Date on Master's Thesis/Doctoral Dissertation
5-2019
Document Type
Doctoral Dissertation
Degree Name
Ph. D.
Department
Chemical Engineering
Degree Program
Chemical Engineering, PhD
Committee Chair
Sunkara, Mahendra
Committee Co-Chair (if applicable)
Sathitsuksanoh, Noppadon
Committee Member
Sathitsuksanoh, Noppadon
Committee Member
Starr, Thomas
Committee Member
Satyavolu, Jagannadh
Committee Member
Grapperhaus, Craig
Committee Member
Vasireddy, Sivakumar
Author's Keywords
CO2; DMR; 2-methyl-furan; nanowire; catalysts; adsorbent
Abstract
Even today, the major energy source is fossil fuels, which release CO2, a greenhouse gas that contributes to global warming. CO2 capture, storage (CCS) and/or utilization (CCU) technologies are two routes to mitigate this problem. Sorbents are being investigated in either temperature swing or pressure swing absorption approaches for carbon capture from flue gases. Solid sorbent based technology is a promising one but suffers from slow kinetics, low capacity and need for high temperatures. Thus, new sorbent materials that can have good CO2 sorption capacity, recyclability are sought. Similarly, one of the utilization approaches for CO2 is dry methane reforming reaction for hydrogen production. However, current catalysts undergo sintering and produce coking at high reaction temperatures making this reaction a challenge. In this dissertation, nanowire based materials provide uniformity of active surfaces, great stability against sintering and improved diffusion processes for reactions are potentially interesting for fast kinetics with carbon capture sorbents and stable catalyst supports for dry methane reforming reaction. Lithium silicate (Li4SiO4) nanowires were successfully synthesized using a Solvo-PlasmaTM method. Li4SiO4 nanowires exhibited ultrafast CO2 sorption kinetics and capacities closer to their theoretical value. Regeneration tests have shown cyclability but have shown stability with performance at high temperatures over longer durations. The fast kinetics is attributed to shorter time scales needed for lithium to reach surface and react with CO2. Titania nanowires decorated with nickel nanoparticles are investigated for dry methane reforming reaction. Results showed almost 90% CO2 conversion and sustained the catalytic activity under harsh reaction conditions when compared to other nickel supported on spherical titania nanoparticles. The data indicates that the catalysts supported on nanowires exhibited formation of carbons that are reversibly etched in the process making them stable over long periods of time. Overall, in this dissertation, the use of nanowire morphology is investigated to enhance CO2 capture kinetics for improved sorption processes, and to design coke resistant catalyst materials for dry methane reforming by boosting and modifying metal-support interactions.
Recommended Citation
Nambo, Apolo, "Nanowire based adsorbents/catalysts for CO2 capture and utilization." (2019). Electronic Theses and Dissertations. Paper 3147.
https://doi.org/10.18297/etd/3147