Date on Master's Thesis/Doctoral Dissertation
8-2017
Document Type
Doctoral Dissertation
Degree Name
Ph. D.
Department
Mathematics
Degree Program
Applied and Industrial Mathematics, PhD
Committee Chair
Powers, Robert
Committee Co-Chair (if applicable)
McMorris, Fred
Committee Member
McMorris, Fred
Committee Member
Gill, Ryan
Committee Member
Gainous, Jason
Author's Keywords
voting theory; difference of votes; electoral college; probability of agreement; popular vote
Abstract
In a voting situation where there are only two competing alternatives, simple majority rule outputs the alternatives with the most votes or declares a tie if both alternatives receive the same number of votes. For any non-negative integer k, the difference of votes rule Mk outputs the alternative that beats the competing alternative by more than k votes. Llamazares (2006) gives a characterization of the difference of votes rules in terms of five axioms. In this thesis, we extend Llamazares' result by completely describing the class of voting rules that satisfy only two out of his five axioms. In addition, we state and prove Llamazares' theorem in voting models where either there is an infinite number of votes or each voter is allowed to express an intensity level for one alternative over the other. Finally, we will use a computer simulation to compare different voting methods to simple majority rule, in order to analyze the probability that the voting rules would output different results.
Recommended Citation
King, Sarah Schulz, "Extending difference of votes rules on three voting models." (2017). Electronic Theses and Dissertations. Paper 2793.
https://doi.org/10.18297/etd/2793
Included in
Models and Methods Commons, Other Applied Mathematics Commons, Other Mathematics Commons, Political Economy Commons