Date on Master's Thesis/Doctoral Dissertation

5-2017

Document Type

Doctoral Dissertation

Degree Name

Ph. D.

Department

Electrical and Computer Engineering

Degree Program

Electrical Engineering, PhD

Committee Chair

Li, Hongxiang

Committee Co-Chair (if applicable)

Faul, Andre

Committee Member

Faul, Andre

Committee Member

Harnett, Cindy

Committee Member

Zeng, Huacheng

Committee Member

Bai, Lihui

Author's Keywords

wireless communication; signal processing

Abstract

This dissertation studies three independent research topics in the general field of wireless communications. The first topic focuses on new receiver design with low-resolution analog-to-digital converters (ADC). In future massive multiple-input-multiple-output (MIMO) systems, multiple high-speed high-resolution ADCs will become a bottleneck for practical applications because of the hardware complexity and power consumption. One solution to this problem is to adopt low-cost low-precision ADCs instead. In Chapter II, MU-MIMO-OFDM systems only equipped with low-precision ADCs are considered. A new turbo receiver structure is proposed to improve the overall system performance. Meanwhile, ultra-low-cost communication devices can enable massive deployment of disposable wireless relays. In Chapter III, the feasibility of using a one-bit relay cluster to help a power-constrained transmitter for distant communication is investigated. Nonlinear estimators are applied to enable effective decoding. The second topic focuses prototyping and verification of a LTE and WiFi co-existence system, where the operation of LTE in unlicensed spectrum (LTE-U) is discussed. LTE-U extends the benefits of LTE and LTE Advanced to unlicensed spectrum, enabling mobile operators to offload data traffic onto unlicensed frequencies more efficiently and effectively. With LTE-U, operators can offer consumers a more robust and seamless mobile broadband experience with better coverage and higher download speeds. As the coexistence leads to considerable performance instability of both LTE and WiFi transmissions, the LTE and WiFi receivers with MIMO interference canceller are designed and prototyped to support the coexistence in Chapter IV. The third topic focuses on theoretical analysis of physical-layer secrecy with finite blocklength. Unlike upper layer security approaches, the physical-layer communication security can guarantee information-theoretic secrecy. Current studies on the physical-layer secrecy are all based on infinite blocklength. Nevertheless, these asymptotic studies are unrealistic and the finite blocklength effect is crucial for practical secrecy communication. In Chapter V, a practical analysis of secure lattice codes is provided.

Share

COinS