Date on Master's Thesis/Doctoral Dissertation

12-2015

Document Type

Doctoral Dissertation

Degree Name

Ph. D.

Department

Computer Engineering and Computer Science

Degree Program

Computer Science and Engineering, PhD

Committee Chair

Desoky, Ahmed

Committee Member

Kantardzic, Mehmed

Committee Member

Naber, John

Committee Member

Sahoo, Prasanna

Committee Member

Elmaghraby, Adel

Author's Keywords

exclusive-or; lossless image compression; dictionary coding; lempel-ziv-welch

Abstract

The field of lossless image compression studies the various ways to represent image data in the most compact and efficient manner possible that also allows the image to be reproduced without any loss. One of the most efficient strategies used in lossless compression is to introduce entropy reduction through decorrelation. This study focuses on using the exclusive-or logic operator in a decorrelation filter as the preprocessing phase of lossless image compression of continuous-tone images. The exclusive-or logic operator is simply and reversibly applied to continuous-tone images for the purpose of extracting differences between neighboring pixels. Implementation of the exclusive-or operator also does not introduce data expansion. Traditional as well as innovative prediction methods are included for the creation of inputs for the exclusive-or logic based decorrelation filter. The results of the filter are then encoded by a variation of the Lempel-Ziv-Welch dictionary coder. Dictionary coding is selected for the coding phase of the algorithm because it does not require the storage of code tables or probabilities and because it is lower in complexity than other popular options such as Huffman or Arithmetic coding. The first modification of the Lempel-Ziv-Welch dictionary coder is that image data can be read in a sequence that is linear, 2-dimensional, or an adaptive combination of both. The second modification of the dictionary coder is that the coder can instead include multiple, dynamically chosen dictionaries. Experiments indicate that the exclusive-or operator based decorrelation filter when combined with a modified Lempel-Ziv-Welch dictionary coder provides compression comparable to algorithms that represent the current standard in lossless compression. The proposed algorithm provides compression performance that is below the Context-Based, Adaptive, Lossless Image Compression (CALIC) algorithm by 23%, below the Low Complexity Lossless Compression for Images (LOCO-I) algorithm by 19%, and below the Portable Network Graphics implementation of the Deflate algorithm by 7%, but above the Zip implementation of the Deflate algorithm by 24%. The proposed algorithm uses the exclusive-or operator in the modeling phase and uses modified Lempel-Ziv-Welch dictionary coding in the coding phase to form a low complexity, reversible, and dynamic method of lossless image compression.

Share

COinS