Date on Master's Thesis/Doctoral Dissertation


Document Type

Doctoral Dissertation

Degree Name

Ph. D.


Electrical and Computer Engineering

Degree Program

Electrical Engineering, PhD

Committee Chair

Inanc, Tamer

Committee Co-Chair (if applicable)

DePuy, Gail

Committee Member

DePuy, Gail

Committee Member

Imam, Ibrahim

Committee Member

McIntyre, Michael

Committee Member

Zurada, Jacek

Author's Keywords

Radial Basis Function; Optimal Control; Trajectory Optimization; Costate Estimation; Drug Dosing; Anemia Management


This work presents two direct methods based on the radial basis function (RBF) interpolation and arbitrary discretization for solving continuous-time optimal control problems: RBF Collocation Method and RBF-Galerkin Method. Both methods take advantage of choosing any global RBF as the interpolant function and any arbitrary points (meshless or on a mesh) as the discretization points. The first approach is called the RBF collocation method, in which states and controls are parameterized using a global RBF, and constraints are satisfied at arbitrary discrete nodes (collocation points) to convert the continuous-time optimal control problem to a nonlinear programming (NLP) problem. The resulted NLP is quite sparse and can be efficiently solved by well-developed sparse solvers. The second proposed method is a hybrid approach combining RBF interpolation with Galerkin error projection for solving optimal control problems. The proposed solution, called the RBF-Galerkin method, applies a Galerkin projection to the residuals of the optimal control problem that make them orthogonal to every member of the RBF basis functions. Also, RBF-Galerkin costate mapping theorem will be developed describing an exact equivalency between the Karush–Kuhn–Tucker (KKT) conditions of the NLP problem resulted from the RBF-Galerkin method and discretized form of the first-order necessary conditions of the optimal control problem, if a set of conditions holds. Several examples are provided to verify the feasibility and viability of the RBF method and the RBF-Galerkin approach as means of finding accurate solutions to general optimal control problems. Then, the RBF-Galerkin method is applied to a very important drug dosing application: anemia management in chronic kidney disease. A multiple receding horizon control (MRHC) approach based on the RBF-Galerkin method is developed for individualized dosing of an anemia drug for hemodialysis patients. Simulation results are compared with a population-oriented clinical protocol as well as an individual-based control method for anemia management to investigate the efficacy of the proposed method.