Date on Master's Thesis/Doctoral Dissertation
5-2016
Document Type
Master's Thesis
Degree Name
M.S.
Department
Bioinformatics and Biostatistics
Degree Program
Biostatistics, MS
Committee Chair
Kong, Maiying
Committee Co-Chair (if applicable)
Benitez, Joseph
Committee Member
Benitez, Joseph
Committee Member
Gaskins, Jeremy
Author's Keywords
propensity scores; causal inference; observational data; cardiotoxicity; breast cancer; average treatment effect
Abstract
Observational data presents unique challenges for analysis that are not encountered with experimental data resulting from carefully designed randomized controlled trials. Selection bias and unbalanced treatment assignments can obscure estimations of treatment effects, making the process of causal inference from observational data highly problematic. In 1983, Paul Rosenbaum and Donald Rubin formalized an approach for analyzing observational data that adjusts treatment effect estimates for the set of non-treatment variables that are measured at baseline. The propensity score is the conditional probability of assignment to a treatment group given the covariates. Using this score, one may balance the covariates across treatment groups and obtain unbiased estimates of treatment effects. This paper has three objectives: to explain propensity scores, their assumptions, and their applications; to illustrate their use and several considerations underlying various propensity score methods, by using simulation studies; and to use propensity score methods to estimate average treatment effect between two types of breast cancer chemotherapy treatment regimens, with respect to subsequent development of cardiotoxicity.
Recommended Citation
Craycroft, John, "Propensity score methods : a simulation and case study involving breast cancer patients." (2016). Electronic Theses and Dissertations. Paper 2460.
https://doi.org/10.18297/etd/2460