Date on Master's Thesis/Doctoral Dissertation
5-2015
Document Type
Doctoral Dissertation
Degree Name
Ph. D.
Department
Mathematics
Degree Program
Applied and Industrial Mathematics, PhD
Committee Chair
Wu, Shi-Yu
Committee Co-Chair (if applicable)
Jayanthi, Chakram S.
Committee Member
Larson, Lee
Committee Member
Riedel, Thomas
Committee Member
Sahoo, Prasanna
Committee Member
Yu, Ming
Subject
Quantum field theory; Quantum theory--Mathematics
Abstract
In this document I describe a novel implementation of the generalized bisection method for finding roots of highly non-linear functions of several variables. Several techniques were optimized to reduce computation time. The implementation of the bisection method allows for the calculation of heterogeneous systems with SCED-LCAO, since derivative-based methods often fail for these systems. Systems composed of Gallium and Nitrogen are currently receiving much interest due to their behavior as semi-conductors and their ability to form nano-wires. The methods developed here were employed to create a set of SCED-LCAO parameters for homogeneous Gallium and heterogeneous Gallium Nitride systems. These parameters were shown to provide SCED-LCAO with predictive power for future Gallium Nitride systems.
Recommended Citation
Smith, Lyle C., "Improved self-consistency for SCED-LCAO." (2015). Electronic Theses and Dissertations. Paper 2093.
https://doi.org/10.18297/etd/2093