Date on Master's Thesis/Doctoral Dissertation


Document Type

Doctoral Dissertation

Degree Name

Ph. D.


Computer Engineering and Computer Science

Committee Chair

Kantardzic, Mehmed

Author's Keywords

Automatic summarization; Search engines; Graph theory; Social media


Web search engines; Automatic abstracting; Graph theory--Data processing


After a user types in a search query on a major search engine, they are presented with a number of search results. Each search result is made up of a title, brief text summary and a URL. It is then the user's job to select documents for further review. Our research aims to improve the accuracy of users selecting relevant documents by improving the way these web pages are summarized. Improvements in accuracy will lead to time improvements and user experience improvements. We propose ReClose, a system for generating web document summaries. ReClose generates summary content through combining summarization techniques from query-biased and query-independent summary generation. Query-biased summaries generally provide query terms in context. Query-independent summaries focus on summarizing documents as a whole. Combining these summary techniques led to a 10% improvement in user decision making over Google generated summaries. Color-coded ReClose summaries provide keyword usage depth at a glance and also alert users to topic departures. Color-coding further enhanced ReClose results and led to a 20% improvement in user decision making over Google generated summaries. Many online documents include structure and multimedia of various forms such as tables, lists, forms and images. We propose to include this structure in web page summaries. We found that the expert user was insignificantly slowed in decision making while the majority of average users made decisions more quickly using summaries including structure without any decrease in decision accuracy. We additionally extended ReClose for use in summarizing large numbers of tweets in tracking flu outbreaks in social media. The resulting summaries have variable length and are effective at summarizing flu related trends. Users of the system obtained an accuracy of 0.86 labeling multi-tweet summaries. This showed that the basis of ReClose is effective outside of web documents and that variable length summaries can be more effective than fixed length. Overall the ReClose system provides unique summaries that contain more informative content than current search engines produce, highlight the results in a more meaningful way, and add structure when meaningful. The applications of ReClose extend far beyond search and have been demonstrated in summarizing pools of tweets.