Date on Master's Thesis/Doctoral Dissertation


Document Type

Master's Thesis

Degree Name

M. Eng.


Electrical and Computer Engineering

Committee Chair

Inanc, Tamer

Author's Keywords

Player; mobile robot; Stage; robot operating system; nonlinear trajectory generation; kinematic constraints


Robots--Control systems; Trajectory optimization


This thesis will present various methods of trajectory generation for various types of mobile robots. Then it will progress to evaluating Robot Operating Systems (ROS’s) that can be used to control and simulate mobile robots, and it will explain why Player/Stage was chosen as the ROS for this thesis. It will then discuss Nonlinear Trajectory Generation as the main method for producing a path for mobile robots with dynamic and kinematic constraints. Finally, it will combine Player, Stage, and NTG into a system that produces a trajectory in real-time for a mobile robot and simulates a differential drive robot being driven from the initial state to the goal state in the presence of obstacles. Experiments will include the following: Blobfinding for physical and simulated camera systems, position control of physical and simulated differential drive robots, wall following using simulated range sensors, trajectory generation for omnidirectional and differential drive robots, and a combination of blobfinding, position control, and trajectory generation. Each experiment was a success, to varying degrees. The culmination of the thesis will present a real-time trajectory generation and position control method for a differential drive robot in the presence of obstacles.