Date on Master's Thesis/Doctoral Dissertation
8-2015
Document Type
Master's Thesis
Degree Name
M.S.
Department (Legacy)
Department of Geography and Geosciences
Degree Program
Geography (Applied), MS
Committee Chair
Mountain, Keith
Committee Co-Chair (if applicable)
Gaughan, Andrea
Committee Member
Gaughan, Andrea
Committee Member
Croasdaile, Michael
Subject
Glaciers--Peru; Glaciers--Remote sensing; Glaciers--Measurement
Abstract
Accurate remote-sensing based inventories of glacial ice are often hindered by the presence of supraglacial debris cover. Attempts at automated mapping of debris-covered glacier areas from remotely-sensed multispectral data have met with limited success due to the spectral similarity of supraglacial debris to nearby bedrock, moraines, and fluvial deposition features. Data-fusion approaches leveraging terrain and/or thermal data with multispectral data have yielded improved results in certain geographic regions, but remain unproven in others. This research builds on the data-fusion approaches from the literature and explores the efficacy of object-based image analysis (OBIA) and tree-based machine learning classifiers using Landsat OLI imagery and SRTM elevation data, in effort to map debris-covered glaciers in the Cordillera Blanca range of Peru. Results suggest that the OBIA and machine learning methods render advantages over traditional methods given the unique morphological settings associated with debris-covered glaciers. Accurate inventories of glacial mass and debris-covered glaciers in the Cordillera Blanca are important for understanding the unique water resource, natural hazards, and climate change implications associated with these tropical mountain glaciers.
Recommended Citation
Biddle, Donald J., "Mapping debris-covered glaciers in the Cordillera Blanca, Peru : an object-based image analysis approach." (2015). Electronic Theses and Dissertations. Paper 2220.
https://doi.org/10.18297/etd/2220