Date on Master's Thesis/Doctoral Dissertation
8-2019
Document Type
Doctoral Dissertation
Degree Name
Ph. D.
Department
Electrical and Computer Engineering
Degree Program
Electrical Engineering, PhD
Committee Chair
Li, Hongxiang
Committee Co-Chair (if applicable)
Zurada, Jacek
Committee Member
Zurada, Jacek
Committee Member
Faul, Andre J.
Committee Member
Bai, Lihui
Author's Keywords
Representation learning; real-time graph embedding; dynamic spectrum access; knowledge graph; distributed graph process
Abstract
This dissertation includes two topics. The first topic studies a promising dynamic spectrum access algorithm (DSA) that improves the throughput of satellite communication (SATCOM) under the uncertainty. The other topic investigates distributed representation learning for streaming and complex networks. DSA allows a secondary user to access the spectrum that are not occupied by primary users. However, uncertainty in SATCOM causes more spectrum sensing errors. In this dissertation, the uncertainty has been addressed by formulating a DSA decision-making process as a Partially Observable Markov Decision Process (POMDP) model to optimally determine which channels to sense and access. Large-scale networks have attracted many attentions to discover the hidden information from big data. Particularly, representation learning embeds the network into a lower vector space while maximally preserving the similarity among nodes. I propose a real-time distributed graph embedding algorithm (RTDGE) which is capable of distributively embedding the streaming graph by combining a novel edge partition approach and an incremental negative sample approach. Furthermore, a platform is prototyped based on Kafka and Storm. Real-time Twitter network data can be retrieved, partitioned and processed for state-of-art tasks. For knowledge graphs, existing works cannot capture the complex connection patterns and never consider the impacts from complicated relations, due to the unquantifiable relationships. A novel embedding algorithm is proposed to hierarchically measure the structural similarity and the impacts from relations by constructing a multi-layer graph. Then, an advanced representation learning model is designed based on an entity's context generated by random walks on the multi-layer content graph.
Recommended Citation
Liu, Wenqi, "Cognitive satellite communications and representation learning for streaming and complex graphs." (2019). Electronic Theses and Dissertations. Paper 3272.
https://doi.org/10.18297/etd/3272