Date on Master's Thesis/Doctoral Dissertation
5-2016
Document Type
Doctoral Dissertation
Degree Name
Ph. D.
Department
Computer Engineering and Computer Science
Degree Program
Computer Science and Engineering, PhD
Committee Chair
Lauf, Adrian
Committee Co-Chair (if applicable)
Kantardzic, Mehmed
Committee Member
Kantardzic, Mehmed
Committee Member
Yampolskiy, Roman V.
Committee Member
Li, Hongxiang
Committee Member
Welch, Karla
Author's Keywords
link quality estimation; wireless robot networks; online fuzzy learning of communication quality
Abstract
It is often essential for robots to maintain wireless connectivity with other systems so that commands, sensor data, and other situational information can be exchanged. Unfortunately, maintaining sufficient connection quality between these systems can be problematic. Robot mobility, combined with the attenuation and rapid dynamics associated with radio wave propagation, can cause frequent link quality (LQ) issues such as degraded throughput, temporary disconnects, or even link failure. In order to proactively mitigate such problems, robots must possess the capability, at the application layer, to gauge the quality of their wireless connections. However, many of the existing approaches lack adaptability or the framework necessary to rapidly build and sustain an accurate LQ prediction model. The primary contribution of this dissertation is the introduction of a novel way of blending machine learning with fuzzy logic so that an adaptable, yet intuitive LQ prediction model can be formed. Another significant contribution includes the evaluation of a unique active and incremental learning framework for quickly constructing and maintaining prediction models in robot networks with minimal sampling overhead.
Recommended Citation
Lowrance, Christopher J., "An adaptable fuzzy-based model for predicting link quality in robot networks." (2016). Electronic Theses and Dissertations. Paper 2461.
https://doi.org/10.18297/etd/2461