Date on Master's Thesis/Doctoral Dissertation


Document Type

Master's Thesis

Degree Name



Oral Biology

Committee Chair

Knudsen, Thomas B.


Mammary glands; Prenatal nutrition; Mice--Embryology


Mishaps in prenatal development can influence mammary gland development and, ultimately, affect susceptibility to factors that cause breast cancer. This research was based on the underlying hypothesis that maternal dietary composition during pregnancy can alter developmental (fetal) programming of the mammary gland. We used a computational systems-biology approach and Bayesian-based stochastic search variable selection algorithm (SSVS) to identify differentially expressed genes and biological themes and pathways. Postnatal growth trajectories and gene expression in the mammary gland at 10-weeks of age in female mice were investigated following different maternal diet exposures during prenatal-lactational-early-juvenile development. This correlated a decrease in expression of energy pathways with a reciprocal increase in cytokine and inflammatory-signaling pathways. These findings suggest maternal dietary fat exposure significantly influences postnatal growth trajectories, metabolic programming, and signaling networks in the mammary gland of female offspring. In addition, the adipocytokine pathway may be a sensitive trigger to dietary changes and may influence or enhance activation of an immune response, a key event in cancer development.