Document Type

Article

Publication Date

1-1-2023

Department

Physics and Astronomy

Abstract

We investigate spatially resolved emission-line ratios in a sample of 219 galaxies (0.6 < z < 1.3) detected using the G102 grism on the Hubble Space Telescope Wide Field Camera 3 taken as part of the CANDELS Lyα Emission at Reionization survey to measure ionization profiles and search for low-luminosity active galactic nuclei (AGN). We analyze [O III] and Hβ emission-line maps, enabling us to spatially resolve the [O III]/Hβ emission-line ratio across the galaxies in the sample. We compare the [O III]/Hβ ratio in galaxy centers and outer annular regions to measure ionization differences and investigate the potential of sources with nuclear ionization to host AGN. We investigate some of the individual galaxies that are candidates to host strong nuclear ionization and find that they often have low stellar mass and are undetected in X-rays, as expected for low-luminosity AGN in low-mass galaxies. We do not find evidence for a significant population of off-nuclear AGN or other clumps of off-nuclear ionization. We model the observed distribution of [O III]/Hβ spatial profiles and find that most galaxies are consistent with a small or zero difference between their nuclear and off-nuclear line ratios, but 6%–16% of galaxies in the sample are likely to host nuclear [O III]/Hβ that is ∼0.5 dex higher than in their outer regions. This study is limited by large uncertainties in most of the measured [O III]/Hβ spatial profiles; therefore, deeper data, e.g., from deeper HST/ WFC3 programs or from JWST/NIRISS, are needed to more reliably measure the spatially resolved emission-line conditions of individual high-redshift galaxies.

Comments

© 2023. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Original Publication Information

Bren E. Backhaus et al 2023 ApJ 943 37. DOI 10.3847/1538-4357/aca668

DOI

10.3847/1538-4357/aca668

ORCID

0000-0002-4884-6756

Share

COinS