Date on Master's Thesis/Doctoral Dissertation
8-2014
Document Type
Doctoral Dissertation
Degree Name
Ph. D.
Department
Mathematics
Degree Program
Applied and Industrial Mathematics, PhD
Committee Chair
Sahoo, Prasanna K.
Committee Co-Chair (if applicable)
Brown, David
Committee Member
Brown, David
Committee Member
Powers, Robert
Committee Member
Riedel, Thomas
Committee Member
Xu, Yongzhi
Abstract
Several functional equations related to stochastic distance measures have been widely studied when defined on the real line. This dissertation generalizes several of those results to functions defined on groups and fields. Specifically, we consider when the domain is an arbitrary group, G, and the range is the field of complex numbers, C. We begin by looking at the linear functional equation f(pr, qs)+f(ps, qr) = 2f(p, q)+2f(r, s) for all p, q, r, s, € G. The general solution f : G x G → C is given along with a few specific examples. Several generalizations of this equation are also considered and used to determine the general solution f, g, h, k : G x G → C of the functional equation f(pr, qs) + g(ps, qr) = h(p, q) + k(r, s) for all p, q, r, s € G. We then consider the non-linear functional equation f(pr, qs) + f(ps, qr) = f(p, q) f(r, s). The solution f : G x G → C is given for all p, q, r, s € G when f is an abelian function. It is followed by the structure of the general solution, f, dependent upon how the function acts on the center of the group. Several generalizations of the equation are also considered. The general structure of the solution f, g, h : G x G → C of the functional equation f(pr, qs) + f(ps, qr) = g(p, q) h(r, s) is given for all p, q, r, s € G, dependent upon how the function h acts on the center of the group. Future plans related to these equations will be given.
Recommended Citation
Hunt, Heather B., "Several functional equations defined on groups arising from stochastic distance measures." (2014). Electronic Theses and Dissertations. Paper 2274.
https://doi.org/10.18297/etd/2274