates the hypothesis based on a literature review that in a lot of these works there is a lack of full application of statistics. With this paper the author makes use of standard simulation programs for detailed simulation of railway operation especially with respect to the signaling and operation procedures. Additionally the influence of delays, which occur during real life railway operation is taken into account for a first time. This allows statistical evaluation of the results based on statistical significance. Also sensitivity analysis could be performed. It is demonstrated, that the results of such simulation runs show superior results when compared to other techniques not taking into account the variability. Additionally, procedures were developed to find the capacity of a railway network with the help of additional software tools. In this work the software package ARENA is used to simulate the operation of trains in railway networks. For this approach two major obstacles have to be solved: the simulation of train travelling times and the simulation of block rules used in railway operation. By introduction of visualization the confidence in the results of simulation, even for stakeholders not familiar with this technique, is increased. In this paper it is shown that with ARENA it is possible to calculate the capacity of different railway networks (scenarios). The results, which are calculated using quasi steady state simulation without variation, are similar to those obtained with other calculation methods. Additionally in one scenario the rule of thumb for the quotient between theoretical capacity and practical capacity in a railway network is confirmed by simulation including random variation. It is also demonstrated that OptQuest, an additional software package available for ARENA, is a suitable tool to find near optimal timetables in a scenario including delays. The results of this work may be not only of interest for railway operators, but also for operators of other automated transport systems. Such systems may be unmanned transport vehicles in a factory, transporting goods between different manufacturing stations. But also for automation of road traffic the results may be of interest.

Share

COinS