Date on Master's Thesis/Doctoral Dissertation
5-2015
Document Type
Master's Thesis
Degree Name
M. Eng.
Department
Mechanical Engineering
Committee Chair
Park, Sam D.
Committee Co-Chair (if applicable)
Brehob, Ellen G.
Committee Member
Kang, Kyung A.
Author's Keywords
Fuel cell[; ] Open cathode[; ] Low temp[; ] Simulation[; ] Compression[; ] Analytical
Subject
Fuel cells; Cathodes
Abstract
In this thesis four different fuel cell designs were simulated with consideration for electrochemical effects, reactant species transport, and heat transfer. Simulation results include the mass fraction of hydrogen, oxygen, and water, temperature gradient, pressure gradient, and velocity profile. One of the fuel cell designs was experimentally tested using two different membrane electrolyte assemblies; one high performance and the other high durability. The polarization curve resulting from simulation compares well with the polarization curve produced by experimental work. A 16 cell fuel cell stack was simulated with consideration for stack compression. The same fuel cell stack was tested experimentally for compression using pressure sensitive films. Compression testing was performed in order to find areas of low compression and high compression. Low compression regions lead to high contact resistance which degrades the performance of the fuel cell. High compression regions can cause damage to the thin and brittle membrane electrolyte assemblies. A good correlation was found between the compression pattern resulting from simulation and experimental work.
Recommended Citation
Bates, Alex Martin, "Experimental and analytical study of an open cathode polymer electrolyte membrane fuel cell." (2015). Electronic Theses and Dissertations. Paper 1658.
https://doi.org/10.18297/etd/1658