Date on Master's Thesis/Doctoral Dissertation
5-2021
Document Type
Master's Thesis
Degree Name
M.S.
Department
Mechanical Engineering
Degree Program
Mechanical Engineering, MS
Committee Chair
Richards, Christopher
Committee Co-Chair (if applicable)
Murphy, Kevin
Committee Member
Murphy, Kevin
Committee Member
Inanc, Tamer
Author's Keywords
MRAC; anti-windup; LPV; quadcopter; system identification; control
Abstract
A novel parameter-dependent anti-windup compensator is developed to improve the performance of a saturation constrained model reference adaptive controller. The combined control structure solves the input saturation and stability problem for inertia varying quadcopters. The control synthesis follows the conventional two-step anti-windup design paradigm where a nominal controller is designed without consideration of the input saturation, and the anti-windup compensator is designed to minimize deviations from nominal performance caused by saturated inputs. To account for varying inertia of the quadcopter during package retrieval/delivery routines, the inertia parameters of the vehicle/package are estimated with an online recursive system identification technique, and these estimates are used to schedule the parameter-dependent anti-windup compensator. The performance and stability conditions of the parameter-dependent anti-windup compensator are formulated as a set of parameter-dependent linear matrix inequalities. When solved, the linear matrix inequalities yield a gain-scheduled anti-windup compensator that ensures stability and minimizes the deviation from nominal model reference adaptive control performance when saturation occurs. The effectiveness of the combined control scheme is demonstrated by simulations of an input constrained quadcopter lifting a payload of unknown mass.
Recommended Citation
Farber, Benjamin Edwards, "Adaptive control and parameter-dependent anti-windup compensation for inertia varying quadcopters." (2021). Electronic Theses and Dissertations. Paper 3629.
https://doi.org/10.18297/etd/3629