Date on Master's Thesis/Doctoral Dissertation

8-2021

Document Type

Doctoral Dissertation

Degree Name

Ph. D.

Department

Computer Engineering and Computer Science

Degree Program

Computer Science and Engineering, PhD

Committee Chair

Elmaghraby, Adel

Committee Co-Chair (if applicable)

Gentili, Monica

Committee Member

Gentili, Monica

Committee Member

Zhang, Hui

Committee Member

Park, Juw Won

Committee Member

Sosa, Daniel Sierra

Author's Keywords

NLP; social media; deep learning; healthcare; physician notes

Abstract

Researchers analyze data, information, and knowledge through many sources, formats, and methods. The dominant data format includes text and images. In the healthcare industry, professionals generate a large quantity of unstructured data. The complexity of this data and the lack of computational power causes delays in analysis. However, with emerging deep learning algorithms and access to computational powers such as graphics processing unit (GPU) and tensor processing units (TPUs), processing text and images is becoming more accessible. Deep learning algorithms achieve remarkable results in natural language processing (NLP) and computer vision. In this study, we focus on NLP in the healthcare industry and collect data not only from electronic medical records (EMRs) but also medical literature and social media. We propose a framework for linking social media, medical literature, and EMRs clinical notes using deep learning algorithms. Connecting data sources requires defining a link between them, and our key is finding concepts in the medical text. The National Library of Medicine (NLM) introduces a Unified Medical Language System (UMLS) and we use this system as the foundation of our own system. We recognize social media’s dynamic nature and apply supervised and semi-supervised methodologies to generate concepts. Named entity recognition (NER) allows efficient extraction of information, or entities, from medical literature, and we extend the model to process the EMRs’ clinical notes via transfer learning. The results include an integrated, end-to-end, web-based system solution that unifies social media, literature, and clinical notes, and improves access to medical knowledge for the public and experts.

Share

COinS