Date on Master's Thesis/Doctoral Dissertation

8-2023

Document Type

Master's Thesis

Degree Name

M.S.

Department

Pharmacology and Toxicology

Degree Program

Pharmacology and Toxicology, MS

Committee Chair

Mohamed, Tamer M.

Committee Member

Siskind, Leah J.

Committee Member

Jones, Steven P.

Committee Member

Clark, Geoffrey J.

Author's Keywords

Cardiac regeneration; cardiomyocyte; heart failure; myocardial infarctionEpigenetic

Abstract

The limited regenerative capacity of adult cardiomyocytes (CMs) is manifested in prevalent morbidity and mortality associated with ischemic heart disease. We previously demonstrated that a combination of four cell cycle factors (4F) promotes efficient cell division in differentiated CMs. The temporal transcriptional reprogramming in the 4F-transduced CMs indicates that epigenetic modifications mediate the cell cycle progression. Through small molecule screening, we evaluated the epigenetic impact on CM’s response in the 4F-transduced CMs. We identified the histone demethylase 5B (KDM5B), which through in vitro and ex vivo genetic knockdown and overexpression studies, exhibited a modulative effect on CM’s cell cycle plasticity along with transcriptional alteration in the cell cycle-related genes. Whereas KDM5B depletion impaired CM’s replicative capacity, its overexpression induced and augmented CM’s proliferation in a context-dependent manner. Our data indicate that KDM5B is essential for CM’s regeneration and cell cycle activation and is a potential target for myocardial repair.

Share

COinS