Date on Master's Thesis/Doctoral Dissertation
12-2017
Document Type
Master's Thesis
Degree Name
M. Eng.
Department
Chemical Engineering
Committee Chair
Berson, Eric
Committee Co-Chair (if applicable)
Lian, Yongsheng
Committee Member
Lian, Yongsheng
Committee Member
Willing, Gerold
Author's Keywords
Mean age theory; CFD; Mixing; Residence time distributions
Abstract
A comparison between mean age theory and conventional residence time distributions over a range of quantified mixing levels was conducted using computational fluid dynamics (CFD). The system was a stirred tubular reactor. The model was validated by comparing computationally derived RTD curves with experimentally obtained RTD curves, with quantified differences less than 3%. Mixing was quantified using the Tanks-in-Series model. Mixing levels were set by varying flow rate and impeller rpm. Mean age distributions at the outlet, where experimental RTD’s were measured, were very narrow for all levels of mixing studied. RTD’s showed expected characteristics; a wider distribution and long decay for high mixing cases and a narrow distribution centered around the mean time for cases approaching plug flow. Mean age distributions remained substantially narrower than RTD’s. RTD’s and mean age distributions were measured at several locations along the length of the reactor to determine changes in characteristics of each along the reactor. RTD’s and mean age distributions exhibited a narrowing along the length of the reactor, indicating a transition from well-mixed characteristics near the entrance to plug flow behavior near the exit. Differences in the mean age and mean residence time at the outlet increased from 7% at low mixing to 30% at high mixing. Ultimately, this study showed mean age distributions are not comparable to RTD curves over a range of mixing levels. Mean age theory can provide age of material throughout an entire system volume, while RTD’s provide a distribution only at a single measurable location.
Recommended Citation
Theaker, Nolan, "A comparison of mean age theory and residence time distributions in mixed systems." (2017). Electronic Theses and Dissertations. Paper 2811.
https://doi.org/10.18297/etd/2811