Date on Master's Thesis/Doctoral Dissertation
5-2012
Document Type
Master's Thesis
Degree Name
M.S.
Department
Bioinformatics and Biostatistics
Committee Chair
Brock, Guy
Author's Keywords
Item response theory; Goodness-of-fit; Graded response model
Subject
Item response theory; Goodness-of-fit tests; Monte Carlo method
Abstract
Item response theory (IRT) is expanding to diverse research settings, without accompanying access to easily implemented model fit methods. One simple model fit approach involves x2/df ratios. However, its utility is not known across several conditions salient to recent applied IRT research. A Monte Carlo simulation was implemented to investigate the effects of several factors (sample size, adjustment condition, type of misfit, and proportion of misfitting items) on x2/df ratios in the context of the Graded Response Model. Results suggested that: (a) adjusted x2/df ratios were appropriate for the largest sample size condition (N=10000), but were extremely inflated for small (N=400) and medium (N=1500) conditions; (b) x2/df ratios were differentially affected across sample sizes by type and amount of misfit; and (c) sensitivity of the x2/df> 3 cut point for identifying misfit in single items was notably low across all study conditions. Implications, limitations, and future directions are discussed.
Recommended Citation
Studts, Christina Ruth 1971-, "Utility of a goodness-of-fit index for the graded response model with small sample sizes : a Monte Carlo investigation." (2012). Electronic Theses and Dissertations. Paper 1397.
https://doi.org/10.18297/etd/1397